
Exploit Temporal Locality of Shared Data in
SRC Enabled CMP

Haixia Wang, Dongsheng Wang, Peng Li, Jinglei Wang, and XianPing Fu

Research Institute of Information Technology,
National Laboratory for Information Science and Technology,

Tsinghua University, Beijing, 100084, P.R.China,
{hx-wang,wds}@tsinghua.edu.cn,

{p-li02,wjinglei00}@mails.tsinghua.edu.cn,fxp@dl.cn

Abstract. By run-time characteristic analysis of parallel workloads, we
found that a majority of shared data accesses of parallel workload has
temporal locality. Based on this characteristic, we present a sharing re-
lation cache (SRC for short) based CMP architecture, saving recently
used sharing relations to provide destination set information for following
cache-to-cache miss requests. Token-SRC protocol integrates SRC into
token protocol,reducing network traffic of token protocol.Simulations us-
ing SPLASH-2 benchmarks show that, a 16-core CMP system with token-
SRC achieved average 15% network traffic reduction of that with token
protocol.

1 Introduction

Multiple-processor systems, i.e. symmetric multiple processor systems and
cluster systems are widely adopted in modern commercial and scientific com-
puting infrastructures. Chip multiprocessor (CMP) [1–3], which integrates mul-
tiple processor cores into a single chip, is a promising technique that can ef-
ficiently exploit the inherent thread-level parallelism inside modern workloads.
CMP systems share many critical design issues with traditional share-memory
multiprocessor systems, especially the cache-coherence protocols.

For shared-memory multiprocessor systems, shared-bus offered a convenient
solution to maintain cache-coherence with snooping mechanisms [4, 5]. Although
broadcast-based protocol is simple and easy to implement, shared-bus architec-
ture serializes all messages in the system, limiting the system scalability.

Directory-based protocols [6, 7] were proposed to solve the coherence prob-
lem in multi-processor system with unordered interconnection. They introduce a
global directory keeping records of the locations and status of the cached copies.
With determined destination set, network traffic of directory-based protocol will
be much less than snooping protocol,which makes it applicable for large-scale
shared-memory multiprocessor systems. Unfortunately, directory-based proto-
cols suffer from long latency for cache-to-cache transfer misses.

To avoid indirections for cache-to-cache misses of directory protocol and
interconnect ordering of snooping protocol, token protocol [8, 9] directly send
broadcast on un-ordered interconnect, avoiding indirection for cache-to-cache
miss in directory-based protocol. Unfortunately, token protocol broadcasts re-
quest to maximal destination set, which will incur heavy network traffic.

We proposed an efficient technique to reduce network traffic of broadcast-
based protocol, which was called sharing relation cache (SRC) [10]. The idea
came from the following characteristic that we found in the run-time charac-
teristic analysis of parallel workloads: a majority of shared data accesses has
temporal locality. SRC integrates a sharing relation cache in each core to cache
directory information recently used sharing relations (that is of shared data),
providing destination set information for following cache-to-cache miss requests.
Different from directory, SRC keep only directory information of recently ac-
cessed shared data, not all directory information. Before issuing data requests,
SRC is lookup at first. If SRC hits, requests are sent to destination set pointed
by the SRC entry. Otherwise, requests are broadcast to all processor nodes in
the system.

In this paper, we integrated SRC technique in token protocol to reduce net-
work traffic. We called this protocol token-SRC protocol. Preliminary evaluation
showed that running SPLASH-2 parallel benchmarks on 16-core CMP, token-
SRC protocol achieved an average 15% network traffic reduction of classical
token-protocol.

A related work on reducing network traffic of cache coherence protocol is
destination-set prediction technique [11]. It was invented to predict destination
set for directory protocol. Destination-set prediction technique provides three
kinds of destination set choices for directory protocol: Owner node, in which
case read request is sent to owner node directly without looking up directory;
Maximal set, in which case request is broadcast to all processor nodes without
looking up directory; and minimal set, in which case directory are looked up and
requests are sent to minimal destination set defined by directory entry.

Destination set prediction in paper [11] yields minimal set by directory lookup.
In token protocol, there is no directory so that destination set prediction can
not find destination set for write requests. But in contrary, SRC technique may
generate a destination set that is close to minimal set, which reduces network
traffic of token protocol by avoiding broadcast.

The remainder of the paper is organized as followings. Section 2 defines the
quantitative analysis method on temporal locality of shared data, describes mul-
tiprocessor simulator and parallel workloads used in this study, and analyzes
experiment results on temporal locality characteristic of shared data. Section 3
addresses implementation of SRC in token protocol based system. Section 4 ex-
hibits and analyzes the preliminary experiment results in 16-core CMP systems
with directory, token and token-SRC protocols. Finally, section 5 summarizes
the paper and discusses direction for future work.

