
A Hierarhial Programming Model for LargeParallel Interative AppliationsJean-Denis Lesage and Bruno Ra�nINRIA, Grenoble Informatis Laboratory, FraneAbstrat. This paper fouses on parallel interative appliations rang-ing from sienti� visualization, to virtual reality or omputational steer-ing. Interativity makes them partiular on three main aspets: they areendlessly iterative, use advaned I/O devies, and must perform understrong performane onstraints (lateny, refresh rate). In this paper, wepropose an appliation desription language based on a data �ow andhierarhial omponent model to ope with the omplexity of parallel in-terative appliations. It enables us to de�ne highly generi omponents,enforing the appliation maintainability and portability. An implemen-tation on top of the FlowVR middleware is presented.1 IntrodutionAn interative appliation is an endless iterative proess involving a user user in-terating with a program through input and output devies. It is often referred toas a "human in the loop simulation". Today, an emerging lass of interative ap-pliations intends to assoiate virtual reality, sienti� visualization, simulationand appliation steering. It leads to very omplex appliations oupling advanedI/O devies, large data sets, various parallel odes. To be interative, they mustperform under strong performane onstraints, often measured in terms of la-teny and refresh rate. Examples of suh appliations are desribed in [1�3℄. Inthis paper we fous on two issues faed when designing suh appliation:� Software engineering issues where multiple piees of odes (simulation odes,graphis rendering odes, devie drivers, et.), developed by di�erent per-sons, during di�erent periods of time, have to be integrated in the sameframework to properly work together.� Hardware performane limitations bypassed by multiplying the units avail-able (disks, CPUs, GPUs, ameras, video projetors, et.), but introduingat the same time extra omplexity. In partiular it often requires to intro-due parallel algorithms and data redistribution strategies, that should begeneri enough to minimize human intervention when the target exeutionplatform hanges.One hallenge is to ensure the generiity and modularity of the appliation.Sienti� visualization appliations are often developed with Modular Visu-alization Environments (MVE) like OpenDX [4℄, Iris Explorer [5℄ or VTK [6℄.



These environments are usually based on a data �ow model where proessingtasks reeive data and generate new ones. Most of MVEs support parallel exe-utions. An appliation is basially a list of �lters applied to the data set beforerendering. The �rst natural level of parallelism is to distribute the di�erent stepsof the �lter pipeline on di�erent mahines. Beause the data set is read only, thepipeline an easily be dupliated and exeuted in parallel on sub parts of the dataset [7℄. Advaned parallel rendering algorithms exist, based for instane on spe-i� parallel data strutures and dynami work balaning shemes. In this asethey are implemented on their own, usually using lassial parallel programminglanguages, beause MVEs do not provide the neessary onstruts.In virtual reality, to ensure an e�ient data redistribution between paral-lel algorithms that may run at di�erent and varying frequenies, omplex ou-pling shemes assoiating data re-sampling and olletive ommuniations are re-quired. Dediated environments like FlowVR [8℄, OpenMask [9℄ or COVISE [10℄propose di�erent approahes to support suh features. However, the resulting ap-pliation ode tends to be di�ult to maintained when reahing a ertain size.Connetivity between proessing tasks (ommuniation hannels) are expressedby diret links between the orresponding elements: it requires the onernedelements be diretly visible one for eah other, preventing attempts to stronglystruture the ode by enapsulating patterns in methods or funtions.Component models, like CCA (Common Component Arhiteture) or CCM(Corba Component Model), provide ADLs for the desription of distributed ap-pliations. SCIRun, an environment dediated to sienti� visualization, is basedon the CCA model [11℄. Some extensions intend to enfore the support of parallelomponents and the assoiated oupling patterns [12℄. But these models su�erfrom the same limitations as the systems mentioned earlier (FlowVR, Covise)regarding the modularity of parallel omponent oupling. Fratal [13℄ is a trulyhierarhial omponent model. We are aware of one implementation of Fratalfor parallel (grid) appliations: ProAtive [14℄. A ProAtive omposite ompo-nent an be a parallel omponent. But redistribution patterns are oded into theports of the parallel omponents. A pattern annot be modi�ed without modify-ing the omponent, limiting appliation modularity. In this paper we propose toenode oupling patterns as standalone fratal omponents with a onnetivitymodel between primitive omponents (proessing tasks) that does impair thismodularity.We propose an appliation desription language, alled arhiteture desrip-tion language or ADL following the uses of the omponent ommunity, based ona data �ow and hierarhial omponent model. We fous on interative appli-ations, instead of a general purpose language, relying mainly on their iterativenature, to restrain the domain of the language.To enfore the generiity of the desribed appliation, omponents defer in-trospetion and auto-on�guration proesses to ontrollers. A ontroller is loalto a given omponent, but it may get extra data onsulting the state of theneighbor omponents or through external data repositories. These ontrollers,that an generate new omponents for instane, are alled reursively and re-



peatedly in a traverse proess until reahing a �xed point. Traverse either leadsto an error (missing data impair the traverse ompletion) or a suess. This ap-proah enables to de�ne highly generi omponents, enforing the appliationmaintainability and portability. In partiular, we an de�ne arbitrarily om-plex and adaptive data redistribution omponents, for instane mixing olletiveommuniations and re-sampling. This is an important feature for interativeappliations where these oupling mehanisms play an important role to enforeinterativity.Setion 2 presents our hierarhial model. Setion 3 details our implementa-tion on top of the FlowVR [15℄ middleware with a fous on the traverse proess.Setion 4 onludes the paper.2 Programming ModelIn this setion, we desribe our hierarhial omponent model inspired by Fra-tal[13℄ for large parallel interative appliations. Fratal is a omponent modelbased on a omponent hierarhy. This model enables to enapsulate ompo-nents into high-level omponents. This enapsulation enfores reusability andmodularity. We will also present another feature, named ontrollers, inspiredby Fratal too. Theses objets enables dynami reon�guration and omponentintrospetion.2.1 ComponentsA omponent has an interfae de�ned by a set of ports. We distinguish two kindsof omponents:Primitive omponents. A primitive omponent ontains a loop. At eah iter-ation, the omponent reads data from its input ports. It writes omputationresults on its output ports.Composite omponents. A omposite omponent ontains other omponents(omposite or primitive). We impose a strong enapsulation paradigm: aomponent annot be diretly ontained into two parent omponents.2.2 Port TypingThere are two types of ports: input and output ports. The input port reeivesdata and output port sends data. We do not impose a strong typing. We simplyrequire the input and output orrespondene. Nevertheless, depending on theneeds, the port typing an be extended. We plan a stronger typing based on thedata type exhanged by the ports.



