
Cluster-Aware Cache for Network Attached Storage*

Bin Cai, Changsheng Xie, Qiang Cao

National Storage System Laboratory, Department of Computer Science,
Huazhong University of Science and Technology, Postfach 430074,

Wuhan, P.R.China
hust_caibin@sohu.com

Abstract. Decentralized, cooperative and large-scale distributed storage sys-
tems that consist of a cluster of storage nodes attached with local disks can de-
liver high resource utilization, high availability and easy scalability. This paper
describes the design and prototype implementation of a novel Cluster-Aware
Cache (CAC) algorithm that shares memories between nodes in cluster to con-
struct an efficient and cooperative cache-to-disk accesses policy. The difference
between our scheme and previous studies is that processes on different node
can access the same page concurrently. Furthermore, CAC algorithm is also
well suited to heterogeneous clusters where one or more nodes may have larger
amounts of memory than the others. The performance measurements with a
Web server on our system show dramatic performance improvements with in-
creasing number of nodes.

1 Introduction

Large-scale distributed storage systems that consist of a cluster of storage nodes with
local disks have become a cost-effective solution for wide range of applications, rang-
ing form enterprise-class storage backend, HPC (High-Performance Computing) to
data mining and Internet services. Such systems can be realized at little or no extra
cost, can offer an inherently scalable aggregate I/O bandwidth, and can take advan-
tage of existing cluster installations through double-use or upgrade of older hardware.
Although the parallelism offered by the numerous disks in a cluster can alleviate the
I/O bandwidth problem, it does not really address the latency issue which is largely
limited by seek and rotational costs. Caching data blocks in memory is a well known
way of reducing I/O latencies, provided we can achieve good hit ratio.

In this paper, we describe the design of a storage cluster using inexpensive PCs
equipped with local disk. In our system, large files are stored in a scalable fashion by
striping the data across multiple nodes to obtain high aggregate bandwidth. In order
to solve the disks latency issue, we present the design and prototype implementation
of a novel Cluster-Aware Cache (CAC) scheme, which changes the cache hierarchy

* This research is supported by National 973 Great Research Project of P.R.China under the

grant No. 2004CB318200 and National Natural Science Foundation under grant No.
60273037 and No. 60303031.

of traditional distributed system (client cache, server cache, server disk) by letting one
node cache misses to be checked against other node caches before the local storage
devices. Thus, the working set can grow beyond the local memory limit while appli-
cations read latency can be alleviated tremendously because remote caches were
accessed faster over high-speed network than the disk even if it is local.

The remainder of the article is organized as follows: In section2, we describe the
related work about cooperative caching scheme. In section3, we introduce the archi-
tecture of our storage cluster system, and detail the CAC scheme in section 4. The
experimental results are evaluated at section 5. The conclusion comes at section 6.

2 Related Work

Using regular nodes as storage nodes has previously been suggested in the Slice [1,2]
and OPIOM [3] projects, but where they primarily focus on using dedicated storage
nodes, we examine the possibilities for distributing the load across all nodes in a
cluster. The Network Block Device (NBD) [4] and GNBD/VIA [5] also provide net-
work access to a remote block device, but the architectures are neither modular nor
extensible. The xFS [6,7] introduced the notion of cooperative caching. Other I/O
buffer cache management schemes exist on global memory management and coopera-
tive caching [8] by extending the use of a shared distributed buffering mechanism to
the I/O devices themselves. PACA [9] is another cooperative file system cache. It
attempts to avoid replication and the associated consistency mechanisms by allowing
only one cached block copy in the entire cluster-wide cache. That is possible since
PACA uses a memory copy mechanism (a sort of Remote DMA) to send the data
from the cache to the user memory. However, every data access has to go through this
memory copy mechanism which is clearly much slower than accessing a local block
copy. Other low level approaches to remote I/O include Swarm [10] and Network-
Attached Secure Disks (NASDs) [11]. Swarm offers the storage abstraction of a
striped log while NASDs provide an object-oriented interface.

3 System Architecture

In this section, we describe the main components of NAS storage cluster system and
how they work together. We first provide an overview of the architecture, and then
we cover the CAC algorithm in more detail.

