
K. Li et al. (Eds.): NPC 2007, LNCS 4672, pp. 543–555, 2007.
© IFIP International Federation for Information Processing 2007

Reference Architectural Styles for Service-Oriented
Computing

Tharam S. Dillon, Chen Wu, and Elizabeth Chang

Digital Ecosystems and Business Intelligence Institute, Curtin University of Technology,
Perth 6845, Australia

dillon@cbs.curtin.edu.au
http://debii.curtin.edu.au

Abstract. Architecting service-oriented systems is a complex design activity. It
involves making trade-offs among a number of interdependent design decisions,
which are drawn from a range of concerns by various software stakeholders. In
order to achieve effective and efficient SOC design we believe a careful study
of architectural styles that can form the reference architecture is important.
Hence, this paper provides a study of architectural styles for the reference archi-
tecture of SOC-based software systems. We propose a classification scheme for
the architecture styles. These architectural styles are extracted from existing re-
search projects and industry practices based on our classification scheme. For
all those identified styles, we present an evolution trend driven by engineering
principles for Internet-scale systems. As a result, this paper moves the first step
towards creating a Reference Architecture that can be utilised to provide sensi-
ble guidance on the design of Web services application architecture

Keywords: Service-Oriented Architecture, Web Services, Software Architecture.

1 Introduction

The power and flexibility that Service-Oriented Computing (SOC) can offer to sys-
tem integration are substantial. As the most promising realization of SOC [1], Web
services have the potential to enable business-level integration across heterogeneous
platforms. Due to its distributed nature, architecting Web services-based SOC appli-
cations is not a trivial task. It requires an experienced architect to make trade-offs
amongst a number of interdependent design choices, each of which reflects various
concerns demanded by numerous stakeholders from different organizations with dis-
parate business goals and IT infrastructure. A recent survey [2] on Web services
adoption, for example, shows that quality requirements such as system security, scal-
ability, reliability, flexibility, and performance have become the most important
criteria for a company to choose Web services solutions. Many factors influence the
software quality, however, most of these quality requirements can be heavily influ-
enced by the software architecture [3, 4]. Hence, a formal study of the fundamental
architectures for Web services is necessary to deliver quality-assured SOC systems.
Although several fundamental standards and related case studies have been reported

Aiko Pras

544 T.S. Dillon, C. Wu, and E. Chang

for Web services design, the merit of rigorously architecting Web services applica-
tions has only been partially studied. Each quality requirement listed in [2] might lead
to different concerns for that architecture design decision resulting in appropriate
compromises [3] to suffice all these requirements. Such a compromise, [5], can be
achieved through combining related architectural styles. It is essential to reference an
array of well-identified Web services architectural styles with their corresponding
rationales and business contexts. This paper examines and evaluates the existing Web
services architectural styles, which constitute the reference architecture for SOC ap-
plications and elicits an appropriate reference architectural style.

2 Preliminary Concepts

A well-accepted definition of software architecture is given in [6]:

“The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them”.

Research into software architecture indicates that the various concerns inherent in a
software architecture can be modelled as different abstract views, which can be fur-
ther organized into distinct architectural levels [7]. [7] proposed a multi-level archi-
tectural model. (1) The Reference Architecture (RA) which captures both domain
requirements and infrastructure requirements at the high level abstract level. (2) The
Application Architecture (AA) and (3) The Implementation Architecture (IA). Our
paper primarily investigates the Reference Architecture for general SOC-based soft-
ware systems. Furthermore, RUP1 defines the Reference Architecture as “a prede-
fined architectural pattern, or set of patterns, possibly partially or completely
instantiated, designed, and proven for use in particular business and technical con-
texts…”[8]. In this paper, we use the term ‘architectural style’ to define a family of
Web services systems in terms of a pattern of structural organization. Software archi-
tectural style encapsulates important decisions about the architectural elements. This
paper uses the definition from [5] for the architectural style: Definition: an architec-
tural style is a coordinated set of architectural constraints that restricts the
roles/features of architectural elements and the allowed relation-ships among those
elements within any architecture that conforms to that style. Constraints are often
motivated by the application of a software engineering principle as to an aspect of the
architectural elements.

