
System Software for China National Grid

Li Zha1, Wei Li1, Haiyan Yu1, Xianghui Xie2, Nong Xiao3, Zhiwei Xu1

1 Institute of Computing Technology, Chinese Academy of Sciences
100080 Beijing, China

2 JiangNan Institute of Computing Technology
3National University of Defense Technology

Abstract. The China National Grid project developed and deployed a suite of
grid system software called CNGrid Software. This paper presents the features
and implementation of the software suite from the viewpoints of grid system
deployment, grid application developers, grid resource providers, grid system
administrators, and the end users.

1. Introduction

The China National Grid project is a 4-year (2002-2005) R&D project sponsored by
China Ministry of Science and Technology. It aims to constructing a wide-area
national grid [1] environment to enable resource sharing and collaboration over the
Internet, using standards-based components and novel technology developed by this
project. Another main goal is to build up human resources in grid computing.

By August 2005, the CNGrid project has built such an environment, consisting of
eight grid nodes (computing and data centers) spanning six cities in China. The total
computing capability exceeds 20 Tflop/s, provided by domestic HPC systems such as
Dawning 4000A (10 Tflop/s) and Lenovo 6800 (5 Tflop/s), as well as HPC systems
from multinational vendors. Eleven domain-specific application grids are also
running, from fields of scientific research, natural resource and environment,
manufacturing, and the service sector.

A key ingredient of CNGrid is the CNGrid Software suite. It connects all the users
(end users, grid application developers, grid resource providers, grid administrators)
and resources (computing, storage, data, and applications software resources) into a
uniform, coherent CNGrid environment.

The CNGrid Software suite employs a service-oriented architecture. It consists of
three loosely coupled subsystems: the Vega GOS (grid operating system), the
GriShield grid security software, and the GridDaEn data grid software. The current
hosting environment is mainly Apache Tomcat/Axis, while providing connections to
services running on Microsoft Windows platform.

In what follows, we present the main features of the CNGrid Software suite, from
the users’ viewpoints. We focus on showing how the CNGrid Software suite supports
a loosely coupled architecture and dynamic changing nature of grids, while providing
single system image and managed services, in a wide-area distributed environment
wherein resource providers desiring autonomous control.

2 Li Zha1, Wei Li1, Haiyan Yu1, Xianghui Xie2, Nong Xiao3, Zhiwei Xu1

2. CNGrid Software from Five Viewpoints

This section presents the salient features of the CNGrid Software suite from the
viewpoints of grid system deployment, grid resource providers, grid system
administrators, grid application developers, and the end users. The CNGrid software
suite is meant to provide a tool set for users to build application grid systems,
according to the users’ business model. Therefore, there could be many alternatives.
We will focus on typical scenarios.

2.1 Deployment

Before the CNGrid Software is deployed, CNGrid is the sum of two types of isolated
resources: grid nodes and application grids. Grid nodes are HPC centers (e.g.,
Shanghai Supercomputing Center) or campus grids (e.g., Tsinghua University campus
grid). An application grid is usually a distributed enterprise application system, such
as the Simulation Grid for aviation/space industry. An application grid could have
multiple intra-enterprise grid nodes. Currently, CNGrid has eight grid nodes and
eleven application grids.

After the CNGrid Software is deployed, these isolated physical resources can be
connected into a virtualized, uniform and coherent national grid environment. The
deployment process usually consists of the following activities: install the CNGrid
Software on grid nodes (typically one copy per grid node), and configure the initial
grid system to create needed grid communities (called agoras). The CNGrid Software
deployment in CNGrid environment is show in Fig.1. The following is a typical
configuration seen by users:

Grid Node 2
(SSC, Shanghai)

Grid Node 3
(NUDT, Changsha)

Grid Node 4
(HKU, HongKong)

Grid Server

Grid
Server

Grid Server

Grid Server

Grid Server
. Router service, Agora service set
 and Grip container service
. System and application level
 services
. Handlers used by grid security
 mechanism
. Grid portal based on Grid Portal
 Engine (optional)

Dedicated Client/
Grid Application Client

Web Browser

Grid Client
. Generic Web Browser
. and/or CNGrid Admin Tools
. and/or CNGrid software API Based
 Grid Application

CNGrid CA

Grid Node 1
(SCCAS, Beijing)

HPC Hosting Env.

Applications
based on

distributed Java
virtual machine

To Other
Grid Nodes

To Other
Grid Nodes

HPC Hosting Env.

Weather
forecast

applications

HPC Hosting Env.

Hydrodynamics
applications

HPC Hosting Env.

Biology
information
applications

IAPCM, USTC and etc.

