
A Formal Model for Network Processor Workload1

Zhang Xiao Ming, Sun Zhi Gang, Zhang Min Xuan

School of Computer, National University of Defense Technology,
410073, Changsha, China

xiaomingzone@gmail.com

Abstract. Due to the heterogeneity of network processor architectures and
constantly evolving network applications, it is currently a challenge to
characterize the network processor workloads. In this paper, we formally model
the task-level workloads of network processors as reactive dataflow process
network (RDPN). RDPN is a suitable model of computation for formally
describing the behaviors of packet-level parallel processing and event
interaction with control point of network processors. We extend the expressive
capability of RDPN by using three transformations (i.e., clustering,
decomposing and duplicating) to analyze the model and support the further
design space exploration of network processors.

1 Introduction

A router in core/edge networks is functionally split into control plane (also known as
control point) and data plane. Network processors (NPs) are usually located on data-
plane of routers and implements functional processing tasks, i.e. packet forwarding,
security control and QoS (Quality of Service). Control plane and data plane of routers
are interacted with each other in event-driven mode. A special case of interactive
transaction would be that control plane constantly updates the forwarding tables of the
data plane. These packet processing tasks and interactive transactions are called
workloads of NPs. Due to the heterogeneity of network processor architectures and
constantly evolving network applications, it is currently a challenge to characterize
the network application workload.

Applications based on dataflow processing can be formally modeled by some MoC
(Model of Computation) [1, 2, 3, 4, 5, 6]. In this paper, we introduce a novel dataflow
process network (DPN) [7] model called Reactive DPN (RDPN) to model application
workloads in NP domains. In RDPN model, reactive interfaces are added to basic
DPN process and used for describing interactive events between control and data
planes, while packet dataflow processing in data plane is still modeled as basic DPN.
The remarkable work on this model is that we introduce three transformations (i.e.,

1The work has been co-supported by National Sciences Foundations of China (NSFC) under

grant No.2003CB314802，Hi-Tech Research and Development Program of China (863)
under grant No.2003AA115130.

2 Zhang Xiao Ming, Sun Zhi Gang, Zhang Min Xuan

clustering, decomposing and duplicating) to analyze the model and support the further
development of network processor design space.

The remainder of this paper is structured as follows. Section 2 presents the basic
structure of our RDPN model. Section 3 then describes three transformations of
RDPN. Section 4 explores some implementations of RDPN. Finally, we draw some
conclusions in Section 5.

2 RDPN Model

The NP application workload represents a serial of packet processing functions. It can
be naturally represented by DPN model, which makes parallelism and communication
within an application explicit. A single functional task in the workloads is defined as a
process and communicates with other processes through unbounded FIFO channels.
All elements stored on the channels will be abstracted as tokens, including packets,
events and control information.

However, DPN model has vulnerability to describing interactive behaviors
between data plane and control plane because of its dataflow-aware feature. A DPN
process referring to a task of data plane interacts with control plane through control
channels, and with other process of data plane through data channels. We call this
special DPN model as reactive DPN (RDPN). A single process model is illustrated in
Fig. 1(a), where COCI , respectively denote the input and output control channels
between data and control planes, and DODI, respectively denote input and output
dataflow channels in data plane. The process consists of read channel actions, write
channel actions and a set of internal function actions { L210 ,, fff } mapping input
channels to output ones.

3p
4p

2p

1psrc snk

cp

1c

2c

3c

4c

5c

6c

7c

8c

CI CO

DODI

L210 ,, fff

Fig. 1. The structure of our RDPN model, where (a) is the structure of a single process and (b)
is the whole RDPN model of the packet processing structure in NP domains.

Within our single process model, there is an implicit controller with the function
firing rules and blocking read restriction drawn with dashed boxes. The controller
itself checks firing rules of every function in a sequential order with blocking reads.
When a function is activated, it reads input channels with blocking read and write
output channels with non-blocking write. When all input arguments are present the
function will be evaluated instantaneously. After evaluating the function, the
controller checks the firing rules again until a valid firing is found.

A Formal Model for Network Processor Workload 3

From the single process model, the NP workloads can be described by the RDPN
model, which is defined as multiple processes connected with each other according to
the process network topology. Our RDPN is an open system, which interacts with
external environments through channels. Fig. 1(b) shows an example of RDPN for NP
workloads, where src and snk processes respectively denote input and output packet
streams of data plane, while cp process denotes the control plane. The packet stream
kernel represents the packet processing workload, consisting of process 1p ~ 4p and
channel 3c ~ 6c . Channel 1c , 2c , 7c and 8c are environmental interactive channels.