2 Characteristic Analysis on Temporal Locality of
Shared Data

2.1 Quantitative Analysis Method

When several processors accessed a shared data, a sharing relation was built
on the shared data among those processors. The sharing relation is represented
as a map ¡address, sharers¿. The address refers to the shared data, and the sharer
field points out which processors own valid copies of the shared data, that is just
like a directory entry.

The time interval between twice continuous accesses of a shared data is de-
fined as a sharing relation lifespan. During each sharing relation lifespan, the
number of accesses on other shared data is called the distance of the sharing
relation lifespan. If the distance of a sharing relation lifespan is small, the shar-
ing relation is reused quickly. By counting all distances of any sharing relation
lifespan, we could analyze the temporal locality characteristic of shared data.

2.2 Experiment Environment and Results

We simulate a 16-core CMP system with an open source multiprocessor sim-
ulator GEMS [12], which is developed by Wisconsin Multifacet project and built
on the Virtutech Simics [13] full-system functional execution-driven simulator.
GEMS simulator adds timing information of memory hierarchy and interconnec-
tion on simics. GEMS extends Simics with detailed processor, memory hierarchy
and interconnection network models to compute execution times, enabling de-
tailed simulation of multiprocessor systems, including CMPs. We choose a simple
shared-bus MOSI snooping protocol to build the 16-core CMP system. To en-
sure that hardware architecture details do not affect program behavior analysis,
perfect cache with infinite capacity is used in the simulated multiprocessor.

We use SPLASH-2 [14] parallel benchmark package as workload. SPLASH-2
provides a suite of shared-memory benchmarks for parallel systems and includes
a set of kernel and application components. We select a representative subset of
the SPLASH-2 as workloads,four kernel workloads and four application work-
loads.

For each SPLASH-2 workload and each given distance size, Fig. 1 illustrates
the distribution of accesses whose distances are less than the given size. Between
the 10 SPLASH-2 workloads, cholesky and barnes shows slightly lower temporal
locality, only about 50% distances are less than 1000. Except for cholesky and
barnes, the other 8 workloads have comparatively higher temporal locality of
sharing relations, especially radiosity, about 90% distances are less than 100.
The high temporal locality of the 8 workloads provides high hit rate of SRC
with limited storage space.

Fig. 1. Statistic of Distance Distribution

3 Token-SRC Protocol

3.1 CMP Architecture

The sketch of CMP architecture with Token-SRC protocol is shown in Fig.
2. Each processor core owns a private SRC, which records directory information
of recently accessed shared data.

Fig. 2. Sketch of CMP architecture with Token-SRC protocol

On reading or writing, processor looks up its private caches firstly. If local
cache misses, processor will send request to other processors or memory. Before
issuing requests, token-SRC protocol looks up SRC for request destination set.
If SRC hits, the processor will send request to destination set denoted by the
SRC entry. Otherwise, the request will be broadcast to all processors.

An important optimization is to remove SRC lookup operation from critical
path of memory access. SRC lookup process can be designed in parallel with
normal data cache lookup process. When normal data cache completes lookup
process, SRC lookup result should also be available. SRC is organized just like a
normal data cache. Each entry of SRC has 3 fields: valid, tag and sharer. Sharer
filed of SRC entry records identities of the processors which have valid copies of
the shared data. The address lookup process of SRC is also as same as that of
data cache.

3.2 Correctness Substrate

In broadcast-based protocol (such as snooping protocol, token protocol, and
so on), destination sets of cache miss requests include all processor nodes, that
is the maximal destination set. In directory-based protocol, destination sets of
cache miss requests are minimal destination set, including one owner processor
for reading request and all processors with valid cached copies for writing request.

Token protocol extended broadcast protocols from ordered network to un-
ordered network while keeping safety property by enforcing the coherence invari-
ant of a single writer and multiple readers. When data access conflicts, request
may not be eventually satisfied(potential starvation), in which case token pro-
tocol initiates a persistent request, activates at most one persistent request and
ensures all race requests be finally satisfied.

Based on the starvation solving mechanism, any definition of SRC entry is all
right for token-SRC protocol. For example, if SRC presents an empty destination
set to a write request, request processor will not get enough tokens, and then
token protocol will reissue those requests, taking it as starvation case after time-
out and solving it by issuing persistent requests.

3.3 Performance Consideration

The size of destination set decides how many messages are sent for a cache
miss request. Small destination set means less messages and less network traffic.
Although it is all right no matter what destination set are stored in SRC, it
does degrade overall system performance when destination set of SRC are not
superset of minimal destination set. In that case, token count requirement will
not be satisfied and token protocol turns request into persistent request. The
satisfy process of persistent requests is rather time-consuming. In token-SRC
protocol design, it is better to be away from this case. Thus, for performance
consideration, SRC entry should better be the superset of minimal destination
set and be close to minimal destination set.

