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Abstract. Decentralized, cooperative and large-scale distributed storage sys-
tems that consist of a cluster of storage nodes attached with local disks can de-
liver high resource utilization, high availability and easy scalability. This paper 
describes the design and prototype implementation of a novel Cluster-Aware 
Cache (CAC) algorithm that shares memories between nodes in cluster to con-
struct an efficient and cooperative cache-to-disk accesses policy. The difference 
between our scheme and previous studies is that processes on different node 
can access the same page concurrently. Furthermore, CAC algorithm is also 
well suited to heterogeneous clusters where one or more nodes may have larger 
amounts of memory than the others. The performance measurements with a 
Web server on our system show dramatic performance improvements with in-
creasing number of nodes. 

1   Introduction 

Large-scale distributed storage systems that consist of a cluster of storage nodes with 
local disks have become a cost-effective solution for wide range of applications, rang-
ing form enterprise-class storage backend, HPC (High-Performance Computing) to 
data mining and Internet services. Such systems can be realized at little or no extra 
cost, can offer an inherently scalable aggregate I/O bandwidth, and can take advan-
tage of existing cluster installations through double-use or upgrade of older hardware. 
Although the parallelism offered by the numerous disks in a cluster can alleviate the 
I/O bandwidth problem, it does not really address the latency issue which is largely 
limited by seek and rotational costs. Caching data blocks in memory is a well known 
way of reducing I/O latencies, provided we can achieve good hit ratio. 

In this paper, we describe the design of a storage cluster using inexpensive PCs 
equipped with local disk. In our system, large files are stored in a scalable fashion by 
striping the data across multiple nodes to obtain high aggregate bandwidth. In order 
to solve the disks latency issue, we present the design and prototype implementation 
of a novel Cluster-Aware Cache (CAC) scheme, which changes the cache hierarchy 
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of traditional distributed system (client cache, server cache, server disk) by letting one 
node cache misses to be checked against other node caches before the local storage 
devices. Thus, the working set can grow beyond the local memory limit while appli-
cations read latency can be alleviated tremendously because remote caches were 
accessed faster over high-speed network than the disk even if it is local. 

The remainder of the article is organized as follows: In section2, we describe the 
related work about cooperative caching scheme. In section3, we introduce the archi-
tecture of our storage cluster system, and detail the CAC scheme in section 4. The 
experimental results are evaluated at section 5. The conclusion comes at section 6. 

2   Related Work 

Using regular nodes as storage nodes has previously been suggested in the Slice [1,2] 
and OPIOM [3] projects, but where they primarily focus on using dedicated storage 
nodes, we examine the possibilities for distributing the load across all nodes in a 
cluster. The Network Block Device (NBD) [4] and GNBD/VIA [5] also provide net-
work access to a remote block device, but the architectures are neither modular nor 
extensible. The xFS [6,7] introduced the notion of cooperative caching. Other I/O 
buffer cache management schemes exist on global memory management and coopera-
tive caching [8] by extending the use of a shared distributed buffering mechanism to 
the I/O devices themselves. PACA [9] is another cooperative file system cache. It 
attempts to avoid replication and the associated consistency mechanisms by allowing 
only one cached block copy in the entire cluster-wide cache. That is possible since 
PACA uses a memory copy mechanism (a sort of Remote DMA) to send the data 
from the cache to the user memory. However, every data access has to go through this 
memory copy mechanism which is clearly much slower than accessing a local block 
copy. Other low level approaches to remote I/O include Swarm [10] and Network-
Attached Secure Disks (NASDs) [11]. Swarm offers the storage abstraction of a 
striped log while NASDs provide an object-oriented interface. 

3   System Architecture 

In this section, we describe the main components of NAS storage cluster system and 
how they work together. We first provide an overview of the architecture, and then 
we cover the CAC algorithm in more detail. 

The physical layout of such storage cluster is shown in figure 1. To provide an in-
terface of a single virtual cluster server, each cluster is assigned with a multicast IP 
address. All participating cluster members joint in this multicast group, whose IP 
address is known to each other. The main advantage of NAS approach is that inter-
nally the design can seamlessly integrate major storage components to work closely 
together. All members in this system work collaboratively to construct a storage sys-
tem with a unified storage space. 



