
SW-Uinta: A Small-World P2P Overlay Network*

Jie Xu, Hai Jin

Services Computing Technology and System Lab.
Cluster and Grid Computing Lab.

School of Computer Science and Technology
Huazhong University of Science and Technology, Wuhan, 430074, China

hjin@hust.edu.cn

Abstract. In this paper, we propose a new structured P2P overlay network,
named SW-Uinta, where employs a non-deterministic caching strategy that al-
lows for polylogarithmic search time while having only a constant cache size.
Compared with deterministic caching strategies proposed by previous P2P sys-
tems, the non-deterministic caching strategy can reduce communication over-
head for maintaining the routing cache table. Cache entries in the peer can be
updated by subsequent queries rather than only by running stabilization peri-
odically. A novel cache replacement scheme is used to improve lookup per-
formance. We compare the performance of our system with that of other struc-
tured P2P networks such as Chord and Uinta. It shows that the SW-Uinta pro-
tocol can achieve improved object lookup performance and reduce maintenance
cost compared with some other protocols.

1. Introduction

P2P systems are self-organizing distributed systems with no centralized control. Each
peer in the P2P network has similar functionalities and plays the roles of a server and
a client at the same time. These systems have recently gained much attention, primar-
ily because of the great number of features they can offer to applications that are built
on top of them, such as scalability, availability, fault tolerance, decentralized admini-
stration, and anonymity.

Current P2P systems can be classified into two types, namely unstructured and
structured. Unstructured systems like Gnutella [1], KazaA [2] and Freenet [3] are
constructed without any regularization on the connectivity among peers and the rout-
ing mechanism. For them, the emphases are on fast file retrieval, with no guarantee
that files will always be located. In contrast, structured P2P systems such as Chord
[4], CAN [5], Pastry [6] and Tapestry [7] follow a predetermined structure. They
guarantee that the file will always be located at the cost of increased overhead for
peers join/leave and maintaining the routing table. Therefore, the research issue of
this paper is whether there exists a scheme such that each file can be located and
maintenance cost can be reduced.

* This paper is supported by National Science Foundation of China under grant 60433040, and

CNGI projects under grant CNGI-04-12-2A and CNGI-04-12-1D

Most of the existing structured P2P systems adopt the deterministic caching
scheme [8], where keys should be addressed in the cache of peer N is based on the
key of peer N and cached index entries typically have expiration times after which
they are considered stale. However, little attention has been given on how to maintain
these caches during the lookup process. Therefore, communication overhead is high
for maintaining the routing cache table.

In this paper, we propose a non-deterministic caching scheme to maintain routing
cache tables in a structured P2P overlay network, named Uinta [9]. Our scheme is
built on the structured system which can guarantee that each file can be located. The
non-deterministic caching scheme builds of cache index entries after answering
search queries which can reduce maintenance cost. The basic idea of our scheme is to
arrange all peers along a ring-over-ring and equip them with some short distance
contacts and long distance contacts. Short distance contacts are built when the peer
joins the system with its immediate neighbors. Long distance contacts are built after
the peer receives the reply that it requests for.

Assume that peer S initiates the query for key K which is in the cache of peer T.
Upon receiving the answer from peer T, peer S caches the information of peer T
which arrives with the reply. The traditional cache replacement scheme such as LRU,
LFU, and FIFO can not result in the better lookup performance because they do not
consider the network topology. In order to optimize the performance of global system,
we use the intuition from the small world model [10-14] which says that the routing
distance in a graph will be small if each peer has pointers pointing to its immediately
neighbors and some chosen far away nodes.

Compared with our previous work [9], main contributions in this paper are:
(1) We propose a non-deterministic caching scheme to reduce maintenance cost

for updating the routing cache table.
(2) We propose the SW cache replacement scheme with the small-world paradigm

to further improve the performance of object lookup.
The rest of this paper is organized as follows. In Section 2, we give a brief back-

ground description of the small-world model and Uinta overlay network. In Section 3,
we provide the method how to construct SW-Uinta overlay network. SW-Uinta rout-
ing algorithm is proposed and its complexity is given in Section 4. Experiments are
discussed and results show the performance of SW-Uinta outperforms that of some
other systems in Section 5. An overview of related works is presented in Section 6
and we conclude our research and propose future work in the last section.