The physical layout of such storage cluster is shown in figure 1. To provide an in-
terface of a single virtual cluster server, each cluster is assigned with a multicast IP
address. All participating cluster members joint in this multicast group, whose IP
address is known to each other. The main advantage of NAS approach is that inter-
nally the design can seamlessly integrate major storage components to work closely
together. All members in this system work collaboratively to construct a storage sys-
tem with a unified storage space.

Each of the storage device members in the cluster runs a program, called daemon.
Daemon communicates with each other and provides some functions, including trans-
ferring file data, transferring control message, and performing statistical information.
When a node needs to get file at other node, the daemon finds the file firstly, and then
gets the file from remote node. Daemon checks usage of the CAC at a fixed interval
in order to provide reasonable cache replacement policy. When a node’s residual
cache capacity is less than the threshold value, the daemon will move some blocks
from its local cache to the remote cache in order to balance the load.

Fig. 1. Architecture of NAS Storage Cluster

Fig. 2. Daemon and CAC Kernel Module

Each of the storage device members in the cluster also has a kernel module. It di-
vides the node’s total memory into two parts: one is the node’s local cache; the re-
mainder memory at each node therefore makes of the CAC cache spaces. The typical
setup and possible scenarios are shown in figure 2.

CAC hides the distributed nature of the cluster node’s caches by offering the local
hosts an interface to a global unified buffer cache. Similar to GMS [8], CAC uses a
high-level abstraction (disk blocks) to deal with remote resources and cooperative
cache algorithms to jointly manage the cluster caches. It rely on the low communica-
tion latencies of powerful interconnects to minimize block access times.

4 Implementation of CAC Scheme

Each node has a local cache to cater to the individual process requests at that node;
and upon a miss goes to a shared cooperative cache running on one or more nodes of
the cluster which can possible satisfy requests that come from different nodes.

4.1 Local Cache

We opted to implement the local cache within the Linux kernel that can be shared
across all the processes running on that node. Only when the request misses in this
cache (either all or some of the request cannot be satisfied locally), is an external
request initiated out of that node to the cooperative cache. This cache is implemented
using open hashing with second chance LRU replacement. There is a dirty list, a free
list, and a buffer hash to chain used blocks for faster retrieval and access. The hashing
function takes as parameters the inode number of the file and the block number to
index the buffer hash table. There are two kernel threads called flusher and harvester
in the implementation. Writes are normally non-blocking (except the sync write ex-
plained later), and the flusher periodically propagates dirty blocks to the cooperative
cache. The harvester is invoked whenever the number of blocks in the free list falls
below a low water mark, upon which it frees up blocks till the free list exceeds a high
water mark. A block size of 4K bytes is used in our implementation. Note that such a
kernel implementation automatically allows multiple applications/processes to share
this local cache, thus making more effective use of physical memory.

4.2 Global Unified Cache

The cooperative cache, as explained earlier, adds one more level to the storage hierar-
chy before the disk at one node to be accessed, and we go over it in the following
discussion, explaining the base algorithm in our implementation.

Currently, we use a separate cooperative cache for each file. If there is little file
sharing across applications, or even across parallel processes of the same application,
then the requests would automatically distribute the load more evenly with this ap-
proach. Since we would also like to be able to perform inter-application optimizations
based on sharing patterns, we have opted to share the cooperative cache across appli-
cations. This can help one application benefit from the data brought in earlier by
another from the cache. This feature is one key difference between our system and
GMS [8] where the global cache is intended for optimizations within the processes of
a single application. Similar to the local cache implementation, we implement the
cooperative cache within the Linux kernel.

