
An Efficient Parallel Loop Self-Scheduling on Grid 
Environments 

Chao-Tung Yang1, Kuan-Wei Cheng1, and Kuan-Ching Li2 

1High Performance Computing Laboratory 
Dept. of Computer Science and Information Engineering 

Tunghai University 
Taichung, 407 Taiwan, R.O.C. 

ctyang@mail.thu.edu.tw 
 

2Parallel and Distributed Processing Center 
Dept. of Computer Science and Information Management 

Providence University 
Shalu, Taichung, 433 Taiwan, R.O.C. 

kuancli@pu.edu.tw 

Abstract. The approaches to deal with scheduling and load balancing on PC-based 
cluster systems are famous and well-known. Self-scheduling schemes, which are 
suitable for parallel loops with independent iterations on cluster computer system, 
they have been designed in the past. In this paper, we propose a new scheme that can 
adjust the scheduling parameter dynamically on an extremely heterogeneous PC-
based cluster and grid computing environments in order to improve system 
performance. A grid computing environment consists of multiple PC-based clusters is 
constructed using Globus Toolkit and SUN Grid Engine middleware. The 
experimental results show that our scheduling can result in higher performance than 
other similar schemes. 

Keywords. Parallel loops, Self-scheduling, PC-based clusters, Grid Computing 

1. Introduction 
Parallel computers are increasingly widespread, and nowadays, many of these parallel 
computers are no longer shared-memory multiprocessors, but follow the distributed 
memory model due to scalability factor. These systems consist of homogeneous 
workstations, where all these workstations have processors, memory and cache memory 
with exactly identical specifications. Nowadays, more and more systems are composed of 
homogeneous and clustered together with a number of heterogeneous workstations, where 
they may have similar or different architectures, speed, and operating systems. For this 
reason, first of all we have to do is to distinguish whether the target system is homogeneous 
or heterogeneous. Therefore, we define a frame of relativity to decide the cluster system to 
two typical cases comparatively, say relatively homogeneous and relatively heterogeneous. 

After the system architecture is clear, the next starting point is the task analysis. As we 
know, the major source of program parallelization is loop. If the loop iterations can be 
distributed to different processors as evenly as possible, the parallelism within loop 
iterations can be exploited. Loops can be roughly divided into four kinds, as shown in 
Figure 1: uniform workload, increasing workload, decreasing workload, and random 
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workload loops. They are the most common ones in programs, and should cover most case. 
In a relatively homogeneous case, workload can be partitioned proportionally by computing 
power respectively to each working computer, but in relatively heterogeneous case, this 
method will not work. The self-scheduling scheme works well not only in moderate 
heterogeneous cluster environments but also in extremely heterogeneous environment 
where the performance difference between the fastest computer and the slowest computer is 
large.  

 
Figure 1. Four kinds of loop style 

In this paper, we revise known loop self-scheduling schemes to fit both homogeneous 
and heterogeneous PC clusters environment. The HINT Performance Analyzer [2] is given 
for a help to distinguish whether the target system is relatively homogeneous or relatively 
heterogeneous. Afterwards we partition loop iteration styles by four different ways 
according to the cluster system typical cases for achieving good performance in any 
possible executive environment. In this paper, we propose a new scheme that can adjust the 
scheduling parameter dynamically on an extremely heterogeneous PC-based cluster and 
grid computing environments in order to improve system performance. A grid computing 
environment consists of multiple PC-based clusters is constructed using Globus Toolkit and 
SUN Grid Engine middleware. The experimental results show that our scheduling can 
result in higher performance than other similar schemes. 

2. Background 

2.1. Self-Scheduling 
Self-scheduling is a large class of adaptive/dynamic centralized loop scheduling schemes. 
In a common self-scheduling scheme, p denotes the number of processors, N denotes the 
total iteration and f() is a function to produce the chunk-size at each step. At the i-th 
scheduling step, the master computes the chunk-size Ci and the remaining number of tasks 
Ri,  

R0=N, Ci=f(i,p), Ri=Ri-1-Ci 
where f() possibly has more parameters than just i and p, such as Ri-1. The master assigns Ci 
tasks to an idle slave and the load imbalancing will depend on the execution time gap 
between tj, for j=1, …, p [7]. 
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2.2. The α Self-Scheduling Scheme 
In the previous scheduling paper [1], α% partition of workload was according to their 
performance weighted by CPU clock in the first phase and the rest (100-α)% of workload 
according to known self-scheduling in the second phase. The experimental results were 
conducted on a PC cluster with six nodes and the fastest computer is 7.5 times faster than 
the slowest ones in CPU-clock cycle. Many various α values are applied to the matrix 
multiplication and a best performance is obtained with α=75. Thus, our approach is suitable 
in all applications with regular parallel loops. Through αSelf-Scheduling Scheme, we get 
three new improved self-scheduling schemes; From FSS, GSS, TSS, so called NFSS, 
NGSS, and NTSS [1], where N means “new” here. 

