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Abstract. Email overload is a recent problem that there is increasingly 
difficulty people have faced to process the large number of emails received 
daily. Currently this problem becomes more and more serious and it has already 
affected the normal usage of email as a knowledge management tool. It has 
been recognized that categorizing emails into meaningful groups can greatly 
save cognitive load to process emails and thus this is an effective way to 
manage email overload problem. However, most current approaches still 
require significant human input when categorizing emails. In this paper we 
develop an automatic email clustering system, underpinned by a new 
nonparametric text clustering algorithm. This system does not require any 
predefined input parameters and can automatically generate meaningful email 
clusters. Experiments show our new algorithm outperforms existing text 
clustering algorithms with higher efficiency in terms of computational time and 
clustering quality measured by different gauges.  
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1   Introduction 

As part of daily life, email has made significant changes to the way of exchanging and 
storing information. According to the estimate in [1], the number of worldwide email 
messages sent daily has reached 84 billion in 2006. On one side, email can be an 
effective knowledge management tool that conveniently enables fast and accurate 
communication. On the other side, the increasing volume of email threatens to cause a 
state of “email overload” [2] where the volume of messages exceeds individuals’ 
capacity to process them. This is because of the fact that the majority of email users 
use email as an archival tool and never discard messages [3]. As this gradual 
congestion of a user’s mailbox with messages ranging from working related 
documents and personal information, users are becoming unable to successfully 



finding an important archived message hidden in their mailbox without any structure. 
We urgently need an effective managing tool to solve the email overload problem. 

Recently people realize that categorizing email messages into different groups can 
significantly reduce the cognitive load on email users [4]. If an email system can 
present messages in a form that is consistent with the way people process and store 
information, it will greatly help them in comprehending and retrieving the 
information contained within those groups [5]. Currently categorizing email messages 
often involves manually creating folders in users’ mailbox and setting up rules to 
dispatch incoming emails [6, 7]. This requires heavy cognitive load of creating the 
folder structure and the rules, which can be difficult for normal users.  

In this paper, we propose a new automatic nonparametric clustering approach to 
manage email overload. We implement this system with a client-side prototype 
application. It can automatically generate email clusters according to emails’ content 
(title and body) by a new text clustering algorithm. It does not require users to input 
any predefined parameter and therefore it is especially useful for non-technical users. 
The evaluation shows our approach achieves good clustering results with high 
efficiency and high clustering quality. 

2   System Design 

The system design goal of the automatic email clustering system is to automatically 
categorize emails into different meaningful groups and thus to alleviate human 
cognitive load to process emails. The emails in clusters the system produced must be 
of same relative group. We also notice a fact that most actual email users manually 
create 1-level folders in their mail box, rather than create multi-level hierarchical 
folders because exploring the multi-level hierarchical structure is also burdensome. 
Therefore, we choose 1-level folders containing emails as the output in this system. 
We implement the system by a client-side prototype application. It first read email 
messages from an email client’s data file, then it converts email texts into vector 
matrix and generate similarity matrix. The details regarding algorithms will be 
introduced in section 3. After the matrices are generated, they are input into our new 
nonparametric text clustering algorithm. The algorithm produces email clusters. 
Finally the application outputs 1-level email clusters in a user interface. The flow 
chart can be found in figure 1.  
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Fig. 1. System flow chart. 



3   A New Nonparametric Text Clustering Algorithm 

3.1   Cluster Validity 

To validate a cluster analysis solution, there are many validation techniques such as 
Hubert's � statistic [8, 9], significance tests on variables (MANOVA) [10], and Monte 
Carlo procedures [9]. We use Hubert's � statistic which does not require predefined 
parameters to validate the cluster structures. The underlying idea is that our algorithm 
aims at evaluating the degree of agreement between a predetermined partition and the 
inherent clustering structure. Therefore, our algorithm combines the cluster 
optimization and clustering itself together, which produces high quality clusters and 
achieve high efficiency. 

