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Abstract. Dynamic Programming Matching (DPM) is a mathematical optimi-
zation technique for sequentially structured problems, which has, over the years, 
played a major role in providing primary algorithms in pattern recognition 
fields. Most practical applications of this method in signature verification have 
been based on the practical implementational version proposed by Sakoe and 
Chiba [1], and is usually applied as a case of slope constraint p = 0. We found, 
in this case, a modified version of DPM by applying a forward seeking imple-
mentation is more efficient, offering significantly reduced processing complex-
ity as well as slightly improved verification performance. 

1. Introduction 

Dynamic Programming Matching (DPM) is a mathematical optimization technique 
for sequentially structured problems, which has, over the years, played a major role in 
providing primary algorithms for automatic signature verification [1], [2], [3], [4]. In 
the pattern recognition field, it has been particularly used to eliminate the timing 
differences between two differently originating pattern signals. Hence it is called as 
the Dynamic Time Warping (DTW) method owing to its non-linear time-
normalization function. Most practical applications of this method in signature verifi-
cation [2], [5], [6] have been based on the practical implementational version pro-
posed by Sakoe and Chiba [1], which is an analytical optimization method unlike 

others' rather heuristic approaches1. For practical use in signature verification, it is 
usually applied as a case of slope constraint p = 0 as, apart from the fact that this 
provides the simplest and the fastest implementation owing to the least constraint (see 
Fig. 1), the slope constraint on the warping function has been noted to be merely 
time-consuming. The problem in the DPM application to signature verification was 
that many writers have an unstable pattern of signature writing, which confuses the 
DTW mechanism. A different approach from the opposite perspective to investigate 
the DTW function is performed by applying a forward seeking implementation of 
DTW under the assumption that the applied patterns satisfy the preconditions for the 
DTW function, i.e., the patterns have only a monotonic and continuous shift on the 

                                                           
1Other elastic matching methods include the peak matching technique, a finite state machine 
approach and regional correlation. 
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time axis. Thus a modified version of DPM in this context is developed. To verify the 
proposed method, experiments are applied under the same conditions and using the 
same data base to standardize and simplify the test for both conventional and pro-
posed DTW methods. The results have proved the proposed method to be efficient, 
offering significantly reduced processing complexity as well as slightly improved 
verification.  

2. DPM for Signature Verification 

2.1 DPM Basics [1, 2] 

Consider two different signals as sequences of feature vectors: 
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These two patterns, A and B, can be depicted in an i-j plane as shown in Fig. 2, 
where two patterns are represented along the i-axis and j-axis, respectively, and  their 
matching stages are by a sequence of points S(k), where S(k) = ( i(k), j(k)). 

To normalize these two signals with a N-stage decision process, a sequence of de-
cision functions can be expressed as: 
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where Ck is a contribution function at kth stage for the decision vector qk and the 
state vector xk(ai,bj). 
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Fig. 1. DTW slope constraint 
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Fig. 2. DTW mechanism for time alignment 

 
DP matching seeks to find the optimum function D(k,xk) at the kth stage: 
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In the context of the DTW algorithm, this problem of determining the optimal se-
quence corresponds to finding a minimum sequence of warping function F(i(k),j(k)), 
which is normally composed of two components: 
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where d(ik,jk) is the kth occupancy cost and w(ik,jk) is the corresponding weight. 
Then the optimal objective function at the kth stage, Dfk, is given as: 
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The optimal value of this function will be the result of the sequence of recursive 
functions: 
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This is expanded as follows. 
1. Initial condition: 
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2. DP-equation: 
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3. Time-normalized distance: 
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2.2 DPM Implementation 

Sakoe and Chiba [1] provided a practical solution for Equation (6), which originally 
was proposed for speech recognition. Since then, this method has been extended for 
use in signature verification and has been widely accepted for practical applications. 
 

Restrictions on the warping function 



To provide a safeguard against unusual deviations during the warping process and 
to keep a desirable warping gradient, two conditions are imposed on the warping 
function: 

1. Adjustment window (see Fig. 2) 

| i(k) - j(k) | ≤  r. (10) 

where r is an adequate value for the window size. 
This is to prevent unusual deviations from the warping function, which is based on 

the assumption that the normal time-axis fluctuation does not cause an excessive 
timing difference. 

2. Slope constraint 
An appropriate slope constraint is imposed to keep the warping gradient from an 

undesirable time warping (see Fig. 1). 
 
Let the pattern at kth stage, (ik,jk), be a simplified term, (i, j), then Equation (9) be-

comes: 
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2) p = 0 
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3) p = 1 
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4) p = 2 
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For practical use in signature verification, it is usually applied as a case of slope 
constraint p = 0 as in Equation (12) as, apart from the fact that this provides the sim-
plest and the fastest implementation owing to the least constraint (see Fig. 1), the 
slope constraint on the warping function has been noted to be merely time-consuming. 

Sakoe and Chiba [1] gave an example of practical implementation of DTW. The 
flow of the DTW solution for Equation (6) is diagrammed from the initialization 
according to Equation (7) to the time-normalization as in Equation (9). Unlike Equa-



tion (6), which uses variable "k", for indexing from the first stage, 1, to the final stage, 
"K", this implementation uses two indices, "i, j", to iterate "J" times the DP-equation 
(8) (see Fig. 2) for the sequential solution. The adjustment window size is applied as 
variable "r". 