2. Background

2.1 Small-World Model

The notion of small world phenomenon originates from social science research by
Stanley Milgram [10]. He sought to determine whether most pairs of people in soci-
ety were linked by short chains of acquaintances. Through some experiments, he

concluded his research by showing that most pairs of people are joined by a median
number of six steps, a so-called “six degrees of separation” principle.

A theoretical model for small-world networks by Watts and Strogatz [11] pictured
a small world as a loosely connected set of highly connected sub-graphs. The edges
of the network are divided into “local” and “long-range” contacts, which are con-
structed roughly as follows. One starts with a set V of n points spaced uniformly on a
circle, and joins each point by an edge to each of its k nearest neighbors, for a small
constant k. These are the “local contacts” in the network. One then introduces a small
number of edges in which the endpoints are chosen uniformly at random from V —
the “long-range contacts”. However, according to the model of Watts and Strogatz,
there is no decentralized algorithm capable of constructing paths of small expected
length [13].

Kleinberg [13] defined an infinite family of network models that naturally general-
ized the model in [11] and then proved that there was exactly one model within this
family for which a decentralized algorithm existed to find short paths with high prob-
ability. In this model, the probability of a random shortcut being a distance x away
from the source is proportional to 1/x in one dimension.

Now, it has been observed that the small world phenomenon is pervasive in a wide
range of settings such as social communities, biological environments, and
data/communication networks. For example, recent studies [15] have shown that P2P
networks such as Freenet may exhibit small world properties. Generally, small world
networks can be characterized by average path length between two nodes in the net-
work and cluster coefficient defined as the probability that two neighbors of a node
are neighbors themselves. A network is said to be small world if it has small average
path length (i.e., similar to the average path length in random networks) and large
cluster coefficient (i.e., much greater than that of random networks). Studies on a
spectrum of networks with small world characteristics show that searches can be
efficiently conducted when the network exhibits the following properties: 1) each
node in the network knows its local neighbors, called short range contacts; 2) each
node knows a small number of chosen distant nodes, called long range contacts, with
probability proportional to 1/x where x is the distance.

2.2 Uinta Overlay Network

P2P overlay networks, such as CAN, Chord, Pastry and Tapestry, lead to high latency
and low efficiency because they are independent of underlying physical networks. A
well-routed lookup path in an overlay network with a small number of logical hops
can result in a long delay and excessive traffic due to undesirably long distances in
some physical links. In these DHT-based P2P systems, each data item is associated
with a key and the key/value pair is stored in the peer to which the key maps, not
considering the data semantic. In [9], we propose an effective P2P routing algorithm,
called Uinta, to adaptively construct a structured P2P overlay network. Uinta not only
takes advantages of physical characteristics of the network, but also places data be-
longing to the same semantic into a cluster and employs a class cache scheme to con-
sider the users’ interest.

Construction of Uinta overlay network involves three major tasks: (1) forming peer
clusters based on the physical topology of network; (2) assigning an identifier to a
peer or a key to locate a peer in the peer cluster; (3) constructing an overlay network
across peer clusters. The detail of Uinta overlay network can be found in [9].

3. SW-Uinta Overlay Network

3.1 Construction

Though experiments have shown that Uinta routing algorithm can improve P2P sys-
tem lookup performance, a deterministic caching strategy is employed in it, which
only achieves O(logN) search time with O(logN) cache size and maintenance cost for
updating the routing table is O(log2N). P2P network is the high dynamic system so
that too much maintenance cost will reduce the global performance of system. Now
we construct an overlay network SW-Uinta to get O((log2N)/k) search time with O(k)
cache size. Maintaining the routing table need no additional cost.

In Uinta, each peer maintains two finger tables: c-finger table and l-finger table,
and a class cache table. The deterministic caching strategy is employed for c-finger
table and l-finger table and LRU replacement cache scheme is used for the class
cache table. In SW-Uinta, each peer also maintains three cache tables. However, a
non-deterministic caching strategy is proposed for two finger tables and a cache re-
placement scheme related to the small-world model is used for all three cache tables.