ICT, XJTU and etc.

Fig. 1. National wide deployment of CNGrid software.

 A single grid system called CNGrid, with its CA system.
 A CNGrid-wide virtual name space, implemented via a set of grid routers.

System Software for China National Grid 3

 One or more agoras. For instance, we could have an agora for each of the grid
nodes and another “global” agora for CNGrid, giving nine agoras in total.

2.2 Resource Provider

The Effective-Virtual-Physical space model [2] (show in Fig.2.) implements resource
virtualization. This EVP virtualization scheme is compatible with the OGSA 1.0
three-level naming scheme [3]. When a resource provider wants to add a new
resource (or connect an existing resource) to CNGrid, he/she sees a grid-wide virtual
address space and one or more agoras. A resource provider is responsible for two
duties: (1) wrap the resource as a WS-I compliant Web service and connect it into the
virtual name space; (2) register the service with one or more agoras, implying that the
service can be shared by users in this agora according to the specified policies. The
registration process has two aspects: deciding the virtualization mappings and
selecting the access control policies. Let us use an example to illustrate virtualization.

Agora1 Agora2

...
AgoraL

...
V1,2,3

Service Container1 Service Container2 Service ContainerN

...

Effective
Address
Space

Virtual
Address
Space

Phsical
Address
Space

Vm-2,m-1,m

E1 E2,3

P1, 2, 3 P4, 5, 6 Pn-1, n

El-2,l-1,l

Router1 RouterM

Service address naming schemes in CNGrid software 2.0 are as follow:
Physical: http://host_name_or_ip:port_number/suffix
Virtual: vres://router_id:service_id
Effective: eres://agora_name:effective_service_name

Fig. 2. The Effective-Virtual-Physical virtualization scheme in Vega GOS.

The traditional approach to run mpiblast job on a machine is: login a frontend
machine by telnet and submit following command to the backend batch system.

mpirun -np nprocess mpiblast -p prog_name -d db_file -i in_file -o out_file
The above command can be wrapped by general purposed batch service or

dedicated one whose interfaces accept this command in a whole or all of the above
parameters independently. Multiple such services can be connected and registered
into virtual and effective name space, and build up one effective service named as
mpiblast service with reduced interfaces. The Parameter Transformer (PT) in Vega
GOS that resides on mappings between effective address and virtual address can
eliminate the inconsistency at service interface level. In mpiblast case, the nprocess,
prog_name, and db_file parameters in multiple services can be converted to
uniformed ones by separate PT depending on practical situation. As listed below, the
code accessing service can be highly reduced at effective layer.

4 Li Zha1, Wei Li1, Haiyan Yu1, Xianghui Xie2, Nong Xiao3, Zhiwei Xu1

...
// “mpiblastEAddr” is effective address of mpiblast
// service. The nprocess, prog_name, and db_file
// parameters are encapsulated behind it.
out_file = mpiblastClient(mpiblastEAddr, in_file);
...

2.3 Grid System Administrator

The grid system administrators manage users, resources, and policies via a Web based
GUI tool or interfaces to agoras and grid routers. Each administrator can see one
agora and its associated grid routers. The management functions include the
following:

 Install, configure, and maintain GNGrid Software.
 Add, delete, and change attributes of users.
 Add, delete, and change attributes of resources (especially the EVP mappings

of resources).
 Add, delete, and modify policies.

Currently, only two types of policies are supported. They are resource selection
policies (e.g., random, FIFO) and access control policies.

2.4 Grid Application Developer

The Vega GOS allows grid application developers to see three levels of details: the
effective, the virtual, and the physical levels. Many applications only need to see the
effective level, which makes the following information available:

 An agora (with its specific policies and implied mappings to virtual services).
 All the effective services (resources) available in the agora, including system

level services (e.g., meta file service and file service) and application level
services (e.g., batch service).

 Interfaces to the GPE (Grid Portal Engine), if the developer wants the grid
application to provide a presentation layer based on Web technology.

 Five Vega GOS interfaces to services and agora (see Fig. 4).
For example, a weather forecast and visualization grid application is supposed to

be developed based on CNGrid Software. As the prerequisite, the weather forecast
service and visualization service are developed and registered as effective service in
an agora. The only thing that grid application developer needs to do is to integrate
application logic flow with these two effective services, and, if the end user wants to
submit weather forecast computation and views the graphical results by Web portal,
Web pages (.jsp) constructing this grid application logic are needed. The main pseudo
code is as below.

