
A Parallel File System Based on Spatial Information
Object

Keying Huang1,2 , Guoqing Li2, Dingsheng Liu2 , Wenyi Zhang2

1 Graduate School of the Chinese Academy of Sciences (GSCAS)
kyhuang@ne.rsgs.ac.cn

2 Key Laboratory, China Remote-Sensing Satellite Ground Station,
 Chinese Academy of Sciences

{gqli, dsliu, wyzhang}@ne.rsgs.ac.cn

Abstract: In this paper we introduced a parallel file system based on the spatial
information object storage, the PIPFS system. PIPFS is a special-purpose
parallel file system which designed in view of the remote sensing image
processing. It uses the server/client pattern and bases on the metadata
mechanism. It simultaneously accesses disks on several nodes for application
I/O operations, which improves the efficiency of the operation on large scale
data. A high performance is shown on high-data-complexity application, such
as remote sensing image processing.

1. Introduction

1.1. Spatial Information Data Characteristics
Remote sensing technology is developing on the filed of spatial resolution, spectrum
resolution, time resolution and weather condition, model, rate of observation, with
which the data scale is expanding rapidly. A single scene of TM image with 7 bands
can reach 280MB. The large mosaic image can be several gigabytes[i]. Different from
general file data, the image data structure of remote sensing is quite complicated. The
data type which is used to save pixel of remote sensing image data may be 8bit
integrated, 16bit integrated, 32bit integrated or complex number and the
organizational form may be BIP, BIL or BSQ. Moreover, a group of remote sensing
image data often contains the same spatial attribute information.
The traditional file system is unable to combine and save the remote sensing images
with their attribute information. They can be only saved separately as different files.
In the remote sensing image processing process, we should keep the maximum spatial
information which the image contained in order to keep the high-usability of the
spatial data. Because each pixel in the image represents some spatial information, the
image processing is aim at the raw form image. This limits the use of image
compression technology, especially the loss-compression technology. Therefore, the

2 Keying Huang1,2 , Guoqing Li2, Dingsheng Liu2 , Wenyi Zhang2

remote sensing image data characteristics and data processing force us to face the
problems of computing and saving the magnanimous special structure data.

1.2. The Storage Pattern Used in High Performance Computing
Facing the computing and saving problems of magnanimous spatial information data,
high performance computing has took one good way which applied in spatial
information processing and service. In high performance computing, data storage
pattern affects the overall performance directly. General high performance computing
storage pattern mainly includes two kinds of network storage system: (1) parallel and
distributed file system, (2) data and computation separated system. The architecture of
parallel and distributed file system is mainly based on computing servers. In other
words, the storage and the computing are both in the same group servers. The
representatives of this storage pattern are ii message sharing mechanism such as
NFSiii，Codaiv，XFSv and storage sharing mechanism such as VMSvi and SFSvii .
There are two kinds of mainstream network storage construction. They are
distinguished by the command collectionviii. One kind is the high-bandwidth, low-
detention but high-price and bad-extension SAN（Storage Area Network) structure.
The other is good-extension, low-price, easy-manage but high-protocol-spending,
low-bandwidth and heavy-delay NAS（Network Attached Storage) Structure.
In view of the insufficiency of above storage pattern, the research aim at a new Linux
cluster file system, object storage file system, has been launched.

1.3. From the File System Angle to Accelerate the Remote Sensing Image Parallel
Processing
When the remote sensing image parallel processing algorithm executes on traditional
file system, the data operation model is distribution - computing - collection. With
this model, data distribution and collection process is the bottleneck of entire
procedure. For example, in the image rotate algorithm which using small buffer, data
I/O cost takes almost 60% of the whole time used by application ix . Using the
traditional file system and existing parallel computing model can not solve this
problem. Therefore, the key job is to study a file system which adapts the
characteristics of remote sensing image parallel process. This new parallel file system
saves the remote sensing image data in cluster according to some distribution rules
and manages the relevant spatial information and physical data distribution
information in unison. In the process, through the algorithm control, the majority of
data which each computing node needs can be read from local hard disk, thus reduces
the network transmit time which cased by using traditional file system. The new file
system can effectively accelerate the data accessing speed and the application
execution.