3 The Classification Scheme

A classification scheme is presented to categorise the identified architectures styles
into different groups as it helps to understand the common features, allows new styles
to be added as they are developed, and provides a framework within which the evolu-
tion or future trend can be envisioned. We have found that most contemporary Web
services architecture can be grouped into three basic families: Matchmaker Style,

1 Rational Unified Process®.

 Reference Architectural Styles for Service-Oriented Computing 545

Broker Style, and Peer-to-Peer style. For each family, we present the styles in a se-
quence where the fundamental style is introduced first and various derived styles are
discussed one after another. These derived styles are examined in section 4 – 6. In
addition to these three, we also consider two promising “Web-Oriented” Styles.

4 Matchmaker Styles

Early Web services architecture is based on matchmaker style, where a matchmaker
component is defined as the ‘middle agent that stores capabilities advertisements that
can then be queried by requesters’[9]. In Web services architecture, a service provider
registers with the UDDI registry its capability information and a service consumer
contacts the registry to discover this service provider’s detail so that it can bind and
interact with it. Providers make their services available by publishing their interface
and thus advertising their service.

Fig. 1. Layered Matchmaker Style Fig. 2. Layered Broker Style

Three classes of matchmaker styles can be distinguished, namely, (1) Layered

(LM), (2) Hierarchical (HM), (3) Federated (FM). Service selection based on QoS
requirements [10-12] adds an additional architectural layer (see Fig. 1) between the
service requester/provider and the matchmaker to collect QoS data, and negotiate Qos
requirements between them. Reliance on one single matchmaker can lead to a per-
formance bottleneck and a single point of failure. Research in [13] thus proposed a
framework with hierarchical structured registries, each of which maintains a specific
business domain.All these registries are managed by one root registry .To address
scalability issues, service replication or a federated architecture can be chosen. While
[14] stated that “replication was chosen in UDDI because creating a scalable model
for distribution of data is inherently difficult”, recent researchers have attempted
to tackle such distribution issues by introducing a Federated Matchmaker style
[10, 14, 15].

5 Broker Styles

The major difference between a brokers and a matchmaker is that the broker is also
involved in the transaction between requester (client) and provider (server).[16] de-
fines a broker architectural pattern (style) as “a distributed software structure with

546 T.S. Dillon, C. Wu, and E. Chang

decoupled components that interact by remote service invocation”. They specify that
the classical broker architectural style includes six major components. The most sig-
nificant component is the broker component, which distributes client requests to the
responsible server components and returns corresponding results.

Four broker-based styles can be distinguished and they are (1) Layered (LB), (2)
Asynchronous (AB), (3) Hierarchical (HB), and (4) Federated (FB). LB and AB are
illustrated in Figure 2 and 3 respectively. The broker style reduces the complexity
involved in developing both service providers and requesters as it makes distribution
transparent to the developers [16]. The layered-broker style [17] tackles such a chal-
lenge (see Figure 2). The virtual logistics network in [18] provides a real-world ex-
ample of layered-broker architecture utilised in service-oriented logistics services.

Asynchronous communication provides temporal decoupling, which is crucial for
Internet-scaled distributed systems and leads to scalability and resiliency. The Asyn-
chronous Broker (see Figure 3) provides a callback mechanism through two Web
services standards – the WS-Callback [19] and WS-Addressing [20] . This solves the
problem that WS-* specifications have no standard concept for service references.
The Publish-Subscribe paradigm [22] is widely accepted as the many-to-many
asynchronous communication model. The following three related Web services speci-
fications centre around the topic-based publish-subscribe pattern namely WS-
BaseNotification [23] WS-Brokered Notification [24] ,and WS-Topics [25]. Based on
WS-Addressing, WS-Eventing [26] provides similar asynchronous capability as does
the WS-BaseNotification. Recent real world projects have deployed such an Asyn-
chronous Broker style to build in-progress SOC applications such as PSB (Public
Services Broker) messaging architecture for e-Government infrastructure.(see
Figure 3). One issue with such an Asynchronous Broker is how to match the interests
subscribed by service requester with the available notifications published by the ser-
vice providers. At the time of writing, neither these WS-* specifications nor PSB[27]
tackled this issue formatively and thoroughly. WS-Topics partly addresses this issue.
The Triple Space architectural style, based on the Asynchronous Broker, proposes to
solve this problem by utilizing semantic web technology. While the Hierarchical
Broker style [28] solves the issue of service matching and interaction, and eases the
management and complexity of each broker, its structure also brings about a number
of shortcomings. Firstly the communication between brokers has to be facilitated by
their parent brokers, which limits the flexibility and the velocity of broker interac-
tions. Next, in hierarchical structure, sub-brokers are always controlled by the parent
broker, and so are the services controlled by the intermediate broker. This makes it
harder to perform dynamic re-organization. The most salient difference between Fed-
erated Broker and Hierarchical Broker is the autonomy of the child broker, and thus
the flattening of the hierarchical structure. Brokers and services are organized into
federations. Within a federation (a group of services facilitated by a single broker), a
service gives up part of its autonomy to the broker.

