
A Heuristic Algorithm for the Job Shop Sched-
uling Problem

Ai-Hua Yin

 UFsoft School of Software Jiangxi University of Finance and Economics,
Nanchang 330013, Jiangxi China

Aihuayin@mail.china.com

Abstract. The job shop scheduling problem that is concerned with minimizing
makespan is discussed. A new heuristic algorithm that embeds an improved
shifting bottleneck procedure into the Tabu Search (TS) technique is presented.
This algorithm is different from the previous procedures, because the improved
shifting bottleneck procedure is a new procedure for the problem, and the two
remarkable strategies of intensification and diversification of TS are modified.
In addition, a new kind of neighborhood structure is defined and the method for
local search is different from the previous.
This algorithm has been tested on many common problem benchmarks with
various sizes and levels of hardness and compared with several other
algorithms. Computational experiments show that this algorithm is one of the
most effective and efficient algorithms for the problem. Especially, it obtains a
lower upbound for an instance with size of 50 jobs and 20 machines within a
short period.

1. Introduction

The job shop scheduling problem with which we are concerned consists in
scheduling a set of jobs on a set of machines for the objective of minimizing the
make-span, i.e., the maximum of completion time needed for finishing all the jobs.
Any scheduling is subject to the constrains that each job has a fixed processing order
through the machines and each machine can process at most one job at a time.

The job shop scheduling problem is NP-hard in a strong sense and even is one of
the hardest combinational optimization problems [5]. It is well known that only small
size instances can be solved with a reasonable computational time by exact algorithms,
however, for large size instances, some encouraging results have been recently ob-
tained with heuristic algorithms that are based on local search method [1,8,14]. Gen-
erally, Starting from an initial feasible solution, a local search method iteratively se-
lects a proper solution from the neighborhood. As the observation of Van Laarhoven
et al. [17] and Nowicki et al. [18], both the choice of a good-initial solution and the
neighborhood structure are important aspects of algorithm’s performance.

This paper is a further research based on our recent work, and a heuristic algo-
rithm that is based on a Tabu Search (TS) technology and on the improved shifting
bottleneck procedure (ISB) [9] is presented. Here, ISB is used to find a good-initial
solution, and the local re-optimization procedure of ISB is used to direct the local

search of TS from a region to some different one in the solution space. In the local
search procedure of TS, we define a new kind of neighborhood structure that is dif-
ferent from the previous. These two points make certain of the efficiency and effec-
tiveness of our algorithm.

In this paper, the job shop scheduling problem is formalized in terms of a
mathematical model and is represented on a disjunctive graph. Then, the TS technique
with two strategies of intensification and diversification are analyzed, and the new
heuristic algorithm, denote TSISB, is described. Finally, computational results on
several test problems instances are shown, and the algorithm is compared with some
typical algorithms for the problem.

2. The problem definition

Let J = {1, 2, …, n} be a set of jobs, M = {1, 2, …, m} be a set of machines and V

= {0, 1, 2, …, N, #} be a set of operations. Each job consists of a sequence of opera-
tions each of which has to be processed on a given machine for a given time. Here, 0
and # represent the dummy start and finish operations, respectively. A schedule is an
allocation of each operation to the time (start time) from which it is processed. In
other words, it is an allocation of processing order of the operations on the machines.
The problem is to find a schedule that minimizes the make-span, which is subject to
constraints: (i) the precedence of operations on each job must be respected; (ii) once a
machine starts to process an operation it can not be interrupted and each machine can
process at most one operation at a time. Let A denote the set of pair of adjacent opera-
tions constrained by the precedence relations as in (i); Vk denote the set of operations
that are processed by the machine k (k∈M); Ek ⊂ Vk × Vk be the set of pairs of opera-
tions which therefore have to be sequenced as specified in (ii); di and ti be the proc-
ess-time (fixed) and the start time (variable) of the operation i (i∈V), respectively. The
process-times of both 0 and # are zero, i.e. d0 = d# = 0. Now, the problem can be stated
as following mathematic model:

min t#

ti ≥ 0 i∈V
tj – ti ≥ di (i, j) ∈ A
tj – ti ≥ di ∨ ti – tj ≥ dj (i, j) ∈ Ek, k∈M

(1)

The first set of constraints means that t = 0 is the start time of the system, and
the next two represent the constraints (i) and (ii), respectively, where “∨” means “or”.
Any solution of (1) is called a schedule, a feasible solution of the problem.