A Parallel File System Based on Spatial Information Object 3

2. PIPFS: A Parallel File System Based on the Spatial Information
Object Storage

PIPFS（Parallel Remote Sensing Image Processing File System) is a parallel file
system on Linux cluster, which based on spatial information object storage. In the
following, we will introduce PIPFS system from tow aspects: the system structure and
its support to the remote sensing image parallel process.

2.1. System Structure
As figure 1，PIPFS adopts client-server pattern based on metadata. File metadata
information is managed by metadata server. Physical data is stored with distributed
mode. Physical files distributed on different nodes are looked as a whole logic file.
This can shield the network transfers to developers and reduce the complexity of
programming and file management. PIPFS system contains three parts: metadata
server, storage servers and the clients.

Fig. 1. Structure of PIPFS System

2.1.1. Metadata Server
The management daemon Mgrd（Metadata Manager daemon) is running on the
metadata server. It is responsible for storing and managing the ordinary metadata and
the spatial information metadata, doing any kind of operations on metadata, such as

4 Keying Huang1,2 , Guoqing Li2, Dingsheng Liu2 , Wenyi Zhang2

create, read or modify. Ordinary metadata includes the physical distributing
information of image data which is distributed stored. Spatial information metadata
includes the spatial attribute information that the remote sensing image has. In PIPFS,
we adopt metadata centralized management--there is a unique metadata server in
cluster. On one hand, it can apply a foundation for cluster to distributed store and
read remote sensing data. On the other hand, it can apply convenience for users to
unified manage the image data.

2.1.2. Storage Servers
In PIPFS, the physical data is distributed in storage servers which named I/O servers.
The physical data management daemons Iod（I/O daemon) are running on these
servers. They are responsible for real read and write operations on local files and
communication with clients. In fact, these servers create new files on local file system
and access files with common operations, such as read(), write() and mmap(). It
means that any local file system can store PIPFS files, such as ext2, ext3 and so on.
Furthermore, we can realize fault tolerance by hard RAID or soft RAID which can
create extern large file system.

2.1.3. Clients
The clients include the kernel interface module and the application program library
(the application program interfaces APIs).
The kernel interface module is the interface between PIPFS system and file system
manage module in Linux kernel. With this module, there are two advantages. One is
that PIPFS system can be mounted as same directory in different clients. Then the
users can use the files in the same directory at different clients. After installed the
kernel interface module, the user may use the familiar command, such as ls, cd, rm,
etc. to manage files. Most of present parallel file systems can not be visited via
different operation system. Another advantage is that the directory which attached to
PIPFS system can be visited by using samba protocol from windows system.
 The application program library has provided the function interfaces which can be
called by application programs. Application programs access all kinds of data in
PIPFS through the APIs. The operations mainly consist of three kinds: operating on
ordinary metadata, on spatial information metadata and accessing distributed physical
data. Visiting files through the file system manage module increases the time
expenses of kernel. But in PIPFS, the application program library provides a shortcut
for programs to visit storage servers directly. It saves more resources for the
computation. Application program library is analogous to the file system interface
function library of UNIX\Linux system. This has facilitated users to develop
application programs based on PIPFS system.

A Parallel File System Based on Spatial Information Object 5

2.2. Support to Remote Sensing Image Parallel Processing

2.2.1. To parallel Processing
In PIPFS, the storage server is also the computing server. In this way, the application
programs can get distribution information of physical data through the metadata and
control the parallel processing. As a result, the majority of data that each computing
server needs can gain from local hard disk, little part of data gains from other storage
servers via PIPFS. Thus, it reduces the time spend in data distributing and collecting,
which caused by using traditional file system and the distribution – computing –
collection pattern. Parallel programs furthest use the data exchange and manage
protocol of PIPFS to improve the efficiency. The parallel disk I/O operations in
different nodes accelerate accessing data in file system. Therefore, PIPFS can
improve the application performance.