3. Methodology 
The adjustment of scheduling parameters dynamically and fit multiform system 
architectures to accomplish our system has been implemented. Later, we combined Grid 
computing technology, the HINT Performance Analyzer, our αself-scheduling scheme, 
and the dynamic adjustment of scheduling parameters into a whole new approach.  

3.1. System Definition 
System definition is the first step in our approach. The HINT Performance Analyzer [2] is 
given for helping us to distinguish whether the target system is relatively homogeneous or 
relatively heterogeneous. We gather CPU performance capabilities, amounts of memory, 
cache sizes, and basic system performance by HINT. An updatable library, called System 
Information Array (SIA), is build to record the collection of the information. Define the 
two Cluster System Typical Cases as follows: 

Gather CPU Information, P1, P2…Pn,  
Assume P1 is the node that has the worst performance (working ability) of all. 
Say, Pn =r n P1 

Partition α% of workload according to their performance weighted by CPU clock and 
the rest (100-α)% of workload according to known self-scheduling scheme. 

(1) Define Heterogeneous Ratio (HR), HR=
p
p

n

1 ≈
MaxQUIPS
MinQUIPS ≈

rn
1  <α’/ 100, where

α’ is the temporary value of α. 
(2) Case 1: If  α’ < HR, then we say the target system is relatively heterogeneous case. 
       Case 2: If  α’ > HR, then we say the target system is relatively homogeneous case. 

 
(3) If the target system is relatively heterogeneous system, we start theαself-scheduling 

scheme withα=α’ % 
If the target system is relatively homogeneous, then we run the HINT benchmark to 
build (and update) the SIA, and start theαself-scheduling scheme withα=100 % 

There is still a point for attention: not always update the SIA before each time of job 
submission, only when the system has one or more new nodes added, SIA-update will be 
needed and αwill be properly adjusted.  
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3.2. Loop Styles Analysis 
For the programs with regular loops, intuitively, we may want to partition problem size 
according to their CPU clock in heterogeneous environment. However, the CPU clock is 
not the only factor which affects computer performance. Many other factors also have 
dramatic influences in this aspect, such as the amount of memory available, the cost of 
memory accesses, and the communication medium between processors, etc [5]. Using this 
intuitive approach, the result will be degraded if the performance prediction is inaccurate. A 
computer with largest inaccurate prediction will be the last one to finish the assigned job.  

Loops can be roughly divided into four kinds, as shown in figure 1: uniform workload, 
increasing workload, decreasing workload, and random workload loops. They are the most 
common ones in programs, and should cover most cases. These four kinds can be classified 
two types: regular and irregular. The first kind is regular and the last three ones are 
irregular. Different loops may need to be handled in different ways in order to get the best 
performance. Since workload is predictable in regular loops, it is not necessary to process 
load balancing at beginning.  

We propose to partition problem size in two stages. At first stage, partition α% of total 
workload according to their performance weighted by CPU clock. In the way, the 
communication between master and slaves can be reduced efficiently. At second stage, 
partition following (100-α) % of total workload according to known self-scheduling 
scheme. In the way, load balancing can be archived. This approach can be suitable for all 
regular loops. An appropriate α value will lead to good performance.  

Furthermore, dynamic load balancing approach should not be aware of the run-time 
behavior of the applications before execution. But in GSS and TSS, to achieve good 
performance, computer performance of each computer in the cluster has to be in order in 
extreme heterogeneous environment, which is not very applicable. With our schemes, this 
trouble will not exist. In this paper, the terminology “FSS-80” stand for “α=80, and 
remainder iterations use FSS to partition” and so on. 

Example 1 

Suppose that there is a cluster consisting of five slaves. Each of computing nodes has CPU 
clock of 200MHz, 200MHz, 233MHz, 533MHz, and 1.5GHz, respectively. Table 1 shows 
the different chunk sizes for a problem with the number of iteration I=2048 in this cluster. 
The number of scheduling steps is parenthesized. 