First let us define an NN × proximity matrix [ ]),( jiY=Υ , where 
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Consistently, the inherent clustering structure can be represented by using an 
NN × proximity matrix [ ]),( jiX=Χ , to observe correlation coefficient of emails i and 

j , which means the proximity of point i  to point j in the whole email space.  
The Hubert’s � statistic then can be obtained by measuring the correlation between 

these two symmetric matrices [ ]),( jiX=Χ  and [ ]),( jiY=Υ  as follows 
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Where X and Y are the means of the values in Χ  and Υ , and 
Xσ and

Yσ are the 
standard deviations. The value of Hubert’s � statistic scaled from -1 to 1, and a large 
absolute value of the normalized statistic implies well separated and compact clusters. 
(2) can be further written as 
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The Hubert’s � statistic has twofold meanings. First, the proximity matrices Χ  and 
Υ measures are generic to cover both inter-class and intra-class statistics. Second, 
when the product of ),( jiX and ),( jiY is large, it is very likely that the email points are 
apart and assigned to different clusters with distant mean vectors. Therefore we can 
see that the larger the Hubert’s � statistic means stronger evidence there are compact 
clusters generated. To this end, we use the maximum Hubert’s � statistic as our 
cluster validation measure as follows 

( )( )Γ= maxargValidity  (4) 

3.2   Vector Space Model for Text Clustering 

Before emails can be classified into different clusters, they must be represented by a 
numerical form. In this paper we adopt the vector space model [11], which has been 
used in Information Retrieval to compute the degree of similarity between each text 
document stored in the system. In this model, each email is converted to a vector e , in 
the term space, as follows. 

{ }Ki tftftfe ,,,,1 ��=  (5) 

Where 
itf is the frequency of the ith  term in the email. In the vector space model, 

Intra-similarity is quantified by measuring the raw frequency of a term 
it  inside a 

email document 
ie . 

itf is usually normalized as formula (6) to prevent a bias towards 

longer emails (which may have a higher term frequency regardless of the actual 
importance of that term in the email) to give a measurement of the importance of the 
term it within the particular email. 
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Where 
in is the number of emails in which the index term 

it appears, and the 

denominator is the number of occurrences of all terms. 
Inter-cluster dissimilarity is quantified by measuring the inverse of the frequency 

of a term 
it  among the emails in the whole space. This factor is usually referred as the 

inverse document frequency or the idf factor. The motivation for usage of an 

idf factor is that terms which appear in many emails are not necessarily useful for 
distinguishing a relevant email from non-relevant ones. idf can be written as 

i
i n

N
idf log=  (7) 

Where N is the total number of emails in the system. Then tfidf can be used to 
filter out common terms which have little discriminating power, as defined in the 
follows. 



ii idftfifidf ×=  (8) 

As our clustering algorithm has many iteration steps, in each iteration step the goal 
is to separate the existing collection of emails into two sets: the first one that is 
composed of emails related to the currently generated cluster and the second one is 
composed of emails not related it. Two main issues need to be resolved, intra-cluster 
similarity and inter-cluster dissimilarity. The quantification of intra-cluster similarity 
provides the features which better describe the emails in the currently generated 
cluster. Furthermore, the quantification of inter-cluster dissimilarity represents the 
features which better distinguish the emails in currently generated cluster. Therefore, 
intra-similarity is quantified by measuring the term frequency

itf . Inter-cluster 

dissimilarity is quantified by measuring the inverse of the frequency 
iidf . 

3.3   Nonparametric Text Clustering Algorithm 

Our new nonparametric text clustering algorithm has the following 7 steps. 
1. Construct the data matrix with the vector space model; 
2. Standardize the data matrix; 
3. Compute the similarity matrix and input similarity matrix into the clustering 

procedure; 
4. Select a seed for clustering; 
5. Add or delete point into the currently generated cluster with Hubert’s � 

statistic validity test; 
6. Repeat step 5 until no point can be allocated; 
7. Repeat step 4 to 6 until all the clusters are generated. 