2.2.2. To Spatial Information Object
The spatial information object is PIPFS system fundamental unit. An object is a
combination of some spatial attribute information and remote sensing image data files.
But in traditional system, the file and the block are basic storage units. Users should
track the relevant spatial information while access the images. But in PIPFS system,
the spatial information objects manage their attribute information via file system. And
all spatial information objects have a unique object marking. Through the object
marking, the users can access and operate the spatial information objects easily.
Besides the I/O function interfaces which are analogous to UNIX\Linux system,
PIPFS also provides some new functions which fit the remote sensing image
processing:
1. Read-write data by block. Traditional file system read/write function only can
read/write continual data that starts from an assigned address. A remote sensing image
actually is a two-dimensional or multi-dimensional array. It frequently uses BIL or
BSQ as its data organization form. Read and write data by block is the basic data
accessing mode. In this mode, the efficiency of read function in traditional file system
is very low. It leads to frequent I/O operations and memory redundancy. Using the
read/write functions by block that provided by PIPFS system, users can access the
assigned region data easily.
2. Distribution strategy control. In common parallel file system, the users almost can
not control the distribution strategy of a file. They only can make some adjustments in
the file distribution number or the partition size but unable to control the storage
location of block data. In PIPFS system, there is a default distributed strategy, but
users are able to control the distribution through APIs, too.
3. Sampling reading. For better supporting remote sensing image processing
application, PIPFS system also add some commonly used functions, such as image
sampling, to the file system. Users can gain the sampling date but need not to read the
distributed date to local node. This facilitates developers and enhances the system’s
efficiency. It also avoids the frequency I/O operations and lightens the load of master
node.

6 Keying Huang1,2 , Guoqing Li2, Dingsheng Liu2 , Wenyi Zhang2

4. Support to save large size spatial information object. Because the using of
advanced remote sensing technologies, for example high spectrum, high resolution
and so on, now the single spatial information object size may amount to several
hundred Megabyte. The size of spatial information object that has been processed is
possible to reach several Gigabyte even dozens of Gigabyte. On the traditional file
system, it is difficult to save or operate a file bigger than one Gigabyte. But in PIPFS
system, the physical data are distributed, so it theoretically can save and operate
arbitrary size spatial information object as will.

3. Experiments

The experimental environment is:
Meta data server is equipped with dual Xeon 2.4G processors, 2GByte ECC ram,
146GByte 1000RPM SCSI hard disk, and a 1000MBps Ethernet card.
Storage servers and computing servers constitute 8 nodes. Each node is equipped
with dual Xeon 2.4G processors, 1GByte ECC ram, 160GByte 7200RPM Ultra IDE
(ATA133) hard disk, and a 1000MBps Ethernet card.
The operating system is Redhat Linux 7.3.

3.1. Throughput

There is only one application program operated the data in this test. Parallel operation
will be displayed in the expansibility test (see Sect. 3.3).
We compared the throughput of PIPFS with NFS in the testing environment.

Table 1. Throughout data ranged of PIPFS and NFS

Unit:MB/s
Data scale

Filing system
100MB 500MB 1GB 5GB

Read-write
speed

Mean value
Reading 21.76 23.50 21.12 20.05 21.61

NFS Reads
in 43.52 36.83 37.05 34.81 38.05

Reading 21.38 22.84 22.31 21.20 21.93
PIPFS Reads

in 53.91 52.45 51.62 52.03 52.50

A Parallel File System Based on Spatial Information Object 7

Read (MB/s)

18

19

20

21

22

23

24

100MB 500MB 1GB 5GB average

NFS PIPFS

Fig. 2. Read speed of PIPFS and NFS

Write (MB/s)

0

10

20

30

40

50

60

100MB 500MB 1GB 5GB average

NFS PIPFS

Fig. 3. Write speed of PIPFS and NFS

From the result we can see that NFS and PIPFS can perform the full performance on
the Giga Ethernet. The result from different size of data indicated that when handles
big data the throughput of PIPFS is much better. That is because NFS only can
operate one file and PIPFS on a group of files. In the experiment we adopt NFS
version3, which is an asynchronous write mode. PIPFS is built on local ext3 file
system and applies asynchronous write mode in real write procedure. Therefore the
write speed of NFS and PIPFS is both higher than read.

