

Improving Parallelism of Nested Loops with
Non-uniform Dependences

Sam Jin Jeong, Kun Hee Han

 Division of Information and Communication Engineering, Cheonan University
Anseo-dong 115, Cheonan City, Korea 330-704
{sjjeong,hankh}@cheonan.ac.kr

Abstract. This paper defines the properties of FDT (Flow Dependence Tail set)
and FDH (Flow Dependence Head set), and presents two partitioning methods
for finding two parallel regions in two-dimensional solution space. One is the
region partitioning method by intersection of FDT and FDH. Another is the re-
gion partitioning method by two given equations. Both methods show how to
determine whether the intersection of FDT and FDH is empty or not. In the case
that FDT does not overlap FDH, we will divide the iteration space into two par-
allel regions by a line. The iterations within each area can be fully executed in
parallel. So, we can find two parallel regions for doubly nested loops with
non-uniform dependences for maximizing parallelism.

1 Introduction

The evolutionary transition from sequential to parallel computing offers the promise
of quantum leap in computing power [1]. In the past few years, many techniques for
exploiting parallelism within nested loops have been developed, and they have been
automated and collected to form parallelizing compilers.

Example l.
do i = 1, 10

 do j = 1, 10
 A(2i+3, j+1) = . . .

 . . . = A(i+2j+1, i+j+1)
 enddo

enddo

Several works has been done for loops with non-uniform dependences, but show
us poor performance. Some techniques, based on Convex Hull theory [5] that has
been proven to have enough information to handle non-uniform dependences, are
the minimum dependence distance tiling method [4], the unique set oriented parti-
tioning method [3], and the three region partitioning method [2], [7].

Fig. 1(a) shows the dependence patterns of Example 1 in the iteration space.

 (a) (b)

Fig. 1. (a) Iteration Spaces (b) CDCH of Example 1

This paper will focus on parallelization of flow and anti dependence loops with
non-uniform dependences. Especially, it shows us two partitioning methods to find
two parallel regions in doubly nested loops with non-uniform dependences.
 The rest of this paper is organized as follows. Chapter two describes our loop
model, and introduces the concept of Complete Dependence Convex Hull (CDCH). In
chapter three, we define the properties of FDT (Flow Dependence Tail set) and FDH
(Flow Dependence Head set), and show how to find FDT and FDH. We also present
two partitioning methods to find two parallel regions in the given space. Chapter four
shows comparison with related works. Finally, we conclude in chapter five with the
direction to enhance this work.

2 Program Model and Dependence Analysis

The loop model considered in this paper is doubly nested loops with linearly coupled
subscripts and both lower and upper bounds for loop variables should be known at
compile time. The loop model has the form in Fig. 2, where f1(I, J), f2(I, J), f3(I, J),
and f4(I, J) are linear functions of loop variables.

do I = l1, u1
 do J = l2, u2

A(f1(I, J), f2(I, J)) = . . .
 . . . = A(f3(I, J), f4(I, J))
 enddo

enddo

Fig. 2. A doubly nested loop model

The loop in Fig. 2 carries cross iteration dependences if and only if there exist four
integers (i1, j1, i2, j2) satisfying the system of linear diophantine equations given by (1)
and the system of inequalities given by (2). The general solution to these equations
can be computed by the extended GCD or the power test algorithm [6] and forms a
DCH (Dependence Convex Hull).

f1(i1, j1) = f3(i2, j2) and f2(i1, j1) = f4(i2, j2) (1)

l1 ≤ i1, i2 ≤ u1 and l2 ≤ j1, j2 ≤ u2 (2)

From (1), (i1, j1, i2, j2) can be represented as

 (i1, j1, i2, j2) = (g1(i2, j2), g2(i2, j2), g3(i1, j1), g4(i1, j1))
 where gi are linear functions.

From (2), two sets of inequalities can be written as

l1 ≤ i1 ≤ u1 and l2 ≤ j1 ≤ u2 and

l1 ≤ g3(i1, j1) ≤ u1 and l2 ≤ g4(i1, j1) ≤ u2

(3)

l1 ≤ i2 ≤ u1 and l2 ≤ j2 ≤ u2 and

l1 ≤ g1(i2, j2) ≤ u1 and l2 ≤ g2(i2, j2) ≤ u2
(4)

And, (3) and (4) form DCHs denoted by DCH1 and DCH2, respectively [3].
Clearly, if we have a solution (i1, j1) in DCH1, we must have a solution (i2, j2) in
DCH2, because they are derived from the same set of equations (1). The union of
DCH1 and DCH2 is called Complete DCH (CDCH), and all dependences lie within
the CDCH. Fig. 1(b) shows the CDCH of Example 1.

If iteration (i2, j2) is dependent on iteration (i1, j1), then we have a dependence vec-
tor d(i1, j1) = (di(i1, j1), dj(i1, j1)) = (i2-i1, j2-j1)

So, for DCH1, we have

di(i1, j1) = g3(i1, j1) - i1 = (α11 - 1)i1 + β11j1 + γ11 and

dj(i1, j1) = g4(i1, j1) - j1 = α12i1 + (β12 - 1)j1 + γ12

(5)

For DCH2, we have

di(i2, j2) = i2 - g1(i2, j2) = (1 - α21)i2 – β21j2 - γ21 and

dj(i2, j2) = j2 - g2(i2, j2) = -α22i2 + (1 - β22)j2 - γ22

(6)

We can write these dependence distance functions in a general form as

d(i1, j1) = (di(i1, j1), dj(i1, j1)), d(i2, j2) = (di(i2, j2), dj(i2, j2))

di(i1, j1) = p1*i1 + q1*j1 + r1, dj(i1, j1) = p2*i1 + q2*j1 + r2

di(i2, j2) = p3*i2 + q3*j2 + r3, dj(i2, j2) = p4*i2 + q4*j2 + r4

(7)

where pi, qi, and ri are real values and i1, j1, i2, and j2 are integer variables of the it-
eration space. The properties of DCH1 and DCH2 can be found in [3].

The set of inequalities and dependence distances of the loop in Example 1 are
computed as follows.

DCH1 : 1 ≤ i1 ≤ 10, 1 ≤ j1 ≤ 10

 1 ≤ -2i1 + 2j1 - 2 ≤ 10, 1 ≤ 2i1 - j1 + 2 ≤ 10
 di(i1, j1) = -3i1 + 2j1 - 2, dj(i1, j1) = 2i1 - 2j1 + 2
 DCH2 : 1 ≤ i2/2 + j2 - 1 ≤ 10, 1 ≤ i2 + j2 ≤ 10
 1 ≤ i2 ≤ 10, 1 ≤ j2 ≤ 10
 di(i2, j2) = i2/2 - j2 + 1, dj(i2, j2) = -i2

3 Region Partitioning Methods for Two Parallel Regions

In this section, we propose two partitioning methods to find two parallel regions in
the given space. One is the region partitioning method by intersection of FDT and
FDH. Another is the region partitioning method by two given equations. Both meth-
ods show how to determine whether the intersection of FDT and FDH is empty or not.

3.1 Region Partitioning Method by intersection of FDT and FDH.

We define the flow dependence tail set (FDT) and the flow dependence head set
(FDH) as follows.
Definition 1 Let L be a doubly nested loop with the form in Fig. 2. If line di(i1, j1) = 0
intersects DCH1, the flow dependence tail set of the DCH1, namely FDT(L), is the
region H, where H is equal to

DCH1 ∩ {(i1, j1) | di(i1, j1) ≥ 0 or di(i1, j1) ≤ 0 } (8)

Definition 2 Let L be a doubly nested loop with the form in Fig. 2. If line di(i2, j2) = 0
intersects DCH2, the flow dependence head set of the DCH2, namely FDH(L), is the
region H, where H is equal to

DCH2 ∩ {(i2, j2) | di(i2, j2) ≥ 0 or di(i2, j2) ≤ 0 } (9)

Property 1 Suppose line di(i, j) = p*i+q*j+r passes through CDCH. If q > 0,
FDT(FDH) is on the side of di(i1, j1) ≥ 0 (di(i2, j2) ≥ 0), otherwise, FDT(FDH) is
on the side of di(i1, j1) ≤ 0 (di(i2, j2) ≤ 0).

We can form two regions, FDT and FDH, by the algorithm of finding FDT or FDH
in two-dimensional solution space in Fig. 3, which is similar to the algorithm pre-
sented in [5].