Each of the storage device members in the cluster runs a program, called daemon. 
Daemon communicates with each other and provides some functions, including trans-
ferring file data, transferring control message, and performing statistical information. 
When a node needs to get file at other node, the daemon finds the file firstly, and then 
gets the file from remote node. Daemon checks usage of the CAC at a fixed interval 
in order to provide reasonable cache replacement policy. When a node’s residual 
cache capacity is less than the threshold value, the daemon will move some blocks 
from its local cache to the remote cache in order to balance the load. 

Fig. 1. Architecture of NAS Storage Cluster 

 
Fig. 2. Daemon and CAC Kernel Module 

Each of the storage device members in the cluster also has a kernel module. It di-
vides the node’s total memory into two parts: one is the node’s local cache; the re-
mainder memory at each node therefore makes of the CAC cache spaces. The typical 
setup and possible scenarios are shown in figure 2. 

CAC hides the distributed nature of the cluster node’s caches by offering the local 
hosts an interface to a global unified buffer cache. Similar to GMS [8], CAC uses a 
high-level abstraction (disk blocks) to deal with remote resources and cooperative 
cache algorithms to jointly manage the cluster caches. It rely on the low communica-
tion latencies of powerful interconnects to minimize block access times. 

4   Implementation of CAC Scheme 

Each node has a local cache to cater to the individual process requests at that node; 
and upon a miss goes to a shared cooperative cache running on one or more nodes of 
the cluster which can possible satisfy requests that come from different nodes. 



4.1   Local Cache 

We opted to implement the local cache within the Linux kernel that can be shared 
across all the processes running on that node. Only when the request misses in this 
cache (either all or some of the request cannot be satisfied locally), is an external 
request initiated out of that node to the cooperative cache. This cache is implemented 
using open hashing with second chance LRU replacement. There is a dirty list, a free 
list, and a buffer hash to chain used blocks for faster retrieval and access. The hashing 
function takes as parameters the inode number of the file and the block number to 
index the buffer hash table. There are two kernel threads called flusher and harvester 
in the implementation. Writes are normally non-blocking (except the sync write ex-
plained later), and the flusher periodically propagates dirty blocks to the cooperative 
cache. The harvester is invoked whenever the number of blocks in the free list falls 
below a low water mark, upon which it frees up blocks till the free list exceeds a high 
water mark. A block size of 4K bytes is used in our implementation. Note that such a 
kernel implementation automatically allows multiple applications/processes to share 
this local cache, thus making more effective use of physical memory. 

4.2   Global Unified Cache 

The cooperative cache, as explained earlier, adds one more level to the storage hierar-
chy before the disk at one node to be accessed, and we go over it in the following 
discussion, explaining the base algorithm in our implementation. 

Currently, we use a separate cooperative cache for each file. If there is little file 
sharing across applications, or even across parallel processes of the same application, 
then the requests would automatically distribute the load more evenly with this ap-
proach. Since we would also like to be able to perform inter-application optimizations 
based on sharing patterns, we have opted to share the cooperative cache across appli-
cations. This can help one application benefit from the data brought in earlier by 
another from the cache. This feature is one key difference between our system and 
GMS [8] where the global cache is intended for optimizations within the processes of 
a single application. Similar to the local cache implementation, we implement the 
cooperative cache within the Linux kernel. 

The internal data structures and activities of the cooperative cache are more or less 
similar with those for the local cache that were described earlier. One could designate 
such global caches on different nodes, particularly on those nodes with larger physi-
cal memory (DRAM). Consequently, this architecture is also well suited to heteroge-
neous clusters where one or more nodes may have larger amounts of memory than the 
others. The base algorithm of CAC is described in following pseudo-code: 
Application issues file request; 
if (file is at local cache){ 
  give the file to application; 
  return; 
}else{ 
  if (file is at remote cache){ 
repeat-remote: 



    use Daemons Communication to fetch the file; 
    if ( the file is hot){ 
repeat-local: 
      if (local cache has space){ 
        add the file to local cache; 
        give the file to application; 
        return; 
      }else{ 
        give the file to application; 
        return; 
      } 
    }else{ 
      give the file to application; 
      return; 
    } 
  }else{ 
    if (file is at local storage devices){ 
      goto repeat-local; 
    }else{ 
      if (file is at remote storage devices){ 
        goto repeat-remote; 
      }else{ 
        can not find the file; 
        return error; 
      } 
    } 
  } 
} 

4.3   Daemon Communication 

Each node runs a user-level daemon program for the purpose of transferring file data, 
transferring control message, and performing statistical information. TCP/IP sockets 
are being explicitly used for sending messages to it from the individual local caches 
regardless of which application process is making a call. The convenience and flexi-
bility of a user-level implementation has led us to implement the daemon running on 
each node of our cluster serving requests to a specific file running on a cluster node, 
to which explicit requests are sent by the local caches, and is shared by different ap-
plications. 