3.2 Combine PIPFS with Remote Sensing Image Processing Algorithm

The experiment explained the advantages of PIPFS combined with algorithms. The
testing algorithms we chose are: (1) image rotate algorithm whose local hit rate is
small in image processing algorithms, (2) unsupervised classify algorithm which the
data needed by computing is stored in local storage.

8 Keying Huang1,2 , Guoqing Li2, Dingsheng Liu2 , Wenyi Zhang2

3.2.1. Image Rotate Algorithm
In the experiment we used a single wave band TM image whose size is 5728*6920
pixels and rotated it 45 degree in the counterclockwise. The output image is an
8942*8941 pixels image. We use cubic convolution algorithm and gained two rotate
program’s run time in different parallel scales.

Table 2. Execute time of two rotate functions

Unit: Second
Parallel scale and running time

Function name
5 nodes 6 nodes 7 nodes 8 nodes

Rotate（MPI）* 79.5 71.0 64.9 61.7
Rotate（PIPFS） 25.2 23.6 19.8 18.1

* rotate（MPI) A function in PIPS system
In the experiment rotate algorithm is a reduced local retrieve algorithm. That
algorithm’s characteristic is that each computing node just deals with the local
retrieve area. That brings the treatment simpler and avoids transferring the whole
image to each computing node. But in PIPS system’s rotate algorithm, the data is
distributed by the master process through MPI. That consumes network bandwidth
and computing node’s memory. There is certain of resource waste. When dealing
with pictures oversize there is some limits. Recur to PIPFS system, we can access the
spatial information object via its global control ability. The master process’s task is
limited to little message transfer. The data operations are achieved by several storage
servers in parallel. This can radically avoid block and improve the algorithm’s
efficiency. From table 2 we can see that the rotate algorithm combined with PIPFS is
faster 2/3 running time than that with MPI to distribute data. We can conclude that
the algorithms combined with PIPFS can obviously improve the performance.

3.2.2. Unsupervised Classify Algorithm
In the experiment, we used a single wave band TM image whose size is 5728*6920
pixels. We separated the image into 8 classes, iterative time is 10 and the threshold is
0.01. We compared algorithm using MPI with that combined with PIPFS in the main
procedure’s running time. Because the massage transfer time is microsecond, we
ignored it.

A Parallel File System Based on Spatial Information Object 9

Table 3. Execute time of tow class functions

Unit: Second
Function name Class（MPI） Class（PIPFS）

Read/
write 0.98

Transmission 4.17
Processing 10.32 13.38

Master process

Receive 5.72
Receive
/Reads 3.89 3.60

Processing 11.35 10.06 slave process
Transmission

/Writes 6.04 1.28

total 42.47 28.32
The parallel unsupervised classify algorithm’s procedure is: The slave process deals
with the clustering center of the image area which is distributed in each iterative.
When accomplished the slaves send the result to the master. Then the master deals
with the clustering center received from each slave and returns the new center to them.
The slave deals with data according to the new cluster center. From table 3 we can
see the algorithm with PIPFS can save the master’s read/write and send/receive time
compared with that using MPI. The slave’s read/write time also smaller. Therefore
in the whole procedure we can save above 40% time using PIPFS and the result will
be much evident when dealing with bigger data.