 
Table 1. Sample partition size of Example 1 

GSS 410, 328, 262, 210, 168, 134, 108, 86, 69, 55, 44, 35, 28, 23, 18, 14, 12, 9, 7, 6, 5, 4, 
3, 2, 2, 2, 1, 1, 1, 1 (N=30) 

GSS-80 923, 328, 144, 123, 121, 82, 66, 53, 42, 34, 27, 21, 17, 14, 11, 9, 7, 6, 4, 4, 3, 2, 2, 1, 
1, 1, 1, 1 (N=28) 

FSS 205, 205, 205, 205, 205, 103, 103, 103, 103, 103, 51, 51, 51, 51, 51, 26, 26, 26, 26, 
26, 13, 13, 13, 13, 13, 6, 6, 6, 6, 6, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1 (N=43) 

FSS-80 923, 328, 144, 123, 121, 41, 41, 41, 41, 41, 21, 21, 21, 21, 21, 10, 10, 10, 10, 10, 5, 
5, 5, 5, 5, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1  (N=39) 

TSS 204, 194, 184, 174, 164, 154, 144, 134, 124, 114, 104, 94, 84, 74, 64, 38 (N=16) 
TSS-80 923, 328, 144, 123, 121, 40, 38, 36, 34, 32, 30, 28, 26, 24, 22, 20, 18, 16, 14, 12, 10, 

8, 1 (N=23) 
To model our approach, we use following terminology: 
• T is the total workload of all iterations in a loop. 
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• W is the α% of total workload. 
• b is the fewest workload in an increasing/decreasing workload loop. It can be the 

workload of the first iteration (in an increasing workload loop) or the workload of the 
last iteration (in a decreasing workload loop). 

• h is the different of workload between consequence iterations. h is a positive integer. 
• x is the iteration number on which the α % accumulating workload is reached. x is 

positive real. 

3.3. System Modeling 
In our new parallel loop self-scheduling scheme, the HINT Performance Analyzer help us 
to decide the cluster system for two typical cases comparatively, and the next we must have 
proper reaction and appropriate self scheduling scheme processed on which system 
architecture and loop style are changeable. Parallel loop style analysis is essential since 
parallel loops can be roughly divided into four kinds, as shown in Figure 1: uniform 
workload, increasing workload, decreasing workload, and random workload loops. They 
should be the most common ones in programs, and should cover most cases. Moreover, we 
implement the adjustment of scheduling parameters dynamically to fit multiform system 
architectures, and message passing interface (MPI) directives parallelizing code segment to 
be executed by multiple CPUs which is so called cluster. In the loop parallelism region, our 
self-scheduling scheme must be hand inserted into source code in the region where the 
largest possible loops that may be parallelized. An example of how our new self-scheduling 
scheme works is shown in Figure 2. 

 
Figure 2. System model. 
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4. Experimental Results 

4.1. Hardware and Software Configuration 
Our Grid architecture is implemented on top of Globus Toolkit, name grid-cluster. It is built 
three PC clusters to form a computational grid environment (Figure 3). 

• Alpha site: Four PCs, each PC has two AMD Athlon MP2000 processors, 512MB 
DDRAM and Intel PRO100VE NIC. 

• Beta site: Four PCs, each PC has one Intel Celeron 1.7GHz processor, 256MB 
DDRAM, and 3Com 3c9051 NIC. 

• Gamma site: Four PCs, each PC has two Intel P3 866 MHz processors, 256MB 
SDRAM and 3Com 3c9051 NIC. 

SGE QMaster daemon is run on the master node of each PC cluster, and SGE execute 
daemon is run to manage and monitor incoming job and Globus Toolkit v2.4. Each slave 
node is running SGE execute daemon to execute income job only. The operating system is 
RedHat Linux release 9. Parallel application we use MPICH-G2 v1.2.5 for message passing. 

 

 
Figure 3. THU Grid testbed 

4.2. Experimental Results 

4.2.1. Regular Workload 

The experiment consists of three different scenarios: (1) Differences performance 
presentation of scheduling schemes in uniform workload. (2) Different grid environment 
and (3) Matrix multiplication with different matrix sizes. At first step, we run a MPI 
program on different grid system to evaluate the system performance. Second step, we 
connect these grid systems together to form a grid environment (In our testbed is grid 
Alpha, Beta and Gamma) Then, running the same MPI program to evