
Managing Email Overload with an Automatic
Nonparametric Clustering Approach

Yang Xiang1, Wanlei Zhou2, and Jinjun Chen3

1 School of Management and Information Systems, Central Queensland University

Rockhampton, Queensland 4700, Australia
y.xiang@cqu.edu.au

2 School of Engineering and Information Technology, Deakin University
Burwood, Victoria 3125, Australia

wanlei@deakin.edu.au
3 Faculty of Information & Communication Technologies, Swinburne University of

Technology, Hawthorn 3122, Australia
jchen@ict.swin.edu.au

Abstract. Email overload is a recent problem that there is increasingly
difficulty people have faced to process the large number of emails received
daily. Currently this problem becomes more and more serious and it has already
affected the normal usage of email as a knowledge management tool. It has
been recognized that categorizing emails into meaningful groups can greatly
save cognitive load to process emails and thus this is an effective way to
manage email overload problem. However, most current approaches still
require significant human input when categorizing emails. In this paper we
develop an automatic email clustering system, underpinned by a new
nonparametric text clustering algorithm. This system does not require any
predefined input parameters and can automatically generate meaningful email
clusters. Experiments show our new algorithm outperforms existing text
clustering algorithms with higher efficiency in terms of computational time and
clustering quality measured by different gauges.

Keywords: Email, overload, text clustering, knowledge management.

1 Introduction

As part of daily life, email has made significant changes to the way of exchanging and
storing information. According to the estimate in [1], the number of worldwide email
messages sent daily has reached 84 billion in 2006. On one side, email can be an
effective knowledge management tool that conveniently enables fast and accurate
communication. On the other side, the increasing volume of email threatens to cause a
state of “email overload” [2] where the volume of messages exceeds individuals’
capacity to process them. This is because of the fact that the majority of email users
use email as an archival tool and never discard messages [3]. As this gradual
congestion of a user’s mailbox with messages ranging from working related
documents and personal information, users are becoming unable to successfully

finding an important archived message hidden in their mailbox without any structure.
We urgently need an effective managing tool to solve the email overload problem.

Recently people realize that categorizing email messages into different groups can
significantly reduce the cognitive load on email users [4]. If an email system can
present messages in a form that is consistent with the way people process and store
information, it will greatly help them in comprehending and retrieving the
information contained within those groups [5]. Currently categorizing email messages
often involves manually creating folders in users’ mailbox and setting up rules to
dispatch incoming emails [6, 7]. This requires heavy cognitive load of creating the
folder structure and the rules, which can be difficult for normal users.

In this paper, we propose a new automatic nonparametric clustering approach to
manage email overload. We implement this system with a client-side prototype
application. It can automatically generate email clusters according to emails’ content
(title and body) by a new text clustering algorithm. It does not require users to input
any predefined parameter and therefore it is especially useful for non-technical users.
The evaluation shows our approach achieves good clustering results with high
efficiency and high clustering quality.

2 System Design

The system design goal of the automatic email clustering system is to automatically
categorize emails into different meaningful groups and thus to alleviate human
cognitive load to process emails. The emails in clusters the system produced must be
of same relative group. We also notice a fact that most actual email users manually
create 1-level folders in their mail box, rather than create multi-level hierarchical
folders because exploring the multi-level hierarchical structure is also burdensome.
Therefore, we choose 1-level folders containing emails as the output in this system.
We implement the system by a client-side prototype application. It first read email
messages from an email client’s data file, then it converts email texts into vector
matrix and generate similarity matrix. The details regarding algorithms will be
introduced in section 3. After the matrices are generated, they are input into our new
nonparametric text clustering algorithm. The algorithm produces email clusters.
Finally the application outputs 1-level email clusters in a user interface. The flow
chart can be found in figure 1.

�
�

�

�
�

�

�

�
�

�

�
�

�

�

nnn

n

xx

xx

xxx

��

���

�

�

1

2221

11211

Fig. 1. System flow chart.

3 A New Nonparametric Text Clustering Algorithm

3.1 Cluster Validity

To validate a cluster analysis solution, there are many validation techniques such as
Hubert's � statistic [8, 9], significance tests on variables (MANOVA) [10], and Monte
Carlo procedures [9]. We use Hubert's � statistic which does not require predefined
parameters to validate the cluster structures. The underlying idea is that our algorithm
aims at evaluating the degree of agreement between a predetermined partition and the
inherent clustering structure. Therefore, our algorithm combines the cluster
optimization and clustering itself together, which produces high quality clusters and
achieve high efficiency.