6 Peer-to-Peer Style

Both matchmaker and broker architectural styles rely on a central control point in
contrast to the peer-to-peer (P2P) architectural style. Thus the peer-to-peer Web

 Reference Architectural Styles for Service-Oriented Computing 547

services architectural style has no centralized registry to store the meta-data of service
peers. For this P2P style based web service lifecycle, we discuss service discovery
and service composition. P2P based service discovery relies solely on each individual
peer’s search capability to locate suitable service providers. The first approach to
service discovery [29-32] leverages well-established P2P overlay discovery algo-
rithms and places the Web services protocols on top of the native P2P protocols such
as Gnutella and DHT [33], with WS-P2P adaptor to bridge the gap between the two
protocols. The second approach[15, 34, 35] constructs the P2P communication proto-
col from the scratch using existing Web services protocols. For instance, [35] pre-
sented the PSI model to locate suitable services in a hybrid P2P registry network and
the communication engine in each servant forms a Gnutella-compatible P2P network
based on the proposed protocol – probabilistic flooding. Meanwhile, both of these
approaches can also support semantic-based services discovery[29-31, 36].

As indicated earlier, P2P execution (P2PE) is a common means to invoke Web ser-
vices in the matchmaker style. P2P composition can be classified into three sub-
styles, namely (1) Static, (2) Mobile, (3) Hybrid. .In the Static Composition Style
(P2PC-S) style[37] [38] [39], [40], the overall process specification (e.g. BPEL4WS2
) is, at design-time, partitioned into smaller pieces and deployed to involved service
providers and during run-time each local engine only obtains the partial copy of the
whole process, and finally executes it at the local site where the invoked service re-
sides. One problem here is that at run-time service providers cannot be changed, thus
it will fail to fulfill the dynamic selection of service providers in an unreliable envi-
ronment. In the Mobile Composition Style (P2PC-M) style[41,42], both the whole
process specification and its related instances, which contain the state information of
process execution, are dynamically brought to the next invoked service during
run-time. [43] employed a combination of Static Composition Style to create a true
P2P-based service process execution runtime environment and utilized the Mobil
Composition Style to partition a process into a set of distributed execution units.

7 Web-Oriented Styles

We evaluate two architectural styles that are consistent with Web architectural princi-
ples [44]. Representational State Transfer (REST) [5] proponents argue that existing
RPC-based Web services has serious weaknesses for the Internet in regards to scal-
ability, performance, flexibility, and implementability[45]. REST specifically intro-
duces numerous architectural constraints to the existing Web services architecture
elements in order to: a) simplify interactions and compositions between service re-
questers and providers; b) leverage the existing WWW architecture wherever
possible. We summarize as follows these constraints which form the fundamental
REST-base (‘RESTful’ Web services) architectural style:

REST uses a resource identifier (URI) to provide an unambiguous and unique label
for one particular web resource. In the RESTful architectural style, all resources are
accessed with a generic interface resulting in a dramatic decrease in the complexity
of the semantics of the service interface during the service interaction. Choosing these
two styles in composing the business process can be found in [47].