It is useful to represent this problem on a disjunctive graph G:=(V, A, E) [4],
where V is the set of nodes, A is the set of ordinary (conjunctive) arcs and E is the set
of disjunctive arcs. The node, the directed arc and the disjunctive pair-arc of G corre-
spond to operation, precedence relation of two adjacent operations of a job and the
pair-operation that are processed by the same machine, respectively. So, E = ∪Ek

(k∈M), where Ek is the subset of disjunctive pair-arc corresponding to the

pair-operation that are processed by the machine k. The weight (length) of each arc (i,
j) is di that infers the process time of operation i, where i∈V, (i, j)∈A∪E and operation
i is processed right before operation j.

Fig.1. is the disjunctive graph for an instance with n = 3, m = 3, and N = 8. The
number of each conjunctive arc is the weight (length) of the arc and the weight of each
disjunctive arc is removed.

A subset of Ek (k∈M) is called a selection Sk that contains just one arc of each
disjunctive pair-arc of Ek, and Sk
is acyclic if it doesn’t contain any
cycle. According to Adams [2], a
feasible processing order of the
operations on the machine k is
equivalent to the only one acyclic
selection Sk, and, to determine a
processing order of the operations
on a machine is to sequence this
machine. So, to sequence ma-
chine k is to find an acyclic selec-
tion Sk of Ek.

Let M0 be the set of the machines that have been sequenced, so, a partial selec-
tion S is the union of selections Sk, one of each Ek (k∈M0). It is easy to understand that
each S gives rise to a directed graph DS = (V, A∪S). If DS is acyclic, then S is acyclic,
however, the converse is not true [2]. A complete selection S (i.e. M0=M) that gener-
ates an acyclic directed graph DS defines a schedule, and it is a feasible solution of the
job shop scheduling problem. To solve the problem is to find a complete selection S*
that gives rise to an acyclic DS* and minimizes the length of the longest (critical) path
in DS*.

Let Gk= (Vk, Ek), any acyclic selection Sk in Ek corresponds to the only one Ham-
ilton path (denote Hk) of Gk, and the inverse is also true [2]. In this paper, the acyclic
Sk, S= ∪Sk (k∈M0) and DS = (V, A∪S) are replaced by the Hk, H = ∪Hk (k∈M0) and DH =

(V, A∪H), respectively.
For a feasible solution (a

schedule) DH, the swap of two
adjacent operations processed
by the same machine on the
critical path may improve the
solution [17], which is usually a
base to define the neighborhood
for local search. For this reason,
the critical path is decomposed
into a series of critical blocks
(B1, B2, …, Br) [13]. Each block
contains the operations proc-
essed on one machine, and any two operations, in the block Bi and Bi+1(1≤ i <r), re-
spectively, are processed by different machines.

 Fig. 2. A feasible solution of above instance

4

8

12 2

5

6

7 10

0

0

0

0

1 2 3

4 5 #

6 7 8

4

8

12 2

5

6

7 10

0

0

0

0

1 2 3

4 5 #

6 7 8

Fig. 1. Disjunctive graph of an instance

Fig.2. shows a feasible solution via a digraph DH, H= ((5,1), (1,6))∪((2,7))∪
((4,8), (8,3)). A critical path P(0, #) in this DH is (0,4,5,1,6,7,8,3,#) with r = 4, B1 = (4),
B2 = (5,1,6), B3 = (7) and B4 = (8,3) and length of 47.

3. The algorithm

Both the technique TS and the procedure ISB are the cornerstone of the new al-
gorithm TSISB. In this section these two techniques are describes in details.