The key differences between our algorithm and traditional clustering algorithms 
such as hierarchical agglomerative algorithm and partitioning-based k-means 
algorithm [9] are first, there is no need to reconstruct the data or similarity matrix for 
each iteration, which can greatly save computational time; and second, it incorporates 
the validation part into to the clustering process, instead of putting the validation after 
all clusters are generated, which can optimize the quality of clustering all the time. 

The clustering result does not depend on the selection of seed in step 4, although a 
good selection can speed up the clustering process. We use Euclidean distance 
measure to choose the seed, which has most neighbour points with the average 
Euclidean distances among points. The Euclidean distance measurement can be 
written as 
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Where 
ikX is the value of the kth variable for the ith point. The average Euclidean 

distances then can be written as 
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3.4   Computational Simplification 

The Hubert’s statistic is robust because the inter-class and intra-class information is 
embedded into cluster evaluation. However, the original Hubert’s statistic approach 
requires high computation load. Therefore, we make further simplification for (3) as 
follows. 
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(11) 

From this formula we find many parts can be pre-calculated when the data and 
similarity matrix are given, which is before the iteration (from step 4 to 6) starts. If we 
can pre-calculate these parts, which are defined as follows, the computational time 
can be greatly saved. 
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Then by substituting (12)(13)(14) into (11) we have 
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Therefore the actual computation needed in each iteration is for those parts with 
),( jiY . 



4   Evaluation 

4.1   Measurements 

The performance of a text clustering algorithm can be evaluated in terms of 
computational time, and quality measure (high intra-cluster similarity and low inter-
cluster similarity). We first use some unlabelled email data sets to test our algorithm 
on the first two measurements. We also compare our result with other two clustering 
algorithms, hierarchical agglomerative algorithm (using the nearest neighbour 
algorithm) and k-means algorithm. The quality of clustering is measured by using 
different measurements, Hubert’s � statistic, simple matching coefficient, and Jaccard 
coefficient. Readers can find the definitions of simple matching coefficient and 
Jaccard coefficient in [9]. A higher value in these measurements indicates a higher 
clustering quality. 

4.2   Data Sets 

All the email data sets are from real life email collections in a university environment. 
Stop words are removed from the emails before performing clustering process. 
Suffix-stripping algorithm is also used to perform stemming. The data sets’ details are 
shown in table 1. 

4.3   Computational Time and Quality of Clustering 

We compare our clustering results with other clustering algorithms. The numbers of 
main clusters produced by each algorithm are shown in table 2. Here we choose the 
clusters with email number greater than 5 as main clusters because grouping emails 
into even smaller clusters will require people’s cognitive load to search through a 
large number of groups and therefore those clusters become useless. From this table 
we can see our algorithm can match the labelled data set 5 and 6 very well in terms of 
cluster number. 

Table 1.  Details of data set.  

Data Set 
 No. 

Labelled by 
 human 

Number of 
 emails 

Number of 
 clusters 

Number of 
 words 

1 No 1023 - 17650 
2 No 1235 - 16432 
3 No 2045 - 30215 
4 No 3987 - 33442 
5 Yes 342 7 2032 
6 Yes 1126 12 7839 



Table 2.  Numbers of main clusters.  

Data Set Nonparametric 
Text Clustering 

Hierarchical 
agglomerative 

K-means 

1 14 16 10 
2 13 15 10 
3 15 17 12 
4 16 15 15 
5 7 12 7 
6 12 13 12 

Table 3.  Computational time (seconds).  

Data Set Nonparametric 
Text Clustering 

Hierarchical 
agglomerative 

K-means 

1 28.7 232 98.2 
2 20.3 212 97.5 
3 58.7 538 211 
4 135 1207 484 
5 9.21 101 42.1 
6 22.2 215 103 

Table 4.  Hubert’s � statistic.  

Data Set Nonparametric 
Text Clustering 

Hierarchical 
agglomerative 

K-means 

1 0.764 0.563 0.329 
2 0.793 0.542 0.321 
3 0.821 0.598 0.332 
4 0.866 0.457 0.319 
5 0.902 0.788 0.438 
6 0.791 0.554 0.337 

 
Table 3 shows the computational time of each algorithm. The time unit is second. 