2.3 ExampleThroughout this paper, we use a simple example (Fig. 1). It shows the lassialstruture of an interative appliation. The goal of this appliation is to omputeprime numbers and from these numbers ompute a 3D image. The image isupdated eah time a new prime number is omputed. A keyboard enables theuser to hange his point of view on the image.The Computes omposite omponent is a parallel omponent programed withMPI. It spawns n proesses Computes/0,..., Computes/n-1 seen as primitiveomponents of Computes. Notie that n is only known one the appliation asbeen on�gured for an exeution on a partiular target mahine.The omposite omponent Renderer is divided in two main parts (Fig. 1.b).The �rst one, Visu makes the rendering on a display. This display ontainsseveral sreens. For eah sreen, a rendering proess must be instaned. TheVisu omponent ontains all these rendering proesses. The seond one is theomponent Capture. It gets key events from user and sends them to the Visuomponent.Two oupling omponents are dediated to ommuniation (ComponentsConnet and GreedyConnet). The Connet omponent transmits data fromComputes omponent to Renderer omponent. The Connet omponent on-tains a ommuniation pattern. The GreedyConnet resamples messages fromCapture for Visu.
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2.4 LinksLinks are used to model data �ows between ports. We distinguish two kinds oflinks. The parent link joins a port from a omponent to one of his hildren'sport. The extremities of a parent link must have the same type. For example(Fig. 1.b), the outPrimes port on omputes omponent has the same type as allits hildren (i.e. output port).The seond kind of links are alled sibling links. They go from a omponentto an another. We assume that an objet annot share data with an anotherobjet without using a onnetion. So a sibling link must join an input port toan output port. Due to the strit enapsulation paradigm, a sibling link annotdiretly onnet two omponents that are not brothers (hild of the same parent).A hain of sibling and parent links must be used to onnet two non brotheromponents.The link between outPrimes port and in port of Connet in our example isa valid sibling link.2.5 Parallel ComponentsA omposite omponent an be a ontainer for parallel appliation. For example,Computes is a parallel MPI ode spawning when launhed several proesses,eah one being a primite ompenent. These primitive omponents are linked tothe same parent port (Fig. 1.). This kind of struture an express the dataand task parallelism for instane. Notie that the number of proesses spawneddepends on the instaniation of the appliation for a given target arhiteture.The Computes omponent has a mandatory parameter that de�nes the numberof MPI proesses. It must be set to know the number of primitive omponentsit ontains. Suh level of dynamiity is lassial for parallel omponents.A omposite omponent an also enapsulate a pipeline. Eah stage of thepipeline an be ontained into a omponent. A sibling link from a omponentto another will make the transition from one stage to an other. Thanks to om-ponents reusability, we an also dupliate a pipeline by building a ompositeomponent ontaining various parallel pipelines.2.6 Communiations and Redistribution PatternsCommuniation between parallel omponents have a huge impat on appliationperformane. They need to be ustomisable and modular. A ommuniationomponent is simply a omponent enapsulating a generi redistribution pattern.The simplest one is just a link transferring data from one output port of aprimitive omponent to one input port of a primitive omponent.In our example, a onnetion shema is implemented in the MergeThenTreeomponent (Fig. 2). This omponent has a di�erent implementation followingthe number of primitive omponents Compute and Renderer will spawn. Un-like the parallel omponents, user does not have to set the parameters of these
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Fig. 2. Parallel ompute omponent send data through a onnetion omponent toa parallel renderer. Aording to N and M parameters, a ommuniation shemes isgenerated.dynami omponents. These omponents get their mandatory parameters fromtheir neighbors.The simplest ommuniation pattern is a simple onnetion. But it ould bea merge tree and a broadast tree with di�erent arities. The order of mergedmessages ould be ustomized. Communiations may resample messages. Com-ponents an ontain �lters that operate on messages or enfore synhronizationsbetween a set of omponents. Typially, �lters are used to resample messages.Several �lters an be synhronized to perform a oherent sampling, i.e. ensurethey sample messages issued at the same logiial time.Some ommuniation omponent parameters depends from the state of theneighbor omponents. In the example (Fig. 2), the shape of the ommuniationpattern depends on the number of Compute and Render omponents onnetedat its extremities. For this reason, these omponents an reate dependenerelations between omponents.Our model eases the development of generi ommuniation patterns outsidethe ontext of an appliation. An implementation of this model an be assoiatedfor example with a library of N ×M data redistribution omponents. Compo-nents provide modularity. A user is able to hange a ommuniation pattern forhis appliation and see the impat on performane.2.7 ControllersControllers are used for the on�guration and the onstrution of dynami om-ponents. Parallel and ommuniation omponents are often dynami. Parallelomponents an have a parameter to set the number of omputational units (i.e.the degree of parallelism). Communiation omponent parameters often dependon their neighbor states.



There are two types of ontrollers :� Controllers getting data from a omponent (introspetion)� Controllers setting parameters (on�guration)A ontroller is assoiated to a omponent and a method. A main ontrollermust be implemented for all new omposite omponents. We named this on-troller exeute. This ontroller reates hildren omponents. For example, in theComputes omponent, the exeute ontroller reates all Compute/i primitiveomponents and onstruts the parent links.The ontroller an lead to an exeption if a mandatory parameter an notbe set. For example, the ommuniation pattern in MergeThenTree omponentan not be built if the number of Compute primitive omponents is not set (Se.2.6). In this ase, the ontroller throws an exeption.2.8 Traverse AlgorithmA ontroller always ats loally on a omponent, but some ations must beexeuted globally on the entire appliation. For example, building a view ofan appliation, a graph for instane, requires to all a view builder ontrolleron eah omponent. Data dependenes may impose a given exeution order onontrollers. For instane some ontrollers, like exeute, dynamially reate newomponents. Connetion omponents often have to be onstruted after theirneighbors. Most ontrollers have to be exeuted at most one by omponentto obtain the orret result. Consequently, the iteration algorithm is an impor-tant issue in our model. We named this algorithm the traverse algorithm. Thisalgorithm must respet following onstraints :� Top-down iteration : a ontroller must be applied on the parent ompoenentbefore to be applied to its hildren.� A ontroller must be applied on a omponent at most one.� Constraints on the exeution order must be respeted.� The traverse algorithm stops if the ontroller annot be alled on any re-maining omponent.In the implementation setion (Se. 3), we will present an implementation ofthe traverse algorithm and some ontrollers.2.9 Interations With Traverse AlgorithmDue to traverse properties, when a traverse fails, the ontroller leads to an ex-eption on the remaining omponents. Most programming languages enablesexeption athing. If exeptions provide enough details, user an know whyontroller annot exeute on these omponents. Often, a parameter is missing.In order to �nish the traverse, the simplest solution is to ask the user to orretlyset this parameter.