3.1 The tabu search

The Tabu Search technique proposed and formalized by Glover [10,11] is a
meta-heuristic algorithm that is used to get optimal or near-optimal solution of com-
binational optimization problems. This method is based on an iterative procedure of
neighborhood search, to find a member θ

* in a certain finite set Ω of feasible solu-
tions, where θ

* minimizes some objective function C(•).
Neighborhood search methods are iterative procedures in which a neighborhood

N(θ) must be predefined for each solution θ ∈Ω, and each neighbor of θ is defined by
some modifications of θ it-self. The next solution θ

′ to θ (one of the neighbors of θ)
is searched among N(θ), and a step from θ to the θ ′ is usually called a move. Starting
from a current feasible solution θ

c, all the neighbors in N(θ
c) are examined and the

solution θ ′ with usually the best value of the objective function is chosen as the next
solution, θ ′: C(θ ′) ≤ C(θ″) (θ ′, θ″ ∈N(θ)). It is just the greedy scheme that is easy to
get stuck of local optima. So, the strategy that the movement from θ

c to θ ′∈N(θ c) is
allowed even if C(θ ′) > C(θ

c) helps the search escape from the trap of local optima.
This strategy is one of the important characters of TS technology.

With TS scheme, the cycling, i.e. the search return to the solution that has been
visited, may be met. To prevent this cycling, a structure called Tabu list L with length
l is introduced in order to prevent the search from returning to a solution visited
within the last l iterations. In general, the TS process stops when the C(θ) is close
enough to the lower bound of C(•), or, when no improvement occurs over the best
solution within a given number of iterations or the time-limit runs out.

3.2 Neighborhood structure

It is known that there is no any fork on the searching track of TS. To this end,
there must be more information to direct the exploration. In fact, there are short-term
and long-term information concerned with the exploration process. This systematic
use of the information is the essential feature of TS. The approach uses this strategy
not only to avoid cycling but also to explore new directions in the neighborhood. The
short-term information represented by the Tabu list, is based on the last l iterations
and will partly prevent cycling. The long-term information contains C

*, the best value
of C(•) found by TS so far.

The exploration process in Ω is described in terms of move. For each solution θ

∈Ω, let M(θ) denotes the set of moves that can be applied to θ, and let a next solution
of θ be w = θ ⊕ v, then the neighborhood of θ can be denoted as N(θ) = {w |∃v∈M(θ), w

=θ ⊕ v}. In general, the move is reversible, i.e. for each v there exits a move v-1 such
that (θ ⊕ v) ⊕ v-1

 = θ. So, instead of storing the information of complete solution, the
Tabu list stores only the move it-self or the reverse of it associated with the move ac-
tually performed. Unfortunately, the restrictions of the Tabu list sometimes are so
strong that they prevent getting a very good solution. This short-come can be over-
come by using a sort of long-term information, aspiration criterion that allows the
algorithm to choose a move from those forbidden moves, i.e. tabu moves. A tabu
move applied to a solution θ is promising if it gives a solution better than the best one
so far found.

The neighborhood structure used in our algorithm is described as following. In
the next content, we denote the job-predecessor and job-successor of an operation w
by p(w) and s(w), respectively. As a matter of fact, if p(w) or s(w) exists, then (p(w), w)
or (w, s(w)) belong to A. For a feasible solution DH, denote L(w, u) as the longest path
from w to u in DH, and P(0, #) as a critical path of DH. Let (w, h1, h2,…, hk) be a criti-
cal block of P(0, #), and p(w) be in P(0, #). For any hi (i =1, 2,…, k), if there is

L(0,w) ≥ L(0, p(hi)) (2)

then a backward move on w and hi, i.e., let operation hi be processed right before the
operation w, will yield a new feasible solution [9]. This new solution is looked as one
of neighbors of DH. Also, let (h1, h2, …, hl, u) be another critical block of P(0, #), and
s(u) be in P(0, #). For any hj(j =1, 2,…, l), if there is

L(0, s(hj)) ≥ L(0, u) (3)

then a forward move on hj and u, i.e., let operation hj be processed right after the op-
eration u, will yield a new feasible solution[9]. This new solution is looked as one of
the neighbors of DH, too. For all critical blocks of P(0, #), we test them by use of the
inequalities (2) and (3) to generate all neighbors of DH. It has been proved that swap
w and h1 or hl and u must lead feasible neighbor of DH, so the two inequalities are ig-
nored in our algorithm.