2 Business Process Execution Language for Web Services.

548 T.S. Dillon, C. Wu, and E. Chang

Fig. 5. REST Style. Source [5] Fig. 6. TripleSpace

7.1 Triple Space

Triple Space Computing [48] is built on top of of several technologies: Tuple
Space[49], Publish-Subscribe paradigm[22], Semantic Web and RDF [50] [46] Triple
Space employs the “persistently publish and read” paradigm by leveraging the Tuple
Space architecture and APIs. From an architecture perspective,Triple Space is, in
effect, based on the natural confluence of Asynchronous Broker and RESTful styles..
The fundamental interaction among triple space architectural components is shown in
Figure 6. The basic interactions between service provider and requester are rather
straightforward : The service provider can “write” one or more triples in a concrete
identified Triple Space. The service requester is able to “subscribe” triples that match
with a template specified against its interests in a particular concrete Triple Space.
Whenever there is an update in the spaces, the Triple Space will “notify” related ser-
vice requesters indicating that there are triples available that match the template speci-
fied in its preceding subscription. The notified service requesters “read” triples that
match with the template within a particular transaction or the entire concrete space,
and further process the triples accordingly. It provides intelligent middleware(broker
like), to manage the spaces without requesting each service provider and requester to
either download or search through the entire space. Moreover, it needs to provide
security and trust while keeping the system scalable and usage simple. Authors in [51]
proposed a minimal architecture for such provider middleware. Authors in [48] identi-
fied a number of requirements for Triple Spaces (providers): Autonomy (including
four basic forms of autonomy: time, location, reference, and data schema), Simplicily,
Efficiency, Scalability, Decentralized Architecture, Security and Trust mechanisms,
Persistent communications, and History. In order to overcome the lack of support for
semantics-aware matching, Triple Space, utilizes RDF to represent and match the
machine-processable semantics. It is a promising, if immature, Web services architec-
tural style and may represent the future paradigm for designing and implementing a
truly service-oriented architecture.

8 The Evolutionary CUBE

Based on previous related work[52-54], we have identified three general architectural
design principles in an open environment such as the Internet – Simplification, Decen-
tralization, and Loose-coupling. We believe these three should be equally considered

 Reference Architectural Styles for Service-Oriented Computing 549

in order to facilitate Internet-scaled Web services computing as they are a crucial
prerequisite for any SOC-enabled applications. Each of them acts as an axis in one
cubic dimension, which aligns a number of architectural styles in an order that the
furthest end reflects the largest positive degree towards that principle. These three
dimensions collectively constitute the ‘evolutionary cube’ as depicted in Figure 7,
which provides an overview on current service-oriented computing reference architec-
tural styles.The evolution starts from the Basic Matchmaker (BM), which originates
from the widely-accepted ‘SOA triangle’ architectural style. When both domain and
infrastructure requirements become more complicated, the architecture of match-
maker itself becomes more intricate and difficult to design. Even if well designed,
such a matchmaker might fail to scale properly in an Internet-wide business context
due to its excessive complexity. Hence the appropriate simplification is crucial. The
principle of simplification requires the architecture should not impose high barriers to
entry for its intended adopters: each individual component in this architecture should
be substantially less complex to be easier to understand and implement otherwise
functionality of that component needs to be reallocated (by further decomposition or
distribution).Under this principle, the Basic Matchmaker style moves up along the
simplification axis, thus turning into two variant matchmaker styles: Layered Match-
maker (LM) and Hierarchical Matchmaker (HM). The consequence of deploying
these two variants is to reduce the complexity inherent in each complex matchmaker
server, with each one being dedicated in one specific functional area (e.g. remote
adaptor, execution, composition, etc.), domain, or geographic area. In other words, the
simplification refers to the development and maintenance of each individual server,
thus reserving simplicity of core architectural components, while pushing complexity
into end systems across the Internet. REST [5] proponents pushed such a simplifica-
tion trend further, and proposed the RESTful Web services style which only relies on

Fig. 7. Evolutionary Cube

550 T.S. Dillon, C. Wu, and E. Chang

the basic simple web protocol such as HTTP rather than creating so-called new WS-*
standards[45]. RESTful style is thus placed in the furthest point in the dimension of
simplification.