From the table we can see our nonparametric text clustering algorithm performs much 
faster than both hierarchical agglomerative algorithm and k-means algorithm. For 
example, for data set 1, hierarchical agglomerative algorithm needs 808% of time of 
our algorithm to perform the clustering, and k-means algorithm needs 342% of time 
of our algorithm to perform the clustering. From the absolute computational time 
point of view, our algorithm also costs reasonably low. For example, when classifying 
data set 4 with 3987 emails, the computation time is 135 seconds (about 2 minutes), 
which is a reasonable response for a clustering system. We also find that k-means 
algorithm is faster than hierarchical agglomerative algorithm in all the runs, which 
conforms that k-means has lower time complexity than hierarchical agglomerative 
algorithm. 

The average Hubert’s � statistic of each algorithm is shown in table 4. From the 
table we can see for all the data sets, the Hubert’s � statistic is higher than 0.764 if our 
clustering algorithm is used. Our algorithm outperforms others in this measurement, 
which means the clusters produced by our algorithm have higher intra-cluster 



similarity and lower inter-cluster similarity than other algorithms. Hierarchical 
agglomerative algorithm is better than k-means algorithm in terms of clustering 
quality measured by Hubert’s � statistic.  

The average simple matching coefficient of each algorithm is shown in table 5. 
Again we find our algorithm has better clustering quality measured by simple 
matching coefficient than both hierarchical agglomerative algorithm and k-means 
algorithm. The simple matching coefficient of k-means is lower than both our 
algorithm and hierarchical agglomerative algorithm. 

The average Jaccard coefficient of each algorithm is shown in table 6. The Jaccard 
coefficient is often more sensitive than the simple matching coefficient sometimes the 
negative matches are a dominant factor. From the table we find our algorithm 
achieved above 0.821 Jaccard coefficients for all the data sets. Hierarchical 
agglomerative algorithm has slightly lower Jaccard coefficient than our algorithm 
from data set 1, 4, and 5. It has slightly higher Jaccard coefficient than our algorithm 
from data set 2, 3, and 6. K-means has much lower Jaccard coefficient than both our 
algorithm and hierarchical agglomerative algorithm. 

From the above results we can clearly see our text clustering algorithm 
outperforms traditional hierarchical agglomerative algorithm and k-means algorithm 
in terms of computational time and clustering quality which is measured by Hubert’s 
� statistic, simple matching coefficient, and Jaccard coefficient. 

Table 5.  Simple matching coefficient.  

Data Set Nonparametric 
Text Clustering 

Hierarchical 
agglomerative 

K-means 

1 0.978 0.912 0.839 
2 0.974 0.923 0.856 
3 0.964 0.918 0.832 
4 0.939 0.921 0.813 
5 0.991 0.985 0.903 
6 0.971 0.922 0.847 

Table 6.  Jaccard coefficient.  

Data Set Nonparametric 
Text Clustering 

Hierarchical 
agglomerative 

K-means 

1 0.883 0.821 0.475 
2 0.821 0.832 0.442 
3 0.842 0.846 0.398 
4 0.881 0.826 0.338 
5 0.899 0.853 0.491 
6 0.823 0.827 0.448 

 



5   Related Work 

Related work on techniques for managing email overload can be found in [4, 6, 12, 
13]. We find that all existing email management systems heavily rellies on a user-
created folder structure or user-defined input parameters, which have not essentially 
achieved the goal of automatically managing email overload. 

6   Conclusion 

Email overload problem has strongly affect people’s usage of email as a knowledge 
management tool. We proposed a novel email clustering system to solve this problem. 
This system is essentially supported by a new automatic nonparametric clustering 
algorithm. By using this algorithm, emails users can get clustered emails easily 
without any input. The experiments show our algorithm has high efficiency and high 
clustering quality in terms of computation time and clustering quality measured by 
Hubert’s � statistic, simple matching coefficient, and Jaccard coefficient.  
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