In the c-finger table of SW-Uinta, each peer maintains two short links: c-successor
which points to the first-joined peer in the next cluster and c-predecessor which
points to the first-joined peer in the previous cluster. Each peer maintains m long
links c-finger[i] (1<=i<=m). In the l-finger table of SW-Uinta, each peer maintains
two short links: l-successor pointing to the next peer in the same cluster and c-
predecessor pointing to the previous peer in the same cluster. Each peer maintains m
long links l-finger[i] (1<=i<=m).

If the cache size for peer P is m and its cache table is full, assuming that the cache
table CT={d1, d2, …, dm } and dm is the distance between the cache object and P, the
cache object with distance di is replaced by the new object with the probability

1

1 1*
mdD +

 where
1

1

1m

i i

D
d

+

=

= ∑ when a new object with distance dm+1 is received. We call

this scheme SW cache replacement scheme.
Suppose that peer S gets the answer requested from peer T and there are no point-

ers to peer T in peer S.
(1) If peer S and peer T are in the same cluster and l-finger[i] is not full, peer S

caches peer T in the l-finger table;
(2) If peer S and peer T are in the same cluster and l-finger[i] is full, SW cache

replacement scheme is employed for l-finger[i];
(3) If peer S and peer T are in the different clusters and c-finger[i] is not full,

peer S caches peer T in the c-finger table;

(4) If peer S and peer T are in the different clusters and c-finger[i] is full, SW
cache replacement scheme is employed for c-finger[i].

Because users always retrieve data of a kind, which they are interested in, we store
the data information based on data semantics in Uinta, which makes data of a kind
placed in the same cluster in Uinta. After that, the user can utilize a class cache table
to cache the identifier of peer where data of some kind searched recently store and the
identifier of this kind. If the user searches data of this kind next, it can use the infor-
mation of the cache table directly. It is obvious that P2P system workload has tempo-
ral and spatial localities just as that in the web traffic [16]. For example, a user who
retrieves a song is likely to retrieve other songs in subsequential requests. A high
class cache table hit rate can be expected, thus a reduced average number of routing
hops and lower routing network latency can be achieved.

In Uinta, we used LRU as the cache replacement scheme, which could not improve
the whole performance because the topology of network does not be considered in
LRU. Therefore, in SW-Uinta, we also employ the SW cache replacement scheme.
When peer S gets data D requested from peer T, the class identifier of data D and the
IP address (and port number) of the first-joined peer in the cluster where T is will be
stored in the class cache table if it is not full. Otherwise, SW cache replacement
scheme is employed for the class cache table.

Cache tables are generally kept fresh by the traffic of requests traveling through
peers. To handle pathological cases in which there are no lookups for a particular ID
range, each peer refreshes any cache table to which it has not performed data lookup
in the past hour. Refreshing means picking an entry in the cache table and performing
a peer search for that ID. On the one hand, this scheme avoids the bottleneck of net-
work traffic because all of the peers will not update at the same time. On the other
hand, the peer can be responsible for the failure of some peers quickly. Maintenance
cost for the routing table always goes with the lookup operation, which needs few
other messages.

3.2 Peer Operation

Peer joins. When a new peer p joins the system, it sends a join message to a nearby
peer q that is already a member of the system. This process can be done in different
methods. We simply assume it can be done quickly (this is the same assumption as
other DHT algorithms). Then peer p can get the information of landmark nodes from
this nearby peer q and fulfill its own landmark table. It then decides the distance be-
tween itself and the landmark nodes and uses the distributed binning scheme to de-
termine the suitable cluster Pp it should join. Then the identifier Dp of peer p can be
gotten, i.e., Dp=Pp*2n+Sp (Sp is the hash value of IP address of peer p). Consequently,
peer p connects the peer p’ in the cluster Pp through the c-finger table of peer q and
then is located in the cluster based on the suffix Sp. Assume that peer s is the l-
successor of peer p and peer n is the original l-predecessor of peer s. Then, peer p
acquires peer s as its l-successor and acquires peer n as its l-predecessor. Peer n ac-
quires peer p as its l-successor and peer s acquires peer p as its l-predecessor. Other
data structures needed by peer p are copied from peer s.