First let us define an NN × proximity matrix []),(jiY=Υ , where

�
�
�

=
cluster same in the clusterednot are and emails if,0

 cluster same in the clustered are and emails if,1
),(

ji

ji
jiY

(1)

Consistently, the inherent clustering structure can be represented by using an
NN × proximity matrix []),(jiX=Χ , to observe correlation coefficient of emails i and

j , which means the proximity of point i to point j in the whole email space.
The Hubert’s � statistic then can be obtained by measuring the correlation between

these two symmetric matrices []),(jiX=Χ and []),(jiY=Υ as follows

� �
−

= +=
		

�
��

� −
		

�
��

� −
−

=Γ
1

1 1

),(),(
2/)1(

1 n

i

n

ij YX

YjiYXjiX
nn σσ

 (2)

Where X and Y are the means of the values in Χ and Υ , and
Xσ and

Yσ are the
standard deviations. The value of Hubert’s � statistic scaled from -1 to 1, and a large
absolute value of the normalized statistic implies well separated and compact clusters.
(2) can be further written as

()()

() ()

()

() ()� �� �

� �

� �� �

� �

−

= +=

−

= +=

−

= +=

−

= +=

−

= +=

−

= +=

−−

+−−
=

−−

−−
=Γ

1

1 1

2
1

1 1

2

1

1 1

1

1 1

2
1

1 1

2

1

1 1

),(),(

),(),(),(),(

),(),(

),(),(

n

i

n

ij

n

i

n

ij

n

i

n

ij

n

i

n

ij

n

i

n

ij

n

i

n

ij

YjiYXjiX

YXYjiXjiYXjiYjiX

YjiYXjiX

YjiYXjiX

(3)

The Hubert’s � statistic has twofold meanings. First, the proximity matrices Χ and
Υ measures are generic to cover both inter-class and intra-class statistics. Second,
when the product of),(jiX and),(jiY is large, it is very likely that the email points are
apart and assigned to different clusters with distant mean vectors. Therefore we can
see that the larger the Hubert’s � statistic means stronger evidence there are compact
clusters generated. To this end, we use the maximum Hubert’s � statistic as our
cluster validation measure as follows

()()Γ= maxargValidity (4)

3.2 Vector Space Model for Text Clustering

Before emails can be classified into different clusters, they must be represented by a
numerical form. In this paper we adopt the vector space model [11], which has been
used in Information Retrieval to compute the degree of similarity between each text
document stored in the system. In this model, each email is converted to a vector e , in
the term space, as follows.

{ }Ki tftftfe ,,,,1 ��= (5)

Where
itf is the frequency of the ith term in the email. In the vector space model,

Intra-similarity is quantified by measuring the raw frequency of a term
it inside a

email document
ie .

itf is usually normalized as formula (6) to prevent a bias towards

longer emails (which may have a higher term frequency regardless of the actual
importance of that term in the email) to give a measurement of the importance of the
term it within the particular email.

�
=

k k

i
i n

n
tf (6)

Where
in is the number of emails in which the index term

it appears, and the

denominator is the number of occurrences of all terms.
Inter-cluster dissimilarity is quantified by measuring the inverse of the frequency

of a term
it among the emails in the whole space. This factor is usually referred as the

inverse document frequency or the idf factor. The motivation for usage of an

idf factor is that terms which appear in many emails are not necessarily useful for
distinguishing a relevant email from non-relevant ones. idf can be written as

i
i n

N
idf log= (7)

Where N is the total number of emails in the system. Then tfidf can be used to
filter out common terms which have little discriminating power, as defined in the
follows.

ii idftfifidf ×= (8)

As our clustering algorithm has many iteration steps, in each iteration step the goal
is to separate the existing collection of emails into two sets: the first one that is
composed of emails related to the currently generated cluster and the second one is
composed of emails not related it. Two main issues need to be resolved, intra-cluster
similarity and inter-cluster dissimilarity. The quantification of intra-cluster similarity
provides the features which better describe the emails in the currently generated
cluster. Furthermore, the quantification of inter-cluster dissimilarity represents the
features which better distinguish the emails in currently generated cluster. Therefore,
intra-similarity is quantified by measuring the term frequency

itf . Inter-cluster

dissimilarity is quantified by measuring the inverse of the frequency
iidf .