The internal data structures and activities of the cooperative cache are more or less
similar with those for the local cache that were described earlier. One could designate
such global caches on different nodes, particularly on those nodes with larger physi-
cal memory (DRAM). Consequently, this architecture is also well suited to heteroge-
neous clusters where one or more nodes may have larger amounts of memory than the
others. The base algorithm of CAC is described in following pseudo-code:
Application issues file request;
if (file is at local cache){
 give the file to application;
 return;
}else{
 if (file is at remote cache){
repeat-remote:

 use Daemons Communication to fetch the file;
 if (the file is hot){
repeat-local:
 if (local cache has space){
 add the file to local cache;
 give the file to application;
 return;
 }else{
 give the file to application;
 return;
 }
 }else{
 give the file to application;
 return;
 }
 }else{
 if (file is at local storage devices){
 goto repeat-local;
 }else{
 if (file is at remote storage devices){
 goto repeat-remote;
 }else{
 can not find the file;
 return error;
 }
 }
 }
}

4.3 Daemon Communication

Each node runs a user-level daemon program for the purpose of transferring file data,
transferring control message, and performing statistical information. TCP/IP sockets
are being explicitly used for sending messages to it from the individual local caches
regardless of which application process is making a call. The convenience and flexi-
bility of a user-level implementation has led us to implement the daemon running on
each node of our cluster serving requests to a specific file running on a cluster node,
to which explicit requests are sent by the local caches, and is shared by different ap-
plications.

When a node needs to get file at other node, the daemon finds the file firstly, and
then gets the file from remote node. Daemon checks usage of the CAC at a fixed
interval in order to provide reasonable cache replacement policy. When a node’s
residual cache capacity is less than the threshold value, the daemon will move some
blocks from its local cache to the remote cache in order to balance the load. The proc-
ess of communication between daemon and CAC is presented as following pseudo-
code:
wakeup (Daemons Communication);
if (available CAC cache size < threshold_ CAC _size){
 discard some blocks; // replacement policy

 sleep;
}else{
 if (available local cache size < thresh-
old_local_size){
 find the node with more available cache space;
 migrate the blocks to that node;
 sleep;
 }else{
 sleep;
 }
}

5 Experimental Results

In this section, we present an evaluation of the performance of the CAC prototype.
The performance goal of CAC is to have a performance close to that of local cache
and to have a small overhead on the nodes hosting the disks.

For the purpose of our experiments, we constructed a small cluster with five
equivalent Pentium4/2GHz PCs with 256MB DRAM running Linux operating system
with the version of the 2.4 kernel. Each PC was equipped with a single Gigabit net-
work card as well as a single 160G IDE hard disk to provide storage space. No spe-
cial kernel optimizations were done to optimize I/O or inter-process communications.
One node was dedicated to servicing HTTP requests and the other four nodes were
available to service data storage. Each node was running a daemon and a CAC kernel
module, and shared 128MB RAM to consist of cooperative cache, therefore, the co-
operative cache cache capacity is 640MB. Each client was a Windows PC running the
WebBench [12] suite of e-commerce tests. WebBench is a benchmark program that
measures the performance of Web servers using PC clients. In our test, the file set
was 1.5GB and was placed on the disk of Web server initially, and we used 10 clients
running WebBench to generate 1000 WebBench-client requests to Web server simul-
taneously. The experiments were done according to the request and cache hit ratio,
irrespectively.

A comparison between remote disk, local disk, remote cache, and local cache in
terms of the number of request operations is presented in figure 3. Notice that Web
server’s performance upgrades fast with the increasing number of the node. Large
parts of requests hitting in Web server’s local cache improves the I/O performance of
Web server dramatically. Similar comparison in terms of request bytes is presented in
figure 5.

A comparison between cache hit ratios in terms of the number of request opera-
tions is presented in figure 4. Notice that I/O in Web server’s local disk degrades fast
with the increasing number of the node, large parts of requests hitting in Web server’s
local cache or remote cache improves the Web server’s I/O performance. Similar
comparison in terms of request bytes is presented in figure 6.