If peer p finds that c-finger[i].identifier equals to Pp but the identifier prefix of c-
finger[i].node denoted as peer x does not equal to Pp rather than Xp in peer q, it shows
peer p will form a new cluster whose identifier is Pp. Peer p acquires peer x as its c-
successor and acquires peer q as its c-predecessor which is the original c-predecessor
of peer x. Every peer in the cluster that peer x located, when notified by peer p, ac-
quires peer p as its c-predecessor. Every peer in the cluster that peer q located ac-
quires peer p as its c-successor. Both l-predecessor and l-successor of peer p point to
itself. Other data structures needed by peer p are copied from peer s. Finally, keys
between Pp*2n and Xp*2n are moved form cluster Xp*2n to cluster Pp*2n. Peer p joins
the system successfully.
Peer leaves or fails. When a peer leaves the network, it checks whether it is the last
peer in the cluster. If there are other peers in the cluster, this peer simply informs its
leaving to its l-predecessor and l-successor and keys in it are moved to its l-successor.
Otherwise, except for informing its leaving to its c-predecessor and c-successor, the
key subspace of this cluster needs to be merged with one of its neighboring clusters.
The peer of its neighboring clusters which is closest in the key space to the leaving
peer takes over all of its keys. A failed peer is detected during routine operations such
as search. If a peer detects a failure in one of its cache tables, it evicts this entry in the
cache table.

4. SW-Uinta Routing Algorithm

SW-Uinta routing algorithm and its complexity are described in this section.
1) When peer p wants to obtain the file associated with a key k and a class c, it gets

the class identifier Pk of the file hashed by SHA-1 with c;
2) Check whether exists an entry (Pk*2n, q) for the class identifier Pk in the class

cache table; if does, jump to peer q directly, then to 6); otherwise, to 3);
3) Check whether Pk falls between the Pp of p and the Pq of its c-successor q; if

does, jump to q, then to 6); otherwise, to 4);
4) x=p;

repeat
Search peer x’s c-finger table for peer q whose prefix of identifier Pq most

immediately precedes Pk, x=q;
until Pk falls between the Px of x and the Pq of its c-successor q;

5) Jump to peer q;
6) Find a peer d through the l-finger table of peer q so as to make the suffix of key

identifier Sk hashed by SHA-1 with k falls between Sx of x and Sd of its l-
successor d;

7) Return the identifier of peer d and (key, value) pair searched to peer p; join the
information of peer d to two finger tables of peer p and join (Pk*2n, d) to the
class cache table of peer p using the SW cache replacement scheme described
above.

In SW-Uinta, the expected number of hops required to lookup an object is
O((log2N)/k).

5. Performance Evaluation

5.1 Simulation Methodology and Performance Metrics

In our simulation, we use the GT-ITM [17] transit stub topology generator to generate
the underlying networks, where the number of system peers N varies from 1,000 to
10,000. As far as the logical overlay is concerned, we build SW-Uinta and Uinta
based Chord simulator. Each peer on the overlay is uniquely mapped to one node in
the IP layer. We choose 4 landmarks placed at random and there is 3-level latency
from landmarks to peers. 100*N pseudo file-ids that are classified 100 kinds are gen-
erated and distributed across all the peers in simulated networks. For each experiment,
100,000 randomly generated routing requests (including file-id and its class) are
executed. To obtain a fair comparison, we keep the size of the cache table in SW-
Uinta to O(logN). We choose Chord as the platform because the ring geometry allows
the greatest flexibility.

We consider four metrics to verify the effectiveness of SW-Uinta: (1) Routing hop:
the average number of logical hops traversed by search messages to the destination;
(2) Routing latency: the average time for search messages from the source to the
destination; (3) Latency stretch: the ratio of the average latency on the overlay net-
work to the average latency on the IP network; (4) Maintenance cost: the average
number of messages incurred for each peer joins/leaves and for RT maintenance cost
which is the average number of messages needed for maintaining the routing table to
be up-to-date.