The principle of decentralization is based on the assumption that “the world will be
connected and widely distributed and that it will not be possible or desirable to lever-
age everything off a centralized, administratively managed infrastructure”[33]. In the
Internet environment,all the resources are distributed in their own preferred manner.
This principle motivates the architect to decentralize an existing architecture such as
matchmaker. This gives rise to, for example, the peer-to-peer based style. From Basic
Matchmaker style, this principle leads to the P2P Discovery (P2P-D) style. In the
case of the Hierarchical Matchmaker, the confluence of decentralization and simplifi-
cation produces the Federated Matchmaker (FM) style, where a peer-to-peer commu-
nication mechanism is employed among separated yet cooperative matchmakers for
facilitating the federated service discovery. In addition, when the basic broker is to be
decentralized, one function – the service composition – is decentralized accordingly,
which results in the P2P Composition (P2P-C) style. The third principle – loosely-
coupling – refers to a very resilient relationship between two or more architectural
components – service providers and requestors in particular – that are communicating
via distant message transmission. Loosely-coupled systems are more likely to func-
tion well (e.g. without human intervention, or at low cost) when either side of the
interactions are subject to frequent changes – such as the system growth due to the
globalization, varying customer needs and requirements, unexpected network failures,
etc, which are always the case for Internet-scale systems. Realizing a loosely-coupled
architecture requires that few assumptions can be made about the detail (such as the
specific run-time platform, implementation, etc) of both service providers and re-
questors. Such a decoupled trend promotes Basic Broker styles (i.e. the facilitator
middle-agent) evolving from the Basic Matchmaker style. Some of these brokers
endorse the principle of loosely-coupling further by employing asynchronous message
interactions, thus forming the Asynchronous Broker (AB) style. The asynchrony is
achieved by utilizing the callback and the ‘publish/subscribe’ mechanism in such an
asynchronous broker. While the loosely-coupling is effectively realized in the Basic
Broker and its derived styles, one common concern about the broker style is its com-
plexity and scalability during their Internet-scale operations [16]. Apparently, the
centralized broker becomes the bottleneck of the system architecture. Hence the prin-
ciple of simplification is evidently indispensable to overcome such an intricacy. When
it is applied, these two styles (BB and AB) are augmented to the Layered Broker (LB)
style and the Layered Asynchronous Broker (LAB) style respectively. Likewise, when
the principle of loosely-coupling is applied to the Federated Matchmaker style, it
turns into the Federated Broker (FB) style. When each broker in the Federated Bro-
ker style captures the asynchrony strategy, this style is further decoupled into the
Federated Asynchronous Broker (FAB) style. Among other features, the constrained
and simplified interfaces provided by RESTful Web services are generally considered
more loosely-coupled than those in the matchmaker family styles. Nevertheless, the
RESTful style is not as loosely-coupled as the broker family due to its direct interac-
tion between services. Although the original REST style [5] is based on the “persis-
tently publish and read” web paradigm, and hence removes the direct link between
service providers and requestors, it is not suited for non-hypermedia applications that

 Reference Architectural Styles for Service-Oriented Computing 551

are the case for the majority of Web services. Therefore, it appears natural to propose
another style that can integrate the benefits of both RESTful and broker family styles.
This gives rise to the TripleSpace style, which evolves from the Federated Asynchro-
nous Broker style and meanwhile keeps the virtues of the canonical REST style. The
TripleSpace style lies at the far end position of all the three dimensions. It is thus a
highly desirable reference architecture for guiding the design of truly Internet-scale
Web services applications.

9 Proposed Architecture

Based on the evolutionary cube, we propose the following architecture shown in
figure 8 for the distributed Service-Oriented computing. Readers can refer to [60] for
a comprehensive understanding of this architectural design and its associated styles.

Fig. 8. Proposed Architecture

10 Conclusions

The right software architecture paves the way for the success of any software systems.
However, producing a ‘good’ architecture design is always a very challenging task.
Services-Oriented Computing applications realised by Web services are even more
difficult to design since a) the core technology and related standards are still evolving;
b) little experience is available from only a small number of existing successful SOA
implementations. In order to design an effective and quality-assured software
architecture, we found an abstract Reference Architecture (RA) can be extremely

552 T.S. Dillon, C. Wu, and E. Chang

useful in guiding the architecture design at the application level. Aiming at providing
fundamental reference architecture for Web services applications, this paper provides
the first step towards creating such a RA by identifying and examining canonical
architectural styles which are essential in composing the RA in accordance with do-
main and infrastructure requirements. The thirteen styles studied in this paper are all
related in a manner that an evolution of these architectural styles is speculated based
on three generic engineering principles for Internet-scale Web services-enabled SOA
systems.