W eb server throughput

0

100

200

300

400

500

600

1 2 3 4 5

node num ber

r
e
q
u
e
s
t
s
(
n
u
m
b
e
r
/
s
e
c
o
n
d
)

rem ote disks local disk rem ote cache

local cache total requests

Fig. 3. The Comparison of Request Number

H it R atio

0

10

20

30

40

50

60

70

80

1 2 3 4 5
node num ber

h
it
 r
a
ti
o
(%

)

rem ote cache local disk local cache

Fig. 4 The Comparison of Hit Ratio

Web server throughput (Bytes)

0

5000

10000

15000

20000

25000

30000

1 2 3 4 5
node num ber

R
e
a
d

(
B
y
te

s
/
s
e
c
o
n
d
)

rem ote disks local disk rem ote cache

local cache total requests

Fig. 5. The Comparison of Request Bytes

Hit Ratio (Bytes)

0

10

20

30

40

50

60

70

80

1 2 3 4 5
node num ber

h
it
ra
tio
(%

)

rem ote cache local disk local cache

Fig. 6. The Comparison of Hit Ratio

6 Conclusion

By leveraging the high-speed communication afforded by the cluster interconnect
such as Fast/Gigabit Ethernet, large files can be stored in a scalable fashion by strip-
ing the data across multiple nodes; by distributing the disks across a sufficient num-
ber of cluster nodes, high aggregate bandwidth can be easily obtained with current
hardware. In order to solve the disks latency issue, we present the design and proto-
type implementation of a novel cluster caching scheme, which changes the cache
hierarchy of traditional distributed system (client cache, server cache, server disk) by
letting one node cache misses to be checked against other node caches before the
local storage devices. Thus, the working set can grow beyond the local memory limit

while applications read latency can be alleviated tremendously because remote caches
were accessed faster over high-speed network than the disk even if it is local. Per-
formance measurements of such a system are encouraging, showing that the I/O per-
formance of Web server improves fast with the increasing number of node.

References

1. D.C.Anderson, J.Chase, and A.Vadat, “Interposed request routing for scalable network
storage”, Proceedings of the 4th Symposium on Operating Systems Design and Implementa-
tion, October 2000.

2. J.Chase, D.Anderson, A.Gallatin, A.Lebeck, and K.Yocum, “Network I/O with trapeze”
Proceedings of 1999 Hot Interconnects Symposium, August 1999.

3. P.Geoffray, “OPIOM: Off-processor I/O with myrinet”, Proceedings of the first ACM/IEEE
International Symposium on Cluster Computing and Grid, May 2001.

4. P.T.Breuer, A.M.Lopez, and A.G.Ares, “The network block device”, Linux Journal, (73),
May 2000.

5. K.Kim, J.Kim. and S.Jung, “BNBD/VIA: A network block device over virtual interface
architecture on Linux”, Proceedings of the 16th International Parallel and Distributed
Processing Symposium, April 2002.

6. M.Dahlin, R.Yang, T.Anderson, and D.Patterson, “Cooperative Caching: Using remote
client m emory to improve file system performance”, Proceedings of first Symposium on
Operating Systems Design and Implementation, November 1994.

7. T.Anderson, M.Dahlin, J.M.Neefe, D.Patterson, D.Rosseli, and R.Y.Wang, “Serverless
network file systems”, Proceedings of the 15th Symposium on Operating System Principles,
December 1995.

8. M.I.Feeley, W.E.Morgan, F.H.Pighin, A.R.Karlin, and H.M.Levy, “Implementing global
memory management in a workstation cluster”, Proceedings of the 15th ACM Symposium on
Operating Systems Principles, pp. 201-212, December 1995.

9. T.Cortes, S.Girona, and L.Labatra, “PACA: A distributed file system cache for parallel
machines. Performance under Unix-like workload”, Technical Report UPC-DAC-RR-95/20
or UPC-CEPBA-RR-95/13, Department d’Arquitectura de Computadors, Universittat
Politecnica de Catalunya, 1995.

10. J.H.Hartman, I.Murdock, and T.Spalink, “The Swarm scalable storage system”, Proceed-
ings of the 19th IEEE International Conference on Distributed Computing Systems (ICDCS
99), June 1999.

11. G.A.Gibson, D.F.Nagle, K.Amiri, F.W.Chang, H.Gobioff, E.Riedel, D.Rochberg, and
J.Zelenka, “File systems for network-attached secure disks”, Technical Report CMU-CS-97-
118, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3890,
July 1997.

12. http://www.veritest.com/benchmarks/webbench/