Based on these two kinds of moves, the neighborhood of DH consists of all those
neighbors of it. Furthermore, this new kind neighborhood structure is different from
all those used by previous authors, such as Larrhoven et al.[15], Nowicki et al.[16]
and Pezzella et al.[17]. Compared with our neighbor- hood, those of Larrhoven and
Pezzella are larger, which slows down the local search, and that of Nowicki is smaller,
which usually limits the local search in a quite narrow area of the solution space.
Balas takes use of a kind of neighborhood structure similar to ours, which gets a bal-
ance between the search speed and search space [5]. However, we reduce the compu-
tational cost in each step greatly.

Now, let θ
* be the best solution so far and I be the iteration counter, the TS pro-

cedure is described as follows:
Step1. Choose an initial solution θ, set θ

*
 = θ, I = 0;

Step2. I = I+1, and generates the subset N
of N(θ) such that either the applied

move does not belong to the Tabu list or at least one of the aspiration criteri-
ons satisfied;

Step3. Choose a best solution θ ∈N# according to the objective function C(•) of the

problem;
Step4. If C(θ) < C(θ

*), then set θ
*

 = θ. Update the tabu list and the aspiration crite-
rion;

Step5. If stopping criterion is met, then stop. Otherwise, go to Step 2..
Where, Steps2, 3, 4 consists of the local search procedure of TS. Some of the

stopping rules are as follows: ① N(θ)=φ ; ② I is larger than the maximum number
of iterations or the number of iterations is larger than a specific number since the last
improvement of the best solution and ③ the optimal or near-optimal solution is
found.

3.3 Initial solution and tabu list

In most of the algorithm associated with TS technology, a good initial solution is
fundamental for the computational performance of the algorithm. ISB is an affective
algorithm for the job shop scheduling problem. This choice generation of the initial
feasible solution allows our algorithm to obtain quite good solutions in comparable
computational time or the same solution in shorter computational time.

The improved shifting bottleneck procedure is based on the famous SB that is
proposed by Adams[2], and it solves one machine problem by DS (Schrage algorithm
with disturbance). The main steps of ISB is as following:

Step1. Identify the bottleneck machine and sequence it with DS;
Step2. Re-optimize the machines of M0 with DS in turn (at most 3 times), while

keep the others fixed. If M0 = M, stop. Otherwise, go to Step1..
The procedure iterates over each machine and finishes when no improvement is

found. At the last step, after the last machine has been sequenced, the procedure con-
tinues to local re-optimization until there is no improvement for the full cycle.

In the acyclic digraph DH, let ri = L(0, i), qi = L(i, #) - di, DS is given as following:
Step1. Set t = min{ri; i∈Vk}, R = Vk;
Step2. If ri > t, then ui = qi - δ (ri - t), otherwise ui = qi, i∈R;
Step3. Choose an operation from R, say j, with the greatest uj, and if there are ties,

break them by giving preference to the greatest qj, and if there are ties still, break
them by giving preference to the greatest dj, and if there are ties other still, break them
by choosing randomly. Set tj = max{rj, t}, R⇐R \ {j};

Step4. If R = φ, stop. Otherwise, set t = max{tj + dj, min{ri; i∈R}}, go to Step 2..
Where δ is the disturbance coefficient with value of 3 n /2, and n is the

number of nodes in Vk. It is easy to know that the complexity of DS is O(n2).
As a matter of fact, the tabu list L is one of the components of the neighborhood

structure of TS, and the value of the length l is an important parameter. Nowocki im-
plements a fixed value of l = 8 [16], and Pezzella adopts a variable value of l from
2n/3 to 2n [17]. Since any implementation of TS is problem oriented and needs par-
ticular definitions of values of tuning parameters such as l and level of aspiration [17],
l is a semi-variable value of (n+m)/2 in our experiments. Because of concerning
with n and m, this is a new way to determine the value of l. In TSISB, the way of up-
dating the Tabu list is not the same as that of Nowocki’s procedure. Especially, when
N

#=φ, but N(θ
c) ≠ φ, TSISB selects the oldest tabu move while not repeating the latest

tabu move.

3.4 The intensification and diversification

Recently, TS is improved by aspiration criteria, intensification and diversifica-
tion [12], which is to improve the effectiveness and efficiency of TS. However, our
strategies of intensification and diversification are different from those of other au-
thors.

 Intensification strategy is to make the algorithm search around some smart so-
lutions. TSISB implements this strategy not by back jumping scheme in the procedure
of Nowocki et al. but by setting a quite large value of the up-bound of iterations. This
up-bound is denoted as Maxiter. TSISB does not change the local search strategy of
TS until it does not improve the best solution obtained so far within Maxiter iterations.
Usually, the larger the Maxiter is the better the quality of solutions is. However, a lar-
ger Maxiter needs more computating time and the quality of solutions may not be im-
proved indefinitely. In one word, the intensification procedure is just the local search
procedure of TS, Steps 2,3,4 as described in §3.2.

On the other hand, diversification strategy is to make the algorithm search in
different regions of the solution space, and these regions are far from each other. Ac-
cording to the literatures, the enough large number of iterations is used to differ these
regions from each other [12]. To direct the search to different regions, TSISB imple-
ments the local re-optimization procedure of ISB after Maxiter steps of the local
search of TS are implemented. This local re-optimization is the procedure of Step2 in
ISB, where M0=M, and it does not stop until there is no improvement during a full cy-
cle. In fact, from a feasible solution, the re-optimization procedure is also a local
search procedure whose neighborhood consists of the swap of any two operations
processed by the same machine[5]. It is clear that the local re-optimization procedure
with a low complexity is very different from the local search procedure of TS, which
makes our diversification efficient and effective. In other words, once this strategy is
implemented, usually the local search can really arrive at a new region. Further more,
this diversification is different from those in literatures [3,6,7,17], one important rea-
son is that the constraint of tabu list is ignored while implementing this diversification
procedure. To get good solutions in a moderate period, the time of implementing di-
versification strategy is less than Maxt.

Let T denotes the time that this strategy is implemented, the main steps of TSISB
is described as follows:

Step1. Get initial solution θ by ISB, and set θ
*

 = θ, I = 0 and T = 0;
Step2. I = I + 1, and generates the subset N

of N(θ) such that either the applied
move does not belong to the tabu list or at least one of the aspiration criterions satis-
fied;

Step3. Choose a best solution θ ∈N# according to the objective function C(•) of the
problem;

Step4. If C(θ) < C(θ
*), then set θ = θ

*. Update the Tabu list and the aspiration crite-
rion;

Step5. If θ
* is optimal or equal to the lower bound, then stop. If C(θ) < C(θ *), set I

= 0, and go to Step2.;
Step6. If I < Maxiter, go to Step2. . Otherwise, T = T + 1 and implement the

re-optimization procedure;
Step7. If T < Maxt, set I = 0 and go to Step2., Otherwise, stop.

4. Computational results

TSISB is implemented in C language on personal computer Pentium 166MHz.
The algorithm has been tested on 88 problem instances of various sizes and hardness
level provided by OR-Library (http:// mscmga. Ms.ic.ac.uk/info.html) classed as fol-
lowing:

(a) Three instances FT6, FT10, FT20 due to Fisher and Thompson with
n×m=6×6, 10×10, 20×5, and five instances ABZ5-9 due to Adams et al. with two
n×m=10×10 and three n×m=20×15.

(b) Eighty instances of eight different sizes (n×m = 15×15, 20×15, 20×20, 30×15,
30×20, 50×15, 50×20, 100×20) denoted as TD1-80. This class contains “partially
hard ” cases selected by Tailard among a large number of randomly generated in-
stances [18]. The optimal solution is known only for 33 out of 80 instances.

TSISB is compared with all latest procedures for which we can find results
(make-span, CPU time) in the literatures. The following notations are for those pro-
cedures: NS(3) gives the outcome of over three runs stand for the tabu search proce-
dure of Nowicki and Smutniki; TD stands for the taboo search procedure of Taillard
[18]. TSSB stands for a Tabu search procedure of Pezzella and Merelli [17]. SB-GLS1,
SB-RGLS5,10 stand for three of the twelve guided local search procedures of Balas
and Vazacopoulos[5]; and BV-best stands for the best solution of these 12 procedures.