Architectural styles for web and network applications but not Web services-
enabled systems are surveyed in [5]. Web services architectural patterns are defined
and identified in [55],but these patterns are limited to e-business scenarios. For Web
services discovery, [56] analyses contemporary Web services registries and provides
comparison of these styles against attributes from the view-based framework . [57]
provides a comprehensive understanding on service composition and identifies five
categories of composition approaches. The SOA pattern catalog [58] presents thir-
teen design patterns applicable to SOA but it focuses on components design at fine-
grained level. [59] catalogues architectural styles for SOC applications but bases
these on their proposed multi-agent model rather than from the literature and industry
practice. The on-going project [54] provides a SOA blueprint and a catalogue of nor-
mative patterns at the concrete application level based on the limited e-business
specific requirements. However, the present paper catalogues these patterns and archi-
tectural styles at the abstract reference architecture level based on domain and infra-
structure requirements.

The major contributions of the present paper can be found in three areas: firstly, it
provides a review of common architectural styles drawn from Web services applications
based on a classification scheme. These styles can then form the generic reference archi-
tecture for Web services-based SOA applications. As a result, the architect can eventu-
ally leverage these architectural styles to guide the design of application architecture for
Web services solutions. Secondly, this paper proposes a comprehensible ‘evolutionary
cube’ in terms of the roadmap of Web services architectural styles. This cube, if refined
properly, can be further utilized by business consultants and CIOs as a blueprint during
SOA deployment and maintenance to solve strategic issues such as “where are we now?
What is our next goal for our Web services architecture?”. Moreover, customer re-
quirements and implementation requirements can be classified and mapped to the three
major evolution principles, which also help architects to make sensible decisions in
choosing the appropriate architectural style within particular business and technology
contexts. Thirdly, applying appropriate and proven architectural styles drawn from the
Reference Architecture significantly reduces the development time and increases the
efficiency and adequacy of the Web services solution.

References

[1] Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.F.: Web Services
Platform Architecture. Prentice-Hall, Inc. (2005)

[2] Cimetiere, J.C.: Web Services Adopt. and Tech. Choices, TechMetrix Research (2003)
[3] Lundberg, L., Bosch, J., Häggander, D., Bengtsson, P.: Quality Attributes in Software

Architecture Design. In: Proc.3rd IASTED Conf. on Soft. Eng.& Applns., pp. 353–362
(1999)

 Reference Architectural Styles for Service-Oriented Computing 553

[4] Bass, L., Clements, P.: Software Architecture in Practice. Addison-Wesley, Reading
(2000)

[5] Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architec-
tures, PhD Dissertations, University of California, Irvine CA, USA (2000)

[6] Bass, L., Clements, P., Kazan, R.: Software Architecture in Practice. Addison Wesley,
Reading (2003)

[7] Barber, K.S., Graser, T., Holt, J.: A Multi-Level Software Architecture Metamodel to
Support the Capture and Evaluation of Stakeholder Concerns. In: ISAS-SCI, vol. 1 (2001)

[8] Artifact: Reference Architecture, v2006:1987-2003 Rational Software Corp (2003)
[9] Decker, K., Sycara, K., Williamson, M.: Middle agents for the internet. In: Proc.IJCAI

(1997)
[10] Degwekar, S., Su, S.Y.W., Lam, H.: Constraint Specification and Processing in Web Ser-

vices Publication and Discovery. In: IEEE Conf. on Web Services (ICWS’04) (2004)
[11] Wang, X., Yue, K., Huang, J.Z., Zhou, A.: Service Selection in Dynamic Demand-Driven

Web Services. In: IEEE Conf. on Web Services (ICWS’04), IEEE Computer Society
Press, Los Alamitos (2004)

[12] Yu, T., Lin, K.: Design of QoS Broker Algor. for QoS-Capable Web Serv., EEE’04
(2004)

[13] Papazoglou, M., et al.: Lever. Web-Services & P2P Networks. Springer, Heidelberg
(2003)

[14] Pilioura, T., Kapos, G., Tsalgatidou, A.: PYRAMID-S: A Scalable Infrastructure for Se-
mantic Web Service Publn. & Discovery. In: 14th Int. Wrksp. Rsch. Issues on Data Eng.
(2004)

[15] Banaei-Kashani, F., Chen, C.-C., Shahabi, C.: WSPDS: Web Services Peer-to-peer Dis-
covery Service. In: Int. Symp. on Web Services and Applns., USA, pp. 733–743 (2004)

[16] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M. (eds.): Pattern-
Oriented Software Architecture, a System of Patterns. J. Wiley and Sons, Inc., Chichester
(1996)