Algorithm FDT (or FDH)
Input: A list of 9 half spaces (Def. 1 or 2)
Output: An FDT (or FDH);
 struct node {
 float (x, y);
 int zoom;
 struct node *next;
 struct node *prev; };
 max = 9999999;
BEGIN

Build the initial FDT (or FDH) ring which is composed of four nodes:
 (x1, y1) = (max, max);
 (x2, y2) = (max, -max);
 (x3, y3) = (-max, -max);
 (x4, y4) = (-max, max);
 while (the input list is not empty)
 Pop a half space from the list, named HS;
 Scan the ring;
 { Determine the zoom value for each node; }
 if ((x, y) ∈ HS) then
 zoom = 0;
 else
 zoom = 1;

if (the zoom is different from previous node)then
{ Compute the intersection point

 and give it zoom = 0;
 Insert it into the ring between the
 current node and the previous node };
 endif
 Scan the ring again;
 { Remove the nodes with zoom = 1 };
 if (the ring is empty) STOP;
 end while
END FDT

Fig. 3. Algorithm of finding FDT (or FDH) in two-dimensional solution space.

Fig. 4. FDT and FDH in Example 1.

Fig. 4 shows the head and tail sets of flow dependence, anti dependence, and FDH
and FDT of the loop in Example 1.

By Property 1, we can know the area of the flow dependence head set (FDH) of
DCH1 and the flow dependence tail set (FDT) of DCH2 in Example 1 as shown in
Fig. 4. In this example, because the intersection of FDT and FDH is empty, FDT does
not overlap FDH and the iteration space is divided into two parallel regions by the
line di(i2, j2) = 0. From equation (7), we can get di(i2, j2) = i2/2 - j2 + 1, and the equation
is j = i/2+1. So, the iteration space is divided into two parallel regions, AREA1 and
AREA2, by the line j = i/2+1. The execution order is AREA1 → AREA2.

Transformed loops are given as follows.

 /* AREA1 – parallel region */ /* AREA2 – parallel region */

doall i = l1, u1 doall i = l1, u1
 doall j = max(l2, ⎡i/2+1⎤), u2 doall j = l2, min(u2, ⎡i/2+1⎤)

A(2i+3, j+1) = . . . A(2i+3, j+1) = . . .
 . . . = A(i+2j+1, i+j+1) . . . = A(i+2j+1, i+j+1)

enddoall enddoall
enddoall enddoall

3.2 Region Partitioning Method by two given equations.

In our proposed algorithm in Fig. 5, Algorithm Region_Partition, we can determine
whether the intersection of FDT and FDH is empty by position of two given lines
di(i1, j1) = 0 and di(i2, j2) = 0, and two real values q1 and q3 given in (7). If the intersec-
tion of FDT and FDH is not empty, we divide the iteration space into two parallel re-
gions and one serial region by two appropriate lines as given in the three region parti-
tioning method [2], [7]. If the intersection of FDT and FDH is empty, we divide the
iteration space into two parallel regions by the line di(i1, j1) = 0 or di(i2, j2) = 0.

Algorithm Region_Partition
INPUT: two lines (d

i
(i

1
, j

1
) = 0, d

i
(i

2
, j

2
) = 0) and two real values

(q
1
, q

3
)

OUTPUT: two parallel regions
BEGIN
If (line d

i
(i

1
, j

1
) = 0 is on the left side of line d

i
(i

2
, j

2
) =0)

 If (q
1
 > 0 and q

3
 < 0){

 /* AREA1 does not overlap AREA2 */
 AREA1: {(i

1
,

j
1
) | d

i
(i

1
, j

1
)

 0}≥

 AREA2: {(i
1
,

j
1
) | d

i
(i

1
, j

1
)

< 0} }

Else if (d
i
(i

1
, j

1
) = 0 is on the right side of d

i
(i

2
, j

2
) = 0)

 If (q
1
 < 0 and q

3
 > 0) {

 /* AREA1 does not overlap AREA2 */
 AREA1: {(i

1
,

j
1
) | d

i
(i

1
, j

1
)

 0}≤

 AREA2: {(i
1
,

j
1
) | d

i
(i

1
, j

1
)

> 0} }

Else Call Three Region Partitioning Method
END Region_Partition

Fig. 5. Algorithm of determining the intersection of FDT and FDH.

From property 1, we know that the real value q1(q3) determines whether the posi-
tion of FDT(FDH) is on side of the line di(i1, j1) ≥ 0 (di(i2, j2) ≥ 0) or not. The line
is the bounds of two parallel loops.

In this algorithm, the line di(i1, j1) = 0 is expressed by j = Ai+B , where A = (1 -
α 11)/β11, B = -γ11/β11, which are derived from (5). We know that the line can be the
upper or lower bound in the transformed loops based on the corresponding region of
the loop technique. The line di(i1, j1) = 0 is the upper boundary in AREA2 and lower
boundary in AREA1 in Example 1. In this case, the iteration space is divided into two
parallel regions, AREA1 and AREA2, by line j = 3/2*i+1 as shown in Fig 4. The
execution order is AREA1 → AREA2.