Table 1. Comparison with TSSB on instances (a)

 OPT TSISB TSSB

Problem n m (UB LB) UB RE Time UB RE Time

FT6 6 6 55 55 0.00 - 55 0.00 -

FT10 10 10 930 930 0.00 200 930 0.00 80

FT20 20 5 1165 1165 0.00 73.2 1165 0.00 115

ABZ5 10 10 1234 1234 0.00 9.0 1234 0.00 75

ABZ6 10 10 943 943 0.00 231 943 0.00 80

ABZ7 20 15 656 665 1.37 2028 666 1.52 200

ABZ8 20 15 (645 669) 671 4.03 2196 678 5.12 205

ABZ9 20 15 (661 679) 686 3.64 2724 693 4.84 195

MRE 1.13 1.44

The best lower bound (LB) for the problem is taken from [17]. The relative error
RE (%) is calculated for each procedure and each instance, i.e. the percentage by
which the solution obtained is above the LB, 100((UB-LB)/LB), and MRE means the

mean relative error. The Time stands for computer independent CPU times that are
based on Dongarra [7], as interpreted by Vaessens et al. [19].In our experiments, when
m ≤ 15 or m > 15, the parameters Maxiter gets the value 8000 and 12000 respectively;
when m ≤ 10, m = 15 or m > 15, Maxt gets the values 5, 10 and 15 respectively. The op-
timal solution and the lower bound for the stop criteria are equal to the LB.

Table1 compares TSISB with TSSB on instances (a). This class of instances in-
cludes the notorious FT10 (10×10) due to Fisher and Thompson , and it takes TSISB a
quite reasonable period to obtain its optimal solution. Both of these algorithms find
the optimal solution of five instances except three hard instances ABZ7,8,9, and the
optimal solutions of ABZ8,9 are not known yet. Because the parameter Maxt is set as
10, TSISB makes greater efforts than TSSB to compute the three instances ABZ7-9,
however, the MER of TSISB is smaller than that of TSSB.

Table 2. Comparison with other 7 algorithms on the instances of TD1-50

Problem

Class
n m TD NS(3) SB-GLS1 SB-RGLS5 SB-RGLS10 BV-best TSSB TSISB

TD1-10 15 15 1.60 2.41 2.24 1.32 1.25 1.16 1.45 1.32

 − (203) (57) − − (1498) (2175) (1097)

TD11-20 20 15 4.52 5.46 6.18 4.17 4.00 3.67 4.13 4.04

 − (271) (113) − − (4559) (2526) (2232)

TD21-30 20 20 6.67 7.95 8.12 6.70 6.56 6.10 6.52 6.38

 − (361) (165) − − (6850) (34910) (6644)

TD31-40 30 15 2.43 3.05 3.53 1.49 1.30 0.79 1.92 1.34

 − (407) (175) − − (8491) (14133) (4101)

TD41-50 30 20 6.32 8.34 8.50 5.86 5.73 5.20 6.04 5.70

 − (542) (421) − − (16018) (11512) (17784)

MRE 4.31 5.44 5.71 3.91 3.77 2.65 4.01 3.76

The average computing time for each class is in the parenthesis, − means not reported

Next, the 80 instances TD1-80 are computed. Among these instances, about 30
are easy because the number of jobs are several times that of machines [5], and the
other 50 ones TD1-50 are hard not only because the number of their jobs and ma-
chines are almost same but also because their quite large sizes. The number of opera-
tions of these 50 instances is between 225 and 600, and these instances are divided
into 5 classes according their sizes. Table2 gives the MRE for each of the class and
the MRE of all these instances. Three of the 8 algorithms did not report their comput-
ing time. Not only on the MRE but also on the computing time, TSISB has the best
performance, especially when the number of machines is equal to 20. It is contribute
to several factors, such as, the producer for the initial solution, the diversification
strategy and the new neighborhood in our algorithm.

TSISB has got the 28 optimal solutions out of the 30 easy instances except for TD62
and TD67 (n×m = 50×20) whose optimal solutions are not found yet. However, it ob-
tains the best solutions of these two instances with the make-span of 2826 and 2879,
respectively. Furthermore, the value of 2879 is the lowest up-bound so far of instance
TD62 whose computing time is 8334 seconds, and the average computing time of
TSISB on the 30 instances are much less than that of both TSSB and BV-best. In de-
tails, the average computing time for these three classes instances is TD51-60: 70.6
seconds; TD61-70: 2296 seconds and TD71-80: 186 seconds.