3.4 Token-SRC Protocol

To design cache controller of CMP system using Token-SRC protocol, we have
to answer the following five questions: (1) Which states are used to describe a
cache block? (2) What events incur cache state transition? (3) What does SRC
record for each cache state? (4) How does cache state transit? (5) How is each
event handled?

Firstly, we adopt MOESI protocol in token-SRC protocol design, which uses
6 states to describe a cache block. M (Modified) state means the cache block was
modified. O (Owned) state means local processor owns the data block though
other processor may have shared data copies. S (Shared) state means local pro-
cessor has valid data copies. E (Exclusive) state means that only local processor
has an exclusive data copies and not modified. I (Invalid) state means cache
block in local processor is invalidated by other processors. NP (Not Present)
state means that the data block does not remain in the cache, it is not a real
state saved in cache block.

Secondly, we defined 4 kinds of events coming from local processor: cache
read miss, cache write miss, data cache replacement, and SRC replacement.
In dealing with local events, processor may generate 3 kinds of remote events:
remote read request, remote write request, and remote data cache replacement.
In the following cache state transition analysis, we only need to handle local
events because the handling process includes remote events.

Thirdly, we give a definition on contents of SRC in Table 1. Data blocks
in NP state did not exist in local cache, and SRC need not to save entries for
that block. For data blocks in M or E state, reading or writing them always hit
and SRC will not be searched for destination set. Reading data blocks in O or
S state also hits, but writing those data blocks needs to invalidate other valid
copies in the CMP system, at that time SRC can be used to denote destination
set. Last, for data block in I state, read miss needs to request owner processor
and write miss needs to invalidate all processors with valid cached copies. Based
on definition in Table 1, SRC can helps to provide owner processor information
for reading case, but no use to writing cases. Thus, writing data block in I state
has to broadcast writing requests.

Fourthly, driven by each event, cache states may change. The state transition
graph of token-SRC protocol is a traditional MOESI protocol.

Finally, For each cache state and each event from local processor, the event
handling process consists of three continuous phases: requests sending process in
local processor, requests responding process in remote processor and responses
receiving process in local processor.

Compared with traditional token protocol, token-SRC protocol introduces
new actions on SRC. (1) In request sending process of local processor, if SRC
hits, request is sent to destination set denoted by SRC. Otherwise, request is
broadcast. (2) In request responding process of remote processor, if remote pro-
cessor is the owner of data block requesting, it searches its own SRC to get

Table 1. Contents of SRC for Each Cache State

Cache State Contents of SRC

M None

O All processors with valid cached copies

E None

S All processors with valid cached copies

I Owner processor

NP None

sharers, sending it back together with data and tokens. Otherwise, remote pro-
cessor updates its SRC according to the request type and its own cache block
state. (3) In response receiving process of local processor, local processor updates
its SRC according to response message type and its own cache block state. Fig.
3 shows a general event handling process.

Fig. 3. General Event Handling Process of Token-SRC Protocol

4 Performance Evaluation of Token-SRC Protocol

4.1 Simulation Environment

We evaluate a 16-core SPARC CMP system using GEMS simulator. The
CMP runs unmodified Solaris 8. Each processor core is a simple in-order pro-
cessor with private 64KB L1 caches and 16MB L2 cache. Memory is 4GB and
divided into 16 banks. We adopt 2D torus topology to interconnect 16 proces-
sor nodes, with on-chip link latency (processor-to-processor) 1 ruby cycle and
out-of-chip link latency (processor-to-directory) 40 ruby cycles.

Token protocol and directory protocol has been implemented in GEMS, but
we have to extend token protocol to integrate SRC. To compare directory, to-
ken and token-SRC protocol, their simulation machine use the same processor

model, same cache organization and size, same unordered 2D torus interconnec-
tion network and latency parameters, and same peripherals outside core. Their
cache coherence protocols have different state transition graph but with the same
MOESI cache state description.

We use SPLASH-2 benchmarks as workloads. For fast simulation, we collect
statistic result of parallel execution part instead of complete execution.

4.2 Network Traffic

We compare directory protocol, token protocol and token-SRC protocol in
request traffic and network traffic. Network traffic is measured by the amount
of information delivered in network per time unit. We calculate the amount of
information delivered in network by total network message bytes, and time unit
by cache miss. The size of request message is 8B, data response is 72B (64B data
with an 8B header), and data response with sharer is 76B(64B data, 4B sharer
with an 8B header) in Token-SRC protocol.

Fig. 4 shows evaluation result on request message number per cache miss for
three protocols. Request message includes initial request, forwarded request(directory
protocol), retried request and persistent request (token and token-SRC proto-
col). In the statistic process, if a request is send to k destination nodes, the
message number of the request is set to k no matter how many requests exactly
run through interconnection network.