3.3. File System Regarding Parallel Scale Extended Test
The experiment environment is:
Meta data server is equipped with two Xeon 2.4G processor, 2GByte ECC ram,
160GByte 7200RPM Ultra IDE (ATA 133) hard drive, and a 1000MB Ethernet card.
The operating system is Redhat Linux 7.3.
Storage servers and compute servers constitute 8 nodes. Each node is equipped with
two Xeon 2.4G processor, 1GByte ECC ram, 160GByte 7200RPM Ultra IDE
(ATA133) hard drive, and a 1000MB Ethernet card. The operating system is Redhat
Linux 7.3.
In remote sensing image processing, read operation is more than write. However in
parallel algorithm, parallel reading the same file in the meantime is a basic operation.
Therefore read performance, especially parallel read, is important to the performance
of a file system. This test assumes that the number of storage servers and computing
servers is linearity grows. In this condition, compare the read speed of the bottleneck
nodes in NFS and PIPFS.

10 Keying Huang1,2 , Guoqing Li2, Dingsheng Liu2 , Wenyi Zhang2

Table 4. Expansibility of NFS and PIPFS

Unit:MB/s
Parallel scale Filing system

1 node 2 nodes 4 nodes 8 nodes
NFS 21.56 7.61 6.19 4.07

PIPFS 20.67 21.13 22.03 21.84

0

5

10

15

20

25

1 2 4 8

node(s)

M
B/
s

NFS PIPFS

Fig. 4. Read speed of NFS and PIPFS while parallel scale increase

From table4 and figure 4, the test result showed that the support of NFS to the parallel
scale extended was far inferior to PIPFS. PIPFS has used the multi-thread response
mechanism, and the data distributed to different server. So concurrently reading can
fully use the network band width. Therefore, when the parallel scale is growing,
PIPFS had a higher reading speed than NFS. This test also showed that under the
certainly parallel scale, PIPFS system has a good extension and it can provide an
effective performance platform for the remote sensing image parallel processing.

4. Conclusion
From above tests, we can find that the efficiency of remote sensing image processing
algorithm in PIPFS system is higher than the algorithm in traditional file system,
because the algorithm used file system to control and operate the spatial information
object. Storage based on spatial information object shield physical distribution detail
and the network transmission to the developers. It greatly reduces the complexity of
programming and file management. The developer need not to consider the
distribution and parallel operations on data. The application program can execute the
parallel process just by calling PIPFS system interface functions and synchronizing

A Parallel File System Based on Spatial Information Object 11

the messages. So the entire development mode in PIPFS is even more similar to the
development mentality of serial programming.
What’s more, combined with Linux kernel, management of spatial information object
in PIPFS is more convenient and direct-viewing. Users can operate the data but need
not to enter each storage server. They can complete the operation through the
metadata server. At the same time, this also increased data security on the storage
server.

5. Reference

i Guoqing Li, DingSheng Liu, “PIPS: A Cluster-based Parallel Remote Sensing Image
Processing System”, Journal of Image and Graphics, Vol.5 Supp. 2000

ii P. Valduriez, “Parallel Database Systems: the case for shared–something,” Proceedings of the
Ninth International Conference on Data Engineering, pp. 460-465, 1993.

iii R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh and B. Lyon, "Design and Implementation
of the Sun Network File System", Proceedings of the Summer USENIX ConferencePp. 119 -
130, 1985.

iv M. Satyanarayanan, "Coda: A Highly Available File System for a Distributed Workstation
Environment, " Proceedings of the Second IEEEWorkshop onWorkstation Operating
SystemsSeptember 1989.

v T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R.Wang, "Serverless Network
File System," ACM Operating Systems ReviewVol. 29, no. 5, December 1995.

vi Digital Technical Journal, VAXcluster Systems, September 1987. Special Issue - Number 5.
vii K. Matthews, “Implementing a Shared File System on a HIPPI Disk Array,” Fourteenth

IEEE Symposium on Mass Storage Systems, pp. 77-88, 1995.
viii Wu Qingbo, "Linux Object storage file system research",Http://www-900.Ibm.Com

/developerWorks/cn/linux/l-ofs/index.Shtml, 2004.10
ix Zhu Yaofei, " research and experiment in remote sensing data parallel processing file system

", Master's degree paper, Chinese remote sensing satellite earth station, 2002.7