3.3 Nonparametric Text Clustering Algorithm

Our new nonparametric text clustering algorithm has the following 7 steps.
1. Construct the data matrix with the vector space model;
2. Standardize the data matrix;
3. Compute the similarity matrix and input similarity matrix into the clustering

procedure;
4. Select a seed for clustering;
5. Add or delete point into the currently generated cluster with Hubert’s �

statistic validity test;
6. Repeat step 5 until no point can be allocated;
7. Repeat step 4 to 6 until all the clusters are generated.

The key differences between our algorithm and traditional clustering algorithms
such as hierarchical agglomerative algorithm and partitioning-based k-means
algorithm [9] are first, there is no need to reconstruct the data or similarity matrix for
each iteration, which can greatly save computational time; and second, it incorporates
the validation part into to the clustering process, instead of putting the validation after
all clusters are generated, which can optimize the quality of clustering all the time.

The clustering result does not depend on the selection of seed in step 4, although a
good selection can speed up the clustering process. We use Euclidean distance
measure to choose the seed, which has most neighbour points with the average
Euclidean distances among points. The Euclidean distance measurement can be
written as

() 2
1

1

2

�
�
�

�
�
�

−= �
=

p

k
jkikij XXd

(9)

Where
ikX is the value of the kth variable for the ith point. The average Euclidean

distances then can be written as

��
−

= =−
=

1

12/)1(
1 n

i

n

ij
ijd

nn
d (10)

3.4 Computational Simplification

The Hubert’s statistic is robust because the inter-class and intra-class information is
embedded into cluster evaluation. However, the original Hubert’s statistic approach
requires high computation load. Therefore, we make further simplification for (3) as
follows.

()

() ()

2
1

1 1

1

1 1

2

2
1

1 1

1

1 1

2

1

1

1

1

1

1 111

1

1 1

21

1 1
1

1 1

21

1 1

1

1

1

1 11
1

1

1

1

1

1 1

1

1 1

1

1

1 1

1

1

1 1

2
1

1 1

2

1

1 1

),(),(
2

)1(
),(),(

2
)1(

),(),(),(),(
2

)1(

2/)1(

),(
),(

2/)1(

),(
),(

2/)1(

),(),(
),(

2/)1(

),(
),(

2/)1(

),(
),(),(

),(),(

),(),(),(),(

	
	

�
�
�

�
−−

	
	

�
�
�

�
−−

	
	

�
�
�

�
−−

=

		
	
	
	

�

��
�
�
�

�

−
−

		
	
	
	

�

��
�
�
�

�

−
−

−
+

−
−

−
−

=

−−

+−−
=Γ

��������

� � ����

��
��

��
��

� ���
� � ��

��
�

��
�

����

��

−

= +=

−

= +=

−

= +=

−

= +=

−

=

−

=

−

= +=+=+=

−

= +=

−

= +=
−

= +=

−

= +=

−

=

−

= +=+=
−

=

−

=

−

= +=

−

= +=

+=

−

= +=

+=

−

= +=

−

= +=

−

= +=

n

i

n

ij

n

i

n

ij

n

i

n

ij

n

i

n

ij

n

i

n

i

n

i

n

ij

n

ij

n

ij

n

i

n

ij

n

i

n

ij
n

i

n

ij

n

i

n

ij

n

i

n

i

n

ij

n

ij
n

i

n

i

n

i

n

ij

n

i

n

ij
n

ij

n

i

n

ij
n

ij

n

i

n

ij

n

i

n

ij

n

i

n

ij

jiYjiY
nn

jiXjiX
nn

jiYjiXjiYjiX
nn

nn

jiY
jiY

nn

jiX
jiX

nn

jiYjiX
jiX

nn

jiY
jiY

nn

jiX
jiYjiX

YjiYXjiX

YXYjiXjiYXjiYjiX

(11)

From this formula we find many parts can be pre-calculated when the data and
similarity matrix are given, which is before the iteration (from step 4 to 6) starts. If we
can pre-calculate these parts, which are defined as follows, the computational time
can be greatly saved.

2
)1(−= nn

A (12)

��
−

= +=

=
1

1 1

),(
n

i

n

ij

jiXB (13)

2
1

1 1

1

1 1

2),(),(
2

)1(
	
	

�
�
�

�
−−= ����

−

= +=

−

= +=

n

i

n

ij

n

i

n

ij

jiXjiX
nn

C
 (14)

Then by substituting (12)(13)(14) into (11) we have

2
1

1 1

1

1 1

2

1

1

1

1 11

),(),(
2

)1(

),(),(),(

	
	

�
�
�

�
−−

−
=Γ

����

� ���

−

= +=

−

= +=

−

=

−

= +=+=

n

i

n

ij

n

i

n

ij

n

i

n

i

n

ij

n

ij

jiYjiY
nn

C

jiYBjiYjiXA (15)

Therefore the actual computation needed in each iteration is for those parts with
),(jiY .