...
// Create a new grip under GPE’s control.
GripClient gc = CreateGripUnderGPE;
// Upload weatherforecast required files to global user
// file space, and get back the global file addresses

System Software for China National Grid 5

// through the grip. The “hotfileEAddr” is the effective
// address of hotfile service.
weather_in_global = Upload(gc, hotfileEAddr,
 weather_in_local);
// Compose the weather forecast job description file.
weather_job_xml = weather_job_req + weather_in_global;
// Submit the job to effective weather forecast service
// by grip, and get back global result file addresses.
weather_out_global = JobSubmit(gc, weatherEAddr,

 weather_job_xml);
...
// Until weather forecast job finished, compose the
// visualization job description file.
viz_job_xml = viz_job_req + weather_out_global;
// Since the visualization input files are already
// existed in global space, directly submit the
// visualization job to effective visualization service,
// and get back the result.
viz_out_global = JobSubmit(gc, vizEAddr, viz_job_xml);
// Download result files in global space to portal side.
viz_out_local = Download(viz_out_global);
// Display the result at portal side.
Display(viz_out_local);
...

2.5 End User

An end user must go through an application/approval process (called user registration)
to become a legitimate CNGrid user. Such a user has a certificate and proxy
certificate (both GNGrid-wide unique), a home agora, and a user-name/password pair
unique within the agora.

Users can log into CNGrid via a common grid portal or a customized client
software (e.g., a Matlab client). When a user logs into CNGrid, he/she actually logs
into an agora (the home agora by default). There he/she can see and utilize all the
effective services (resources) available in the agora, subject to access control policies
applied to this particular user. The most common usage scenario for an end user is to
look for and utilize a pre-deployed application service. However, CNGrid provides
several system level services (utilities) by default:

 A batch job service, which allows jobs to be submitted to the entire CNGrid,
instead of a grid node or an application.

 A hotfile service, to allow location transparent access to files.
 GridDaEn data service, a more full-fledged data service than hotfile.

The hotfile services provide a location transparent file space for the users. Each
user sees a tree of directories and files under a root “/”, with the tree physically
distributed across CNGrid.

6 Li Zha1, Wei Li1, Haiyan Yu1, Xianghui Xie2, Nong Xiao3, Zhiwei Xu1

3. Under the Hood

This section describes some implementation details of the CNGrid Software suite.

3.1 Architecture and Hosting Environment

Learned from computer systems [4], the CNGrid Software can be divided into four
layers from bottom up [5]. They are CNGrid hosting environment, core layer, system
layer and application layer (as show in Fig.1).

Currently, the CNGrid Software is hosted by J2SE/Tomcat environment, and can
be easily migrated to other platforms, such as OMII, WSRF, even the .NET platform.

The core layer is something like OS kernel, provides common functionalities
required by grid applications, such as layered service address management, grid user
management and grid process (grip) manipulation. Also, the authentication and
authorization are included in this layer.

The system layer provides a collection of basic libraries to help programmer
developing grid application quickly. The services that shadowed will be gradually
appended into this layer.

The application layer is not constructed by services, but by API provided by
system layer and core layer. Grid portal developer or integrator can be benefited from
Grid Portal Engine by avoiding using system or core layer API directly. GSML (Grid
Service Markup Language) software suite is kind of client side service composition
and collaboration toolkit which implements the GSML specification 1.0 and provides
“on demand” programming environment.

CNGrid
Hosting Env.

Core
Level

Services

Grip Container

Grip Container
Service

Servlet Based Scalable Grid Portal Engine

Grid Apps

Core Libs Core Service APIs, Core Exception Handling, Authentication and Authorization

Java J2SE, J2EE

Tomcat
(Apache)

WebSphere
(IBM)

WebLogic
(BEA) .NET

(Microsoft)

GT4
(Globus)

System and Application Service APIs, System Exception Handling, AC Handling

Batch Service Workflow Service etc.

User Libs

System
Level

Services

App Level
Services

Build-in Utility Collection Extended UtilitiesGrid
Portal

 Application Logic by Web Pages

BioInfo Service

OMII
(e-Science)

User
Customized
Applications

GSML
Browser

/Composer

Extended
System
Services

Information(MetaX)
Services

MetaDB
Service

MetaSys
Service

MetaFile
Service

etc.

CA&
Certificates

 Mgmt. Service

Base Services

Dymaic Deploy Service

System
Monitoring

Service

Logging&
Auditing
Service

File Service Database
Service

Messaging
Service

Router ServiceService Router

Agora Service Set

Agora Authorization
Authority Service

Agora Service

Agora User
Mgmt. Service

Agora Resource
Mgmt. Service

A
pp

lic
at

io
n

La
ye

r
Sy

st
em

 L
ay

er
C

or
e

La
ye

r

Fig.3. Hierarchy of CNGrid Software.