When there is no interaction between data and control planes, the behaviors of our
RDPN model act as DPN. There are two types of interactive events between data and
control plane: down events are used for control plane downloading control
information (i.e. NP configuration or routing update) to data plane; up events are used
for data plane uploading local information (i.e. local states or packets) to control
plane. Down events will disrupt the pipelining of packet flow and deadlines of packet
processing, while up events not do so. We handle these two types of interactive events
in two different ways: (1) the up events are only treated in the same way as normal
dataflow throughout the RDPN. (2) we use event reactive point (ERP) to control the
moment when down events would be applied within the data plane. In more details,
before processing an input event the packet input to the network conceptually needs to
be frozen and all data must be processed internally. Only when all data has been
processed, the event can be applied and the dataflow can be continued.

3 Transformation of RDPN

RDPN model is constructional and hierarchical. We address three transformations of
RDPN: clustering, decomposing and duplicating. Clustering and decomposing are
used to support hierarchical modeling. Duplicating is used to develop task-level
parallelism on the network processor architectures.

When multiple processes communicate with each other frequently or exchange a
large amount of dataflow between them, clustering these processes into a single
process can avoid the overhead of communication through channels.

A complex process in RDPN can be discomposed into several relatively simple
processes in order to analyze the feature and structures of RDPN and develop the
task-level parallelism of the network processor workload. We assume that a single
process of RDPN is a program described with some kind of programming language
(such as C /C ++). Thus decomposing of a process is the same action as translating a
program into RDPN, which provides a bridge between the actual workload programs
and our formal RDPN model.

A complex task would be distributed to multiple components for parallel
implementation. Duplicating a single process of RDPN is used to support this
situation. To transform a process into multiple duplicates, we introduce a switch
process which plays the role of schedulers to map input channels to the duplicates,
and a select process which selects one duplicate to output its processing results. A
RDPN model with duplicating structure can be easy to be mapped into NP
architectures based on multi-processors.

4 Zhang Xiao Ming, Sun Zhi Gang, Zhang Min Xuan

4 Implementation of RDPN

We implement RDPN software framework in C++ programming environment by
using concepts of object-oriented approach. All Processes of RDPN are implemented
by classes. The behaviors of the classes depend on the operational semantics of
RDPN. Actions in RDPN are implemented by member functions of the classes.
Similarly, all channels are implemented as classes in which these channels are
implemented by dynamic lists with FIFO operation.

In our RDPN software framework, every process is treated as an instantiation of its
corresponding class, which is assigned a separate thread of execution. To implement
event interactions between data and control planes, three threads are introduced to
monitor src, snk and cp process in NP domains (referring to Fig. 1(b)). In the RDPN
framework, the run-time environment coordinates the execution of all these threads.

5 Conclusion

In this paper, we have proposed a formal model for NP workloads, called RDPN. Our
RDPN is used to describe packet processing behavior in data plane as well as the
interactive transactions between data and control planes. Transformations of RDPN
can extend the expressive capability of RDPN and support design space exploration
of NP architectures. Furthermore, modeling NP workloads as RDPN is a start-point of
our design space exploration of NP architectures. The next work will be to use the
model for application optimization, allocation of processing tasks, developing novel
NP architectures and mapping applications to NP architecture.

References

1. G. Kahn. The Semantics of a Simple Language for Parallel Programming. In J.L. Rosenfeld,
editor, Information Processing 74, Proceedings, pages 471–475, Stockholm, Sweden,
August 1974. North-Holland, Amsterdam, The Netherlands, 1974

2. E. Lee. Overview of the Ptolemy project. Technical Memorandum UCB/ERL No. M01/11,
University of California, EECS Dept., Berkeley, CA, March 2001

3. A. Girault, B. Lee, and E. Lee. Hierarchical finite state machines with multiple concurrency
models. IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems,
18(6):742-760, June 1999

4. K. Strehl, et al. FunState - an internal design representation for codesign. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 9(4):524–544, Aug. 2001

5. B. Kienhuis, E. F. Deprettere. Modeling Stream-Based Applications using the SBF model of
computation. IEEE Workshop on Signal Processing Systems (SIPS 2001), Antwerp,
Belgium, September 26-28, 2001

6. M.C.W. Geilen, T. Basten. Reactive Process Networks. In Fourth ACM International
Conference on Embedded Software, Proceedings, pages 137–146. Pisa, Italy, 27-29
September, 2004. ACM Press, New York, NY, USA, 2004

7. E. A. Lee and T. M. Parks. Dataflow Process Networks. Proceedings of the IEEE, May 1995.
(http://ptolemy.eecs.berkeley.edu/papers/processNets)