4 Evaluation

4.1 Measurements

The performance of a text clustering algorithm can be evaluated in terms of
computational time, and quality measure (high intra-cluster similarity and low inter-
cluster similarity). We first use some unlabelled email data sets to test our algorithm
on the first two measurements. We also compare our result with other two clustering
algorithms, hierarchical agglomerative algorithm (using the nearest neighbour
algorithm) and k-means algorithm. The quality of clustering is measured by using
different measurements, Hubert’s � statistic, simple matching coefficient, and Jaccard
coefficient. Readers can find the definitions of simple matching coefficient and
Jaccard coefficient in [9]. A higher value in these measurements indicates a higher
clustering quality.

4.2 Data Sets

All the email data sets are from real life email collections in a university environment.
Stop words are removed from the emails before performing clustering process.
Suffix-stripping algorithm is also used to perform stemming. The data sets’ details are
shown in table 1.

4.3 Computational Time and Quality of Clustering

We compare our clustering results with other clustering algorithms. The numbers of
main clusters produced by each algorithm are shown in table 2. Here we choose the
clusters with email number greater than 5 as main clusters because grouping emails
into even smaller clusters will require people’s cognitive load to search through a
large number of groups and therefore those clusters become useless. From this table
we can see our algorithm can match the labelled data set 5 and 6 very well in terms of
cluster number.

Table 1. Details of data set.

Data Set
 No.

Labelled by
 human

Number of
 emails

Number of
 clusters

Number of
 words

1 No 1023 - 17650
2 No 1235 - 16432
3 No 2045 - 30215
4 No 3987 - 33442
5 Yes 342 7 2032
6 Yes 1126 12 7839

Table 2. Numbers of main clusters.

Data Set Nonparametric
Text Clustering

Hierarchical
agglomerative

K-means

1 14 16 10
2 13 15 10
3 15 17 12
4 16 15 15
5 7 12 7
6 12 13 12

Table 3. Computational time (seconds).

Data Set Nonparametric
Text Clustering

Hierarchical
agglomerative

K-means

1 28.7 232 98.2
2 20.3 212 97.5
3 58.7 538 211
4 135 1207 484
5 9.21 101 42.1
6 22.2 215 103

Table 4. Hubert’s � statistic.

Data Set Nonparametric
Text Clustering

Hierarchical
agglomerative

K-means

1 0.764 0.563 0.329
2 0.793 0.542 0.321
3 0.821 0.598 0.332
4 0.866 0.457 0.319
5 0.902 0.788 0.438
6 0.791 0.554 0.337

Table 3 shows the computational time of each algorithm. The time unit is second.

From the table we can see our nonparametric text clustering algorithm performs much
faster than both hierarchical agglomerative algorithm and k-means algorithm. For
example, for data set 1, hierarchical agglomerative algorithm needs 808% of time of
our algorithm to perform the clustering, and k-means algorithm needs 342% of time
of our algorithm to perform the clustering. From the absolute computational time
point of view, our algorithm also costs reasonably low. For example, when classifying
data set 4 with 3987 emails, the computation time is 135 seconds (about 2 minutes),
which is a reasonable response for a clustering system. We also find that k-means
algorithm is faster than hierarchical agglomerative algorithm in all the runs, which
conforms that k-means has lower time complexity than hierarchical agglomerative
algorithm.

The average Hubert’s � statistic of each algorithm is shown in table 4. From the
table we can see for all the data sets, the Hubert’s � statistic is higher than 0.764 if our
clustering algorithm is used. Our algorithm outperforms others in this measurement,
which means the clusters produced by our algorithm have higher intra-cluster

similarity and lower inter-cluster similarity than other algorithms. Hierarchical
agglomerative algorithm is better than k-means algorithm in terms of clustering
quality measured by Hubert’s � statistic.

The average simple matching coefficient of each algorithm is shown in table 5.
Again we find our algorithm has better clustering quality measured by simple
matching coefficient than both hierarchical agglomerative algorithm and k-means
algorithm. The simple matching coefficient of k-means is lower than both our
algorithm and hierarchical agglomerative algorithm.