[17] Piers, P., Benevides, M., Mattoso, M.: Mediating Heterogeneous Web Services. In:
Symp. on Applns. and the Internet (SAINT’ 03) (2003)

[18] Chang, E., Dillon, T.S., Gardner, W., Talevski, A., Rajugan, R.: A Virtual Logistics Net-
work and an E-hub as a Competitive Approach for Small to Medium Size Companies. In:
Web and Comm. Techn. and Internet-Related Social Issues – HSI, vol. 2003, Springer,
Heidelberg (2003)

[19] Goland, Y., Nottingham, M., Orchard, D.: WS-CallBack Protocol (WS-CallBack) 0.91
(2003), http://dev2dev.bea.com/webservices/WS-CallBack-0_9.html

[20] Box, D., Curbera, F.: Web Services Addressing (WS-Addressing) (2004),
http://www.w3.org/Submission/ws-addressing/

[21] Vinoski, S.: Web Services Notification. In: IEEE Internet Computing, pp. 86–90 (2004)
[22] Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.-M.: The Many Faces of Pub-

lish/Subscribe. ACM Survey 35, 114–131 (2003)
[23] Graham, S., Niblett, P.: Web Services Base Notification (2004),

ftp://www6.software.ibm.com/software/developer/library/ws-notification/WS-BaseN.pdf
[24] Graham, S., Niblett, P.: Web Services Brokered Notification,

ftp://www6.software.ibm.com/software/developer/library/ws-notification/
WSBrokeredN.pdf

[25] Graham, S., Niblett, P.: Web Services Topics (2004),
ftp://www6.software.ibm.com/software/developer/library/ws-notification/WSTopics.pdf

554 T.S. Dillon, C. Wu, and E. Chang

[26] Geller, A.: Web Services Eventing (WS-Eventing), Technical Specification (2004),
http://www-106.ibm.com/developerworks/webservices/library/specification/ws-eventing/

[27] McGrath, S.: An overview of the Public Services Broker Architecture (2004),
http://sdec.reach.ie/papers/psb-overview/psb-overview-v1.pdf

[28] Chang, S.-F., Fu, L.-C., Tsai, M.-Y.: Automatic Integration of Inter-Enterprise Process
with Hierarchical Broker Framework, Bul. College of Eng., N.T.U., pp. 99–107 (2004)

[29] Ayyasamy, S., Patel, C., Lee, Y.: Semantic Web Services and DHT-based Peer-to-Peer
Networks: A New Symb. Relnship. Pos. Ppr., Sch.Comp.& Eng. Uni.f Missouri (2003)

[30] Paolucci, M., Sycara, K., Nishimura, T., Srinivasan, N.: Using DAML-S for P2P Discov-
ery. In: Int. Conf. on Web Services, ICWS (2003)

[31] Emekci, F., Sahin, O., Agrawal, D., Abbadi, A.: Peer-to-Peer Framework for Web Ser-
vice Discovery with Ranking. In: IEEE Int. Conf. on Web Services (ICWS’04) (2004)

[32] Schmidt, C., Parashar, M.: A Peer-to-Peer Approach to Web Service Discovery, World
Wide Web, pp. 211–229 (2004)

[33] Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins,
S., Xu, Z.: Peer-to-Peer Computing, Hewlett-Packard Report (2003)

[34] Wang, Q., Yuan, Y., Zhou, J., Zhou, A.: Peer-Serv: A Framework of Web Services in
Peer-to-Peer Environment. In: Dong, G., Tang, C.-j., Wang, W. (eds.) WAIM 2003.
LNCS, vol. 2762, pp. 298–305. Springer, Heidelberg (2003)

[35] Prasad, V., Lee, Y.: A Scalable Infrastructure for Peer-to-Peer Networks Using Web Ser-
vice Registries and Intell. Peer Locators. In: Int. Symp. on Cluster Comp. and Grid, 216
(2003)

[36] Thaden, U., et al.: A Sem.Web based P2P Service Reg. Nwk., Rep. Uni. of Hanover
(2003)

[37] Muth, P., Wodtke, D., Weissenfels, J., Kotz, D.A.: From Centralized Workflow Specifi-
cation to Distributed Workflow Execution. J of Intell. Inf. Systems (JIIS), 10 (1998)