Transformed loops are loops are given as follows.

 /* AREA1 – parallel region */ /* AREA2 – parallel region */

doall i = l1, u1 doall i = l1, u1
 doall j = max(l2, ⎡3/2*i+1⎤), u2 doall j = l2, min(u2, ⎡3/2*i+1⎤)

A(2i+3, j+1) = . . . A(2i+3, j+1) = . . .
 . . . = A(i+2j+1, i+j+1) . . . = A(i+2j+1, i+j+1)

enddoall enddoall
enddoall enddoall

4 Performance Analysis

Theoretical speedup for performance analysis can be computed as follows. Ignoring
the synchronization, scheduling and variable renaming overheads, and assuming an
unlimited number of processors, each partition can be executed in one time step.
Hence, the total time of execution is equal to the number of parallel regions, Np, plus
the number of sequential iterations, Ns. Generally, speedup is represented by the ratio
of total sequential execution time to the execution time on parallel computer system
as follows:

Speedup = (Ni * Nj)/(Np + Ns)

where Ni, Nj are the size of loop i, j, respectively

Fig. 6. Regions of the loop partitioned by the unique sets oriented partitioning in Example 1.

By using an example given in Example 1, the unique set oriented partitioning
method [3] divides the iteration space into one parallel region, AREA2, and one serial
region, AREA1, as shown in Fig. 6. So, the speedup is (10*10)/(1+69) =1.4.

Applying the minimum dependence distance tiling method to this loop illustrates
case 2 of this technique [4], which is the case that line di(i, j) = 0 and dj(i, j) = 0 pass
through the IDCH. The minimum values of di(i, j), dimin, and dj(i, j), djmin, occur at the
extreme point (1, 1) and both dimin = 1 and djmin = 1. There is only serial region, and no
speedup for this method.

Our proposed two methods divide the iteration space into two parallel areas by line
j = 1/2*i+1 and line j = 3/2*i+1, respectively. The speedup for these methods is
(10*10)/2 = 50.

5 Conclusions

In this paper, we have studied the parallelization of flow and anti dependence loops
with non-uniform dependences to improve parallelism.

By variable renaming, there remains only flow dependence sets in the nested loop.
We then divide the iteration space into the flow dependence head and tail sets.

We defined the properties of FDT (Flow Dependence Tail set) and FDH (Flow
Dependence Head set), and show how to find FDT and FDH in two-dimensional solu-
tion space. We also present two partitioning methods to find two parallel regions in
the given space. One is the method by intersection of FDT and FDH. Another is the
method by two given equations. Both methods show how to determine whether the
intersection of FDT and FDH is empty or not. If FDT does not overlap FDH, a line
di(i, j) = 0 between two sets divides the iteration space into two areas. The iterations
within each area can be fully executed in parallel. So, we can find two parallel regions
for doubly nested loops with non-uniform dependences.

In comparison with some previous partitioning methods, our proposed methods
give much better speedup and extract more parallelism than other methods in the case
which FDT does not overlap the FDH. Our future research work is to develop a
method for improving parallelization of higher dimensional nested loops.

References

1. V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to Parallel Computing, The
Benjamin/Cummings Publishing Company, Inc., 1994.

2. C. K. Cho and M. H. Lee, "A loop parallelization method for nested loops with non-uniform
dependences", in Proceedings of the International Conference on Parallel and Distributed
Systems, pp. 314-321, December 10-13, 1997.

3. J. Ju and V. Chaudhary, "Unique sets oriented partitioning of nested loops with non-uniform
dependences," in Proceedings of International Conference on Parallel Processing, vol. III,
pp. 45-52, 1996.

4. S. Punyamurtula and V. Chaudhary, "Minimum dependence distance tiling of nested loops
with non-uniform dependences," in Proceedings of Symposium on Parallel and Distributed
Processing, pp. 74-81, 1994.

5. T. Tzen and L. Ni, "Dependence uniformization: A loop parallelization technique," IEEE
Transactions on Parallel and Distributed Systems, vol. 4, no. 5, pp. 547-558. May 1993.

6. M. Wolfe and C. W. Tseng, "The power test for data dependence," IEEE Transactions on
Parallel and Distributed Systems, vol. 3, no. 5, pp. 591-601, September 1992.

7. A. Zaafrani and M. R. Ito, "Parallel region execution of loops with irregular dependences," in
Proceedings of the International Conference on Parallel Processing, vol. II, pp. 11-19,
1994.