The average Jaccard coefficient of each algorithm is shown in table 6. The Jaccard
coefficient is often more sensitive than the simple matching coefficient sometimes the
negative matches are a dominant factor. From the table we find our algorithm
achieved above 0.821 Jaccard coefficients for all the data sets. Hierarchical
agglomerative algorithm has slightly lower Jaccard coefficient than our algorithm
from data set 1, 4, and 5. It has slightly higher Jaccard coefficient than our algorithm
from data set 2, 3, and 6. K-means has much lower Jaccard coefficient than both our
algorithm and hierarchical agglomerative algorithm.

From the above results we can clearly see our text clustering algorithm
outperforms traditional hierarchical agglomerative algorithm and k-means algorithm
in terms of computational time and clustering quality which is measured by Hubert’s
� statistic, simple matching coefficient, and Jaccard coefficient.

Table 5. Simple matching coefficient.

Data Set Nonparametric
Text Clustering

Hierarchical
agglomerative

K-means

1 0.978 0.912 0.839
2 0.974 0.923 0.856
3 0.964 0.918 0.832
4 0.939 0.921 0.813
5 0.991 0.985 0.903
6 0.971 0.922 0.847

Table 6. Jaccard coefficient.

Data Set Nonparametric
Text Clustering

Hierarchical
agglomerative

K-means

1 0.883 0.821 0.475
2 0.821 0.832 0.442
3 0.842 0.846 0.398
4 0.881 0.826 0.338
5 0.899 0.853 0.491
6 0.823 0.827 0.448

5 Related Work

Related work on techniques for managing email overload can be found in [4, 6, 12,
13]. We find that all existing email management systems heavily rellies on a user-
created folder structure or user-defined input parameters, which have not essentially
achieved the goal of automatically managing email overload.

6 Conclusion

Email overload problem has strongly affect people’s usage of email as a knowledge
management tool. We proposed a novel email clustering system to solve this problem.
This system is essentially supported by a new automatic nonparametric clustering
algorithm. By using this algorithm, emails users can get clustered emails easily
without any input. The experiments show our algorithm has high efficiency and high
clustering quality in terms of computation time and clustering quality measured by
Hubert’s � statistic, simple matching coefficient, and Jaccard coefficient.

References

1. IDC: IDC Examines the Future of Email As It Navigates Security Threats, Compliance
Requirements, and Market Alternatives.
http://www.idc.com/getdoc.jsp?containerId=prUS20033705 (2005)

2. Schultze, U., Vandenbosch, B.: Information Overload in a Groupware Environment: Now
You See It, Now You Don't. Journal of Organizational Computing and Electronic
Commerce 8 (1998) 127-148

3. Schuff, D., Turetken, O., D'Arcy, J., Croson, D.: Managing E-Mail Overload: Solutions and
Future Challenges. IEEE Computer 40 (2007) 31-36

4. Schuff, D., Turetken, O., D'Arcy, J.: A Multi-attribute, Multi-weight Clustering Approach to
Managing "E-Mail Overload". Decision Support Systems 42 (2006) 1350-1365

5. Roussinov, D.G., Chen, H.: Document Clustering for Electronic Meetings: An Experimental
Comparison of Two Techniques. Decision Support Systems 27 (1999) 67-79

6. Mock, K.: An Experimental Framework for Email Categorization and Management. 24th
ACM International Conference on Research and Development in Information Retrieval
(2001) 392-393

7. Whittaker, S., Sidner, C.: Email Overload: Exploring Personal Information Management of
Email. ACM SIGCHI conference on Human Factors in Computing Systems (1996) 276-283

8. Baker, F.B., Hubert, L.J.: Measuring the Power of Hierarchical Cluster Analysis. Journal of
the American Statistical Association 70 (1975) 31-38

9. Aldenderfer, M.S., Blashfield, R.K.: Cluster Analysis. Sage Publications (1984)
10. Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics. Harper Collins College

Publishers: New York (1996)
11. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley (1999)
12. Payne, T., Edwards, P.: Interface Agents that Learn: An Investigation of Learning Issues in

a Mail Interface. Applied Artificial Intelligence 11 (1997) 1-32
13. Kushmerick, N., Lau, T.: Automated E-Mail Activity Management: An Unsupervised

Learning Approach. 10th International Conf. on Intelligent User Interfaces (2005) 67-74