[38] Benatallah, B., Dumas, M., Sheng, Q., Ngu, A.: Declarative Composition and Peer-to-
Peer Provisioning of Dynamic Web Services. In: Int/ Conf. on Data Engineering (2002)

[39] Nanda, M.G., Chandra, S., Sarkar, V.: Decentra. execution of composite web services.
19th ACM SIGPLAN Conf. on Object-oriented Progr., Systems, Lang., and
Applns. (2004)

[40] Chafle, G., Chandra, S., Mann, V.: Decentralized Orchestration of Composite Web Ser-
vices. In: Chafle, G., Chandra, S., Mann, V. (eds.) World Wide Web, New York, USA
(2004)

[41] Haller, K., Schuldt, H.: Consistent Process Execution in Peer-to-Peer Information Sys-
tems. In: 15th Conf. on Adv. Info. Systems Eng (CAiSE), Klagenfurt/Velden, Austria
(2003)

[42] Lakhal, N.B., Kobayashi, T., Yokota, H.: THROWS: an archi. for highly available dist.
execution of Web services compositions. In: 14th Wkshp. on Res. Issues on Data Eng.
(2004)

[43] Schuler, C., Weber, R., Schuldt, H., Schek, H.: Scalable Peer-to-Peer Process Manage-
ment - The OSIRIS Approach. Int. Conference on Web Services (ICWS) (2004)

[44] Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture. ACM
Trans. on Internet Technology (2002)

[45] Mitchell, K.: A Matter of Style: Web Services Arch. Patt. XML Conf & Exp. USA (2002)
[46] Vinoski, S.: Putting the “Web” into Web Services - Web Services Interaction Models,

Part 2. IEEE Internet Computing, 90–92 (2002)
[47] Snell, J.: Resource-oriented vs. activity-oriented Web services, IBM developerWorks

(2004), ftp://www6.software.ibm.com/software/developer/library/ws-restvsoap.pdf

 Reference Architectural Styles for Service-Oriented Computing 555

[48] Bussler, C., Kilgarriff, E., Krummenacher, R., et al.: WSMX: Triple-Space Computing,
SMO Working Draft (2005), http://www.wsmo.org/TR/d21/v0.1/20050613

[49] Gelernter, D.: Gen. Com. in Linda. ACM Trans. Prog. Lang. and Sys. 7(1), 80–112
(1985)

[50] Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and Abstract
Syntax, W3C Recommendation (2004), http://www.w3.org/TR/rdf-concepts/

[51] Krummenacher, R., Hepp, M., Polleres, A., Bussler, C., Fensel, D.: WWW or What Is
Wrong with Web Services. In: 3rd IEEE Euro. Conf. on Web Services, pp. 235–243
(2005)

[52] Austin, D., Barbir, A., Ferris, C., Garg, S.: Web Services Architecture Requirements.
W3C Working Group Note (2004)

[53] Fielding, R.T., Taylor, R.N.: Principled Design of the Modern Web Architecture. ACM
Trans. on Internet Technology (2002)

[54] MacKenzie, M., Amand, S.S.: Electronic Business Service Oriented Architecture. OASIA
ebSOA Working Draft 047 (2004)

[55] Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogdahl, P., Luo, M., Newling,
T.: Patterns: Service-Oriented Architecture and Web Services (2004)

[56] Dustdar, S., et al.: A View Based Anal. on Web Service Regist. Distr. & Para. DBs
(2005)

[57] Dustdar, S., et al.: A survey on web services comp. Int. J. Web and Grid Services 1
(2005)

[58] Unknown: http://www.soaprpc.com/patterns/soa_pattern_catalog.html soaprpc.com (2005)
[59] Maximilien, E.M., Singh, M.P.: Toward Web Services Interaction Styles. In: 2nd IEEE

International Conferences on Services Computing (2005)
[60] C.Wu, E. Chang, and T. Dillon.: A Semantic Grid Architecture. In: International Confer-

ence on Semantics, Knowledge and Grid 2007, Xi’an, China (to be presented)

	Reference Architectural Styles for Service-Oriented Computing
	Introduction
	Preliminary Concepts
	The Classification Scheme
	Matchmaker Styles
	Broker Styles
	Peer-to-Peer Style
	Web-Oriented Styles
	Triple Space

	The Evolutionary CUBE
	Proposed Architecture
	Conclusions
	References