When a node needs to get file at other node, the daemon finds the file firstly, and 
then gets the file from remote node. Daemon checks usage of the CAC at a fixed 
interval in order to provide reasonable cache replacement policy. When a node’s 
residual cache capacity is less than the threshold value, the daemon will move some 
blocks from its local cache to the remote cache in order to balance the load. The proc-
ess of communication between daemon and CAC is presented as following pseudo-
code: 
wakeup (Daemons Communication); 
if (available CAC cache size < threshold_ CAC _size){ 
  discard some blocks;   // replacement policy 



  sleep; 
}else{ 
  if (available local cache size < thresh-
old_local_size){ 
    find the node with more available cache space; 
    migrate the blocks to that node; 
    sleep; 
  }else{ 
    sleep; 
  } 
} 

5   Experimental Results 

In this section, we present an evaluation of the performance of the CAC prototype. 
The performance goal of CAC is to have a performance close to that of local cache 
and to have a small overhead on the nodes hosting the disks. 

For the purpose of our experiments, we constructed a small cluster with five 
equivalent Pentium4/2GHz PCs with 256MB DRAM running Linux operating system 
with the version of the 2.4 kernel. Each PC was equipped with a single Gigabit net-
work card as well as a single 160G IDE hard disk to provide storage space. No spe-
cial kernel optimizations were done to optimize I/O or inter-process communications. 
One node was dedicated to servicing HTTP requests and the other four nodes were 
available to service data storage. Each node was running a daemon and a CAC kernel 
module, and shared 128MB RAM to consist of cooperative cache, therefore, the co-
operative cache cache capacity is 640MB. Each client was a Windows PC running the 
WebBench [12] suite of e-commerce tests. WebBench is a benchmark program that 
measures the performance of Web servers using PC clients. In our test, the file set 
was 1.5GB and was placed on the disk of Web server initially, and we used 10 clients 
running WebBench to generate 1000 WebBench-client requests to Web server simul-
taneously. The experiments were done according to the request and cache hit ratio, 
irrespectively. 

A comparison between remote disk, local disk, remote cache, and local cache in 
terms of the number of request operations is presented in figure 3. Notice that Web 
server’s performance upgrades fast with the increasing number of the node. Large 
parts of requests hitting in Web server’s local cache improves the I/O performance of 
Web server dramatically. Similar comparison in terms of request bytes is presented in 
figure 5. 

A comparison between cache hit ratios in terms of the number of request opera-
tions is presented in figure 4. Notice that I/O in Web server’s local disk degrades fast 
with the increasing number of the node, large parts of requests hitting in Web server’s 
local cache or remote cache improves the Web server’s I/O performance. Similar 
comparison in terms of request bytes is presented in figure 6. 
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Fig. 4 The Comparison of Hit Ratio 
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Fig. 6. The Comparison of Hit Ratio 

6   Conclusion 

By leveraging the high-speed communication afforded by the cluster interconnect 
such as Fast/Gigabit Ethernet, large files can be stored in a scalable fashion by strip-
ing the data across multiple nodes; by distributing the disks across a sufficient num-
ber of cluster nodes, high aggregate bandwidth can be easily obtained with current 
hardware. In order to solve the disks latency issue, we present the design and proto-
type implementation of a novel cluster caching scheme, which changes the cache 
hierarchy of traditional distributed system (client cache, server cache, server disk) by 
letting one node cache misses to be checked against other node caches before the 
local storage devices. Thus, the working set can grow beyond the local memory limit 



while applications read latency can be alleviated tremendously because remote caches 
were accessed faster over high-speed network than the disk even if it is local. Per-
formance measurements of such a system are encouraging, showing that the I/O per-
formance of Web server improves fast with the increasing number of node. 
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