Fig. 4. Request Message per Miss(16p CMP)

As illustrated in Fig. 4, directory protocol issued 2.16 request messages per
cache miss on average for 10 benchmarks. Token protocol has much higher band-
width usage than directory protocol, issuing 20.27 request messages per cache
miss on average(20.27 is greater than processor number 16, that is because
the request may be reissued multiple times and turned into persistent request
at last after time-out). Token-SRC protocol issues 13.85 request messages per
cache miss on average. In contrast to token protocol, Token-SRC reduces request
traffic by 32% in average.

Fig. 5 shows normalized network traffic per cache miss for three tokens. The
network traffic of directory protocol is normalized to 1. From the figure, token
protocol took about 66% more interconnection bandwidth on average than di-
rectory protocol, and token-SRC protocol used about 42% more interconnection
bandwidth. Compared with token protocol, token-SRC achieved 15% network
traffic reduction on average. Since 72B response message is much larger than 8B
request message, it is easy to understand why token-SRC protocol issued 32%
less requests than token protocol while incurred only 15% reduction in network
traffic.

Fig. 5. Network Traffic per Miss (16p CMP)

5 Conclusions and Future Work

This paper introduced SRC into token protocol to reduce network traffic of
token protocol. Evaluation based on SPLASH-2 benchmark shows that token-
SRC protocol achieved 15% interconnection network traffic reduction of token
protocol on average. We believe that network traffic can be reduced further if
the following improvements are added to current design. (1) Evaluate how SRC
organization, SRC size, data block size as well as normal cache replacement
policy affects network traffic, and choose optimal policy. (2) Evaluate whether
current token-SRC implementation brings more persistent requests and explore
other SRC implementation optimization methods, especially for the write miss
cases (3) Try speculative request issuing for broadcast case(for example, reading
or writing an un-cached data block). (4) Optimize workload to improve temporal
locality of shared data, achieving high SRC hit rate under limited cache space.

References

1. Hammond, L., Nayfeh, B., Olukotun K.: A single-chip multiprocessor. IEEE Com-
puter 30 (1997) 79–85

2. Olukotun, K., Nayfeh, B., Hammond, L., Wilson, K. , Chung, K.: The case for
a single-chip multiprocessor. Int’l conf. Architectural Suppport for Programming
Language and Operating System (1996) 2–11

3. Hammond L., Hubbert B., Siu M., Prabhu M., Chen M., Olukotun K.: The Stanford
Hydra. IEEE Micro (1996) 71–84

4. Goodman J.: Using Cache Memory to Reduce Processor-Memory Traffic. Int’l Symp.
on Computer Architecture (1983) 124-131

5. Katz R., Eggers S., Wood D., Perkins C., Sheldon R.: Implementing a Cache Con-
sistency Protocol. In 12th Int’l Symp. on Comp. Arch.(1985) 276–283

6. Tang C.: Cache Design in the Tightly Coupled Multiprocessor System: AFIPS Na-
tional Computer Conference(1976) 749–753

7. Censier M., Feautier P.: A New Solution to Coherence Problems in Multicache
Systems. IEEE Trans. on Computers 12 1978 1112–1118

8. Martin M., Hill M., Wood D.: Token Coherence: Decoupling Performance and Cor-
rectness. Int’l Symp. on Computer Architecture (2003) 182–193

9. Marty M., Bingham J., Hill M., Hu A., Martin M., Wood D.: Improving Multiple-
CMP Systems Using Token Coherence. Int’l Symp. on High-Perf.Computer Archi-
tecture (2005) 328–339

10. Wang H., Wang D., Li P.: SRC-based Cache Coherence Protocol in Chip Multi-
processor. Japan-China Joint Workshop on Frontier of Computer Science and Tech-
nology (2006) 60–67

11. Martin M., Harper P., Sorin D., Hill M., Wood D.: Using Destination-Set Prediction
to Improve the Latency/Bandwidth Tradeoff in Shared-Memory Multiprocessors.
Int’l Symp. onComputer Architecture (2003) 206–217

12. Martin M., Sorin D., Beckmann B., Marty M., Xu M., Alameldeen A., Moore K.,
Hill M., Wood D.: Multifacet’s General Execution-driven Multiprocessor Simulator
(GEMS) Toolset. Computer Architecture News, (2005)

13. Magnusson P., Christensson M., Eskilsson J., Forsgren D., Hallberg G., Hogberg
J., Larsson F., Moestedt A., Werner B.: Simics: A full system simulation platform.
IEEE Computer 35 (2002) 50–58

14. Woo S., Ohara M., Torrie E., Singh J., Gupta A.: The SPLASH-2 Programs: Char-
acterization and Methodological Considerations. Int’l Symp. on Computer Archi-
tecture (1995) 24–36