System Software for China National Grid 7

3.2 Grip, agora and router service

The core layer composed by grip service, agora service set and router service with
wrapped client side API; user authentication and service authorization mechanisms
implemented by Axis handler chains; and the Vega GOS exception handling extends
from the Axis fault which can help the developers accurately locating the service side
exceptions and failures.

Aggregated by grip at runtime, agora service sets and router services implement
the EVP space model. As show in Fig. 4, the grip client offers only five method calls.
Behind these method calls, the grip container service accepts the requests and
forwards the them to the agora service set or router service accordingly. When a grip
created inside a grip container service, it will retain the information of login user and
binding services in grip control block until a close operation is called. During the
lifetime of a grip, user can access it at anytime and anywhere. When user is invoking
the binding service through a grip, the grip will first resolve the virtual address to
physical one, and then invoke the actual service by endpoint. At last, the grip will get
back and cache the result of invocation for subsequent retrieval.

Authenticationcreate create

close close

Grip Container
Service

Agora Service
Set

System or Application
Level Services

Grip APIs
(Client Side)

Router
Services

①

a. Subject Authentication
b. Permission Authentication
c. AC Handling

User Profile,
Proxy

bind Effective Addr

Virtual Addr,
Token

bind

gripHandle

invoke Virtual Addr

Physical Addr

invoke

Operation name, Parameters
Proxy, Token

Result

rIndex

Result
Cachingcrtl

cachedResult

result

succ

Service
Locating

①

crtl
(getResult)

Fig.4. Sequence diagram of CNGrid Software core.

3.3 Security

Inside the CNGrid Software, GriShield is responsible for grid security issues. We
have developed a CA service for certificate management, and have implemented WS-
Security [6] conformed authentication, authorization, message level secure
communication, access control by handler-chains of Axis.

8 Li Zha1, Wei Li1, Haiyan Yu1, Xianghui Xie2, Nong Xiao3, Zhiwei Xu1

4. Concluding Remarks

A main goal and feature of the CNGrid Software suite is loose coupling, achieved via
virtualization and service orientation based on WS-I and OGSA standards. The three
main modules, Vega GOS, Grishield security software, and GridDaEn data software
are all loosely coupled, not critically depending on each other. The EVP model
realizes resource (and service) virtualization, thus separate grid applications from
physical resources. It is possible to run an application without changing its code even
when the WSDL definition of a referenced physical service changes (location,
operations, parameters, etc.).

Another feature of CNGrid is single system image. Once a user logs into CNGrid,
he/she can use all available services in a location independent fashion. Furthermore,
this capability is realized by the CNGrid system software, not as an application
solution.

With the help of the Vega GOS core, agora and grip, the CNGrid API is also
virtualized, compared to Web services interface. Application developers only need to
understand the five interface calls provided via grip, with many details (including
security and policy issues) automatically taken care of by the CNGrid software.
Experiences show that it takes about 0.5-2 days to develop/deploy a simple grid
application, including presentation, logic and data.

5. Acknowledgements

We acknowledge contributions by the CNGrid Software team and its users, especially
Guangwen Yang, Hao Wang, Peixu Li, Mo Hai, Yanzhe Zhang and Honglei Dai. This
work is supported in part by the China Ministry of Science and Technology 863
Program (Grant No. 2002AA104310), the National Natural Science Foundation of
China (Grant No. 69925205), and the China National 973 Program (Grant No.
2003CB317000 and No. 2005CB321807), and Chinese Academy of Sciences
Distinguished Scholars Fund (Grant No. 20014010).

6. References

[1] I. Foster, C. Kesselman (Eds.), The Grid 2: Blueprint for a New Computing
Infrastructure, Morgan Kaufmann Publishers, San Francisco, 2004.

[2] W. Li, Z. Xu, A Model of Grid Address Space with Applications, Journal of Computer
Research and Development, 2003, Vol. 40, No. 12, pp. 1756-1762.

[3] I. Foster et al (Eds.), The Open Grid Service Architecture 1.0, GGF document, Feb.
2005.

[4] Z. Xu, W. Li, et al., Vega: A Computer Systems Approach to Grid Computing, Journal of
Grid Computing, 2004, Vol.2, Issue 2, pp. 109-120.

[5] L. Zha, W. Li, et al., Service oriented Vega grid system software design and evaluation,
Chinese Journal of Computers, 2005, Vol. 28, No. 4, pp. 495-504.

[6] OASIS, Web Services Security: SOAP Message Security 1.0, http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf, 2004.3