5.2 Routing Cost Reduction

The goal of simulation in this section is to show whether SW-Uinta can reduce the
routing cost in P2P system just as Uinta. Fig.1 shows the results of routing hops and
routing latency evaluation. In this simulation, we compare the routing performance of
Uinta-cachelogN, SW-Uinta(LRU), and SW-Uinta(small-world) with Chord under
different network size.

Fig.1(a) shows the routing performance comparison result measured with the aver-
age number of routing hops. All of Chord, Uinta-cachelogN, SW-Uinta(LRU) and
SW-Uinta(small-world) have good scalability: as the network size increases from
1000 nodes to 10000 nodes, the average number of routing hops only increases
around 33%, 32%, 36%, and 29%, respectively and the average number of routing
hops is 6.07, 5.74, 6.24, and 5.24, respectively.

As a proximate metrics, the average number of routing hops cannot represent the
real routing cost. The actual routing latency is highly depended on the average la-
tency for each hop. Fig.1(b) shows the measured results of the average routing la-
tency in Chord, Uinta-cachelogN, SW-Uinta(LRU), and SW-Uinta(small-world)
algorithms. Although Uinta and SW-Uinta have the nearly equal average number of
routing hops with that of Chord, they have smaller average routing latency which can
represents the real routing cost. For Uinta-cachelogN, SW-Uinta(LRU), and SW-

Uinta(small-world), the average routing latency gets 24.3%, 18.0%, and 40.4% re-
duction respectively compared with Chord.

 (a) Average number of routing hops (b) Average routing latency

Fig.1. Routing performance comparison for Uinta, SW-Uinta, and Chord

Obviously, the performance of routing hops and scalability for SW-Uinta(LRU)
are worse than those of other algorithms, which shows the LRU cache replacement is
not suitable for the P2P system. At the same time, because both the network charac-
teristics and the network topology are considered in constructing the SW-
Uinta(small-world) system so that the routing performance of SW-Uinta(small-world)
is better than that of three other algorithms.

5.3 Stretch Reduction

Latency stretch is referred to the ratio of the average latency on the overlay network
to the average latency on the IP network, which can be used to characterize the match
degree of the overlay to the physical topology. Table 1 summarizes the stretch statis-
tics in the case of a 10,000 peer network. From the table, we can find that stretch can
be reduced using Uinta and SW-Uinta. This shows that using topology-aware and
semantic-aware overlay construction, we can achieve significant improvement in the
lookup performance. SW-Uinta(small-world) can get better performance than Uinta.

Table 1. Latency stretch result for Chord, Uinta, and SW-Uinta

Algorithm Average routing latency Latency stretch
Chord 531.51 4.40

Uinta-cachelogN 366.68 3.04
SW-Uinta(LRU) 397.28 3.29

SW-Uinta (small-world) 289.31 2.40

5.4 Maintenance Cost

In this experiment, we show that SW-Uinta not only keeps the strengths of Uinta, but
also is able to reduce maintenance cost. Maintenance cost here includes two parts: the

number of messages incurred for each peer joins/leaves and RT maintenance cost.
Maintenance cost is referred to the average number of messages for all maintaining
operations such as peer joining, peer leaving and keeping the routing table to be up-
to-date.

We assume that peer joins and leaves according to the Poisson process at rate
R=0.1(minute-1). RT maintenance period is an hour. Fig.2 depicts maintenance cost
comparison for the Uinta-cachelogN, SW-Uinta(LRU), SW-Uinta(small-world), and
Chord schemes under different network size. Maintenance cost is around 16, 7, 6, and
21, respectively for the Uinta-cachelogN, SW-Uinta(LRU), SW-Uinta(small-world),
and Chord schemes. From this experiment, we know maintenance cost for SW-Uinta
is lower than two other algorithms because there is no additional cost for the route
table maintenance, that is RT maintenance cost, in SW-Uinta. Each searching opera-
tion can update the routing table, which needs no other operations to maintain the
routing table to be up-to-date.