5. Conclusion

The new heuristic algorithm TSISB that is based on the TS technique and the
improved shifting bottleneck procedure turns out to be effective and efficient. It gets
initial solution with a new procedure ISB. TSISB implements TS procedure in a very
nature way and improves the intensification and diversification strategies of TS by
using both the local search procedure of TS and the local re-optimization procedure of
ISB in turn. In the local search procedure of TS, TSISB adopts new neighborhood
structures and executes the parameters δ, l, Maxite and Maxt in a simple manner.

The computational experiments show that TSISB is better than TSSB. TSISB
performs better than SB-RGLS5,10 on the instances TD1-80. Especially, within a
moderate period, TSISB has found a lower up-bound than them for the instance TD62
with a quite large size of n×m = 50×20. It can conclude that TSISB is robust, effective
and efficient algorithm for its performance on the 88 benchmarks. Further more, other
local search procedure and parallel algorithm can benefit from the way of implement-
ing of diversification strategy in TSISB.

Reference

1. Aarts, E., LenstraJ, K.: Local Search and Combinational Optimization. Wiley,
New York (1997)

2. Adams, J., Balas, E., Zawack, D.: The Shifting Bottleneck Procedure for Job
Shop Scheduling. Management Sci. 3 (1988) 391-401

3. Applegate, D., Cook, W.: A Computational Study of Job-shop Scheduling. ORSA
J. Computing. 2 (1991) 149-156

4. Balas, E.: Machine Sequencing via Disjunctive Graphs: An Implicit Enumeration
Algorithm. Oper. Res. 17 (1969) 941-957

5. Balas, E., Vazacopoulos, A.: Guided Local Search with Shifting Bottleneck for
Job Shop Scheduling. Management Sci. 2 (1998) 262-275

6. Dell’Amico, M., Trubian, M.: Applying Tabu-search to the Job-shop Scheduling
Problem, Ann. Oper. Res. 4 (1993) 231-252

7. Dongarra, J. J.: Performance of Various Computers Using Standard Liner Equa-
tions Software. Report CS-89-85, Computer Science Department, University of
Tennessee, Knoxville TN (1993)

8. French, S.: Sequencing and Scheduling: An Introduction to the Mathematics of

the Job Shop. Wiley, New York (1982) 31-157
9. Huang, W.q., Yin, A.H.: An Improved Shifting Bottleneck Procedure for the Job

Shop Scheduling Problem. Computers and Operations Research. 12 (2004)
2093-2110

10. Glover, F.: Tabu Search—Part I. ORSA J. Computing. 3 (1989) 190-206
11. Glover, F.: Tabu Search—Part II. ORSA J. Computing. 1 (1990) 4-32
12. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers Boston (1997)
13. Grabowski, J., Nowicki, E., Zdrzalaka, S.: A Block Approach for Single Machine

Scheduling with Release Dates and Due Dates. European J. of Oper. Res. 1
(1986) 278-285

14. Hertz, A., Taillard, E., De Werra, D.: Local Search in Combinatorial Optimization.
In: Aarts, E., Lenstra, J. (eds.): Tabu Search. vol. 5. Wiley, New York (1977)
121-136

15. Van Laarhoven, P. J. M., Aarts, E. H. L., Lenstra, J. K.: Job Shop Scheduling by
Simulated Annealing. Oper. Res. 2 (1992) 113-125

16. Nowicki, E., Smutnicki, C.: A Fast Taboo Search Algorithm for the Job Shop
Scheduling Problem. Management Sci. 6 (1996) 797-813

17. Pezzella, F., Merelli, E.: A Tabu Search Method Guided by Shifting Bottleneck
for the Job Shop Scheduling Problem. European J. of Oper. Res. 2 (2000)
297-310

18. Taillard, E.: Benchmarks for Basic Scheduling Problems. European J. Opera-
tional Res. 4 (1993) 278-285

19. Vaessens, R. J. M., Aarts, E. H. L., Lenstra, J. K.: Job Shop Sheduling by Local
Sarch. Memorandum COSOR 94-05. Eindhoven University of Technology, De-
partment of Mathematics and Computing Science. Eindhoven The Netherlands
(1994)

Aihua Yin: Ph.D.. UFsoft School of Software Jiangxi University of Finance and
Economics. Research interests are in intelligent computing, combinatorial optimiza-
tion, operational research, covering problem and SAT problem.

