
An efficient load balancing algorithm for cluster system

Chunkyun Youn1, Ilyoung Chung2

1 Department of Internet Software, Honam University, Kwangju, Korea
chqyoun@honam.ac.kr

2 Department of Computer Science, Chosun University, Kwangju, Korea
iyc@mail.chosun.ac.kr

Abstract. Load balancing is one of the best efficient methods for performance
improvement of cluster system. Recently, WLC algorithm is used for the load
balancing of cluster system. But, the algorithm also has load imbalance
between servers, because it uses inaccurate static load status of servers. In this
paper, I suggest a more efficient dynamic load balancing algorithm base on
various load status information of servers by real time. It shows that load
imbalance phenomenon is improved greatly and response time is also improved
compare with WLC algorithm

1 Introductions

Fast growing Internet user and huge amount of multimedia data are rapidly increasing
network traffic. Servers and network are bottle-neck in this situation. Now a days,
performance elevation and high availability of server are important to solve the
problem [1]. Various cluster systems are used as suitable solution of it [2, 3]. Among
them, load sharing cluster system consists of several low-cost servers which are
connected to high speed network, and applies load balancing technique between
servers. It offers high computing power and high availability.
The load balancing algorithm is core function of the cluster system. Many

techniques were studied. Well known algorithms are round-robin (RR) scheduling [4],
weighted round-robin (WRR) scheduling [5], least-connection (LC) scheduling [6]
and WLC (Weighted Least Connection) scheduling [7]. The WLC is widely used
now among them.
Above load balancing algorithms select a server according to fixed weights which

are calculated by server's physical processing capacity and the number of established
connections mainly. Such methods can’t know server's load state exactly, because
those are not considered various load elements of real servers. And measuring time is
not suitable, because Director gets the connection number of real servers periodically.
So, it is not correct load of real servers. That is, inaccurate load status and unsuitable
measuring time are the cause of load imbalance.

1 Corresponding Author

2 Proposal of an efficient load balancing algorithm

2.1 Various load elements investigation and application plan

In this paper, various load elements of UNIX web server are considered to measure
exact load situation. CPU, memory and network are selected as influential suitable
elements among them. The detail statuses of main load elements are followings;
CPU load. Usually, we have to collect whole CPU usage, average CPU load and
CPU usage of each process etc to measure CPU load. When a client requests
connection, correct present CPU load of real servers is very important to decide
which server will handle the request. Numbers of waiting process is suitable for that
purpose. It can be different according to cluster system configuration, number of
users and concurrent connection ratio etc. Usually, connection requests are processed
without waiting because servers are very powerful. Therefore, if there is waiting
processes that mean the CPU is busy. So, we can select which server has lower load
[8, 9].
Load of memory. We can use virtual memory amount of processes, free memory
amount and paging activity that are performed in the latest 20 seconds from memory.
We can confirm relatively exact present memory load by the free memory amount
among them [8, 9].
Load of network. Packet I/O amount of each network interface, packet error rate and
collision rate are available for load status of network. We can estimate that a network
interface is over load if collision rate approaches to 5 ~ 10%, and use packet I/O
amount if necessary [8, 9].

2.2 Dynamic load measuring and balancing algorithm

I propose a dynamic load measuring algorithm
(Fig. 1) that can collect load status of server base
on the selected elements by real time. It will be
loaded on each real server and called using
broadcasting RPC by Director. A called real
server collects own load status according to Fig.
1 algorithm and transmits it to the director. The
value “Y” and “Init_Average” should be
adjusted properly according to configuration of
cluster system and users' environment after
system configuration.
Fig. 3 shows the proposed load balancing

algorithm that handles user's request with real
time load status of servers.

Fig. 1. Load measuring algorithm

Fig. 2 and 3 show the proposed
prototype modules configuration
and load balancing algorithm.

Fig.2. Prototype module configuration Fig. 3. Load balancing algorithm

3 Test and results analysis

I use the WLC which is the most efficient among existing algorithms for performance
comparative test of the proposed algorithm. Comparison items are free memory
change of each real server and response time of cluster system for the two algorithms.

3.1 Test result analysis for free memory

Fig. 4. Free memory changes of WLC and the proposed algorithm (at 400 numbers)

When number of concurrent connecters is below 200, free memory difference of each
server is not so big in the WLC and the proposed algorithm. But, when the number is
400, server's free memory of the WLC is not even, while it is similar in the proposed
algorithm (RTSS) as shown Fig. 4. This means that more efficient load balancing was
done by the proposed algorithm.

3.2 Test result analysis for response time

0 200 400 600 800

WLC

RTSS

WLC

RTSS

WLC

RTSS

WLC

RTSS
10

0
20

0
30

0
40

0

Response time (ms)

Fig. 5 shows the test result for
average response time of two
algorithms by the number of
concurrent connecters. Response
time of the proposed algorithm
(RTSS) is improved 9.3msec than
existing algorithm (WLC) in case
of 100, while it is improved
203msec in case of 400.
When the number of concurrent

connecter is few, the response time
is not so big different. But, when it
is increased, the difference is big.
This means performance of cluster
system is optimized well in the
proposed algorithm. Fig. 5. Results of response time comparison

4 Conclusions

I proposed an efficient load balancing algorithm to improve the performance of
cluster system. The WLC algorithm tries to balance load according to the fixed
physical resources of real servers’ and connection numbers. On the other hand, the
proposed algorithm measures waiting process, free memory and collision rate by real
time to get more accurate load state of real servers, and used them to balance load
efficiently.

References

1. Delivering High Availability Solutions with Red Hat Enterprise Linux AS 2.1, RedHat
(2003)

2. Jian liu, Lorghu Xu, Baogen Gu, Jing Zhang, A scalable, high performance Internet cluster
server, High performance computing in the Asia-Pacific region, 2000 Proceedings. The firth
International Conference/ Exhibition, Vol.2, (2000) 941-944

3. OYoung Kwon, Cluster system introduction Korea institute of science and technology
information news letter (2000)