Indeed, the exeption raised by omponent an be printed. User an give anappropriate answer to the algorithm. In ase of an appliation with thousandomponents, we have made the interation simpler with the use of a omma-separated-value �le. This �le an be read by a spreadsheet program. User an�ll an automati generated �le with all parameters to be set with his favoritespreadsheet program.Traverse algorithm an also interat with an other program. For example,for mapping issues, the hoie of mahines where a proess must be mapped isa omplex problem for a human. Mapping has a huge impat on performanelike refresh rate or lateny. A mapping program using a hardware desription�le ould alulate a mapping solution e�iently.This implementation ould give the possibility to make dynami reon�gu-rations. During exeution, the entire appliation ould be stopped. The systemwill proeed to a new instantiation of the appliation. The traverse algorithman now use the log �le to resolve exeption raised during the traverse algorithm.This traverse algorithm ould be done in parallel with the exeution. A mappingalgorithm ould adapt the appliation to resoure apaities at exeution-time.3 Implementation3.1 Greedy Traverse AlgorithmThe main issue in the model implementation is the traverse algorithm. Thisalgorithm must iterate on omponents and respet several onstraints. (Set.2.8). This algorithm must �nd a onsistant order onsidering all onstraints forthe iteration through the omponents.We make the traverse via a greedy algorithm. This algorithm manages aqueue of non-exeuted omponents. For eah omponents in this queue, thealgorithm tries to exeute the assoiated ontroller. If the ontroller was su-essfully exeuted, then all of its hildren are pushed in the queue. Otherwise,the algorithm makes a rollbak operation on the omponent and push it at theend of the queue.The traverse is done when the queue beomes empty. If the algorithm annot hange the queue state, then a �xed point is reahed. No new evolution anbe performed to omponent states. To respet traverse properties, the algorithmmust stop and signal its fail.With this implementation of the traverse algorithm, there is no need to ex-press onstraints on omponents. But, this implementation may lead to unne-essary ontroller alls. We provide bounds on the number of ontroller alls forthis algorithm:Proposition 1. Let Ncomp the maximum number of omposite omponents inan appliation. The maximum (resp. minimum) number of all of ontrollersperformed by greedy traverse algorithm is O(N2

comp
) (resp. O(Ncomp)).For sake of oniseness, the proof is omitted. The proof outline is to showthat a ontroller an be alled at most Ncomp times by omponent.



The omplexity of our algorithm is upper bounded by O(N2

comp
) but we donot have to ompute an order of iterations between omponents onsidering allonstraints. The greedy traverse algorithm tries to iterate on omponents untilit �nds an aeptable order. Theses tries an lead to extra osts but omputationof an aeptable order may involve omplex algorithms. Our solution is a goodtradeo� between salability and omplexity of the implementation.3.2 Implementation on the Top of the FlowVR MiddlewareWe have built our model on the top of FlowVR [15, 8℄. This middleware is usedto onstrut large parallel interative appliations. It eases the development ofvirtual reality appliations that assoiates sienti� visualization and simulta-tions. For instane we developed appliations involving a real time 3D modelingalgorithm using data from a amera network, parallel simulations and multi-projetor visualization with FlowVR.FlowVR is based on four types of primitive omponents [8℄:Modules User de�ned omponents. They make all omputational issues in theappliation.Connetions They transmit data from an output port to an input port.Filters They make treatments on messages. They are involved in ommunia-tion shemes.Synhronizers They implement synhronization poliies between omponents.All these kinds of omponents have been implemented using our model. Theseond step of the implementation was to onstrut ontrollers dediated tothe middleware. The main ontroller speially developed for FlowVR builds aXML desription of the appliation. When launhing an appliation, FlowVRdistributes order to FLowVR dameons running on the nodes of the target ma-hines to load plugins, on�gure ommuniations shemes, et. These orders aredesribeexgtrated from an XML destiption of the appliation. For eah primi-tive omponent, we have reated the ontroller that builds this XML desription.Composite omponents just reusrively link hildren desription into the XMLtree.All examples from the FlowVR suite have been redeveloped with the hierar-hial model introdued in this paper. The example used in this paper (Fig. 1)was inspired from one of these appliations. Moing to the hierarhial model im-proved appliation modularity. For instane, an appliation an now be importedas a omposite omponent in larger appliations.4 ConlusionWe presented an ADL for interative appliations based on the fratal ompo-nent model. Our main goal was to ensure a high level of modularity for largeappliations involving parallel omponents and advaned oupling shemes. Con-�guration of omponents is deferred to ontrollers. It enables us to separate some
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