2.3 Experimentation 

An experiment was performed to investigate how the nature of signatures affects the 
performance of DTW. It was relevant to the issue about the vulnerability of the DTW 
mechanism to relatively variable signature patterns. For this experiment, the data base 
consists of two contrasting types of signature sample groups: 

1. Group I has the members who have relatively "stable" signature patterns. 
2. Group II members have relatively "unstable" patterns in signature writing. 
Group I has a membership of 15 writers and Group II 24. A total of 50 signatures 

was collected from each member in five sessions. Each individual donated ten signa-
tures in each session. Random forgeries, i.e., signatures generated by others, were 
used for the forgery samples, on the same grounds. To eliminate effects arising from 
the variation of magnitude and orientation, a precise normalization process in the 
spatial domain was performed. The performance in terms of the equal error rate was 
measured as a function of the adjustment window size applying the f(x,y) function. 
Fig. 3 is the DPM performance result from Group I and Fig. 4 is from Group II. 
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Fig. 3. Group I DPM result 
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Fig. 4. Group II DPM result 

 
From these results, it has been observed that the nature of signature samples has a 

considerable effect on the DTW performance: 
1. For Group I, in which each member has a stable signature pattern, DTW has 

ideally functioned at zero error rates with smaller window sizes. Increasing the win-
dow size over 14% has caused the degradation of the error rate performance. 

2. For Group II, in which most members have variable signature patterns, the DPM 
performance has been considerably degraded. The window size of 4% has recorded 
the best result at the equal error rate of 9%, which is slightly better than the results of 
10% with neighbouring window sizes. 



3. Development of Modified DPM 

The problem in the DPM application to signature verification in the preceding sec-
tions, which applied the implementational version proposed by Sakoe and Sato [1], 
was that many writers have an unstable pattern of signature writing, which confuses 
the DTW mechanism. In this section, a different approach from the opposite perspec-
tive to investigate the DTW function is performed by applying a heuristic (forward 
seeking) implementation of DTW under the assumption that the applied patterns 
satisfy the preconditions for the DTW function, i.e., the patterns have only a mono-
tonic and continuous shift on the time axis. Under such ideal conditions, there is little 
necessity of DTW functioning for all cases at the preceding stage (see Equation (8)) 
as the function is continuously increasing. 

 
Algorithm 
If the optimal objective function at the k-1th stage, Dfk-1, has been correctly selected, 

and the function satisfies the necessary conditions of continuity and monotonicity for 
DTW [1] and it does not have an abnormal (excessive) fluctuation2 on the time axis, 
then Equation (8) can be alternatively expanded as: 
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A slope constraint then can be imposed as in Fig. 5 to maintain a normal time 
warping gradient, which corresponds to the slope constraint for Sakoe's version as in 
Fig. 1. 

 

1) p = 1/2 2) p = 0 3) p = 1 4) p = 2  

Fig. 5. MDTW slope constraint 

For the practical application, it is implemented as follows: 
 
1) p = 1/2 
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2) p = 0 

                                                           
2This was assumed for DTW mechanism in Sakoe and Chiba [1] and became the ground for 
implementing the adjustment window condition. 
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3) p = 1 
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4) p = 2 
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Equation (15) in the modified DPM (MDPM) version, firstly, has a strong point 
compared to Equation (8) in the conventional DPM (CDPM) as it requires only one 
DTW process at each decision stage while the conventional one requires this process 
as many times as the window size. Hence, this alternative method can reduce the 
computational complexity. 

4. Experimentation 

To compare the performances of both DPM methods, the same error rate performance 
tests were applied to the modified DPM (MDPM) for the two groups. Fig. 6 is the 
result for Group I and Fig. 7 is for Group II. 
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Fig. 6. Group I MDPM result 
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Fig. 7. Group II MDPM result 

 
For both of the two groups, the modified DPM (MDPM) method has shown an 

equal or better performance compared to the conventional DPM (CDPM) method 
with smaller window sizes while it has a considerably degraded performance with 
larger window sizes. For Group I, MDPM as well as CDPM has recorded a zero error 
rate: for stable signature patterns, MDPM performs well as CDPM does. But its per-



formance becomes degraded as the window size increases. For Group II, the best 
performance has been recorded by MDPM with the window size of 4 percent: for 
unstable patterns, MDPM has a slightly better performance than CDPM with smaller 
window sizes. Through all experiments, MDPM has shown equal or better perform-
ance than CDPM. 

5. Conclusion 

During the experiments for CDPM, it was observed that applying precise normaliza-
tion such as preprocessing results in both an improvement in error rate performance 
and a smaller optimal window size. Accordingly, it was thought that the time domain 
fluctuation can also originate from the attitude variation during signature collection as 
the normalization process mainly reduces this geometrical variation. The results from 
the MDPM, which has been proposed for stable patterns satisfying the preconditions 
for DPM, applied under the same conditions as for CDPM, have also confirmed these 
implications as all the results have corresponded to the previous results for CDPM. 
Some results have even emphasized the assumed trends, e.g., if normalization is more 
precisely carried out, the optimal window size is reduced.  

The results from the experiments have shown that: 
1. The temporal variations are ideally applied to DTW. Patterns which are affected 

only by these variations produce a good DTW result. (See the experimental results for 
Group I.) 

2. The geometrical variations due to attitude change can be removed by using pre-
cise normalization, which correspondingly improves the error rate performance. 

3. The random variations cannot be corrected. Patterns which are severely affected 
by these variations produce the worst DTW results. (See the experimental results for 
Group II.) Their influence can be minimized by reducing the adjustment window size. 
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