0

10

20

30

40

50

60

70

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

Number of peers

M
a
n
t
e
n
a
n
c
e

c
o
s
t

Chord Uinta-cahcelogN SW-Uinta(LRU) SW-Uinta(small-world)

Fig.2. Maintenance cost comparison for Uinta, SW-Uinta, and Chord

6. Conclusions and Future Work

In this paper, we propose a new overlay infrastructure SW-Uinta based on Uinta
proposed by us in our previous study. SW-Uinta not only holds the strength of Uinta,
which takes both the user's interest and the physical topology into consideration, but
also considers the network characteristic so that the SW cache replacement scheme is
proposed to further improve the performance of object lookup. Because the P2P sys-
tem is a dynamic environment, maintenance cost for peer joining, peer leaving and
routing state maintenance is very high. Therefore, we propose a non-deterministic
caching scheme to reduce maintenance cost when peers join/leave and self-
organization occurs. Simulations also show SW-Uinta can improve the lookup per-
formance as well as it can reduce maintenance cost under the same size of routing
table. Now, this infrastructure is only suitable for key-based retrieval and content-
based retrieval is our next step of work.

Reference

[1] Gnutella: http://www.gnutellaforums.com/
[2] N. Leibowitz, M. Ripeanu, and A. Wierzbicki: Deconstructing the Kazaa Network. Proc. of

3rd IEEE Workshop on Internet Applications, Santa Clara, CA, (2003) 112-120
[3] I. Clarke, O. Sandberg, B. Wiley et al: Freenet: A Distributed Anonymous Information

Storage and Retrieval System. Proc. of Workshop on Design Issues in Anonymity and Un-
observability. ICSI, (2000) 311-320

[4] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan: Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. Proc. of the ACM SIGCOMM.
ACM Press, (2001) 149-160

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker: A Scalable Content-
Addressable Network. Proc. of ACM SIGCOMM. ACM Press, (2001) 161-172

[6] A. Rowstron and P. Druschel: Pastry: Scalable, Distributed Object Location and Routing
for Large-scale Peer-to-Peer Systems. Proc. of the 18th IFIP/ACM International Confer-
ence on Distributed Systems Platforms. Springer-Verlag, (2001) 329-350

[7] B. Y. Zhao, L. Huang, J. Stribling, J. Rhea, S. C. Joseph, and A. D. Kubiatowicz: Tapestry:
A Resilient Global-Scale Overlay for Service Deployment. IEEE Journal on Selected Areas
in Communications. Vol.22, (2004) 41-53

[8] N. Sarshar, V. P. Roychowdhury: A Random Structure for Optimum Cache Size Distrib-
uted Hash Table (DHT) Peer-to-Peer Design. http://www.ee.ucla.edu/~nima/Publications
/opt_cache.pdf, 2002

[9] H. Jin, J. Xu, B. Zou, and H. Zhang: Uinta: A P2P Routing Algorithm Based on the User's
Interest and the Network Topology. Distributed Computing - Lecture Notes in Computer
Science, Springer-verlag, (2005) 238-249

[10] S. Milgram: The Small World Problem. Psychology Today, Vol.2, (1967) 60–67
[11] D. Watts and S. Strogatz: Collective Dynamics of Small-World Networks. Nature 393,

(1998) 440-442
[12] J. Kleinberg: Small-World Phenomena and the Dynamics of Information. Proceedings of

Advances in Neural Information Processing Systems. MIT Press, (2002) 14-25
[13] J. Kleinberg: The Small-World Phenomenon: An Algorithmic Perspective. Cornell Com-

puter Science Technical Report 99-1776, (2000)
[14] A. Iamnitchi, M. Ripeanu, and I. Foster: Small-World File-Sharing Communities. Pro-

ceedings of IEEE INFOCOM, (2004) 175-186
[15] H. Zhang, A. Goel, and R. Govindan: Using the Small-World Model to Improve Freenet

Performance. Proceedings of IEEE INFOCOM 2002, (2002) 1228-1237
[16] A. Mahanti: Web Proxy Workload Characterization and Modeling. Master Thesis. De-

partment of Computer Science, University of Saskatchewan, (1999)
[17] E. W. Zegura, K. Calvert, and S. Bhattacharjee: How to Model an Internet Work. Pro-

ceedings of INFOCOM'96. (1996) 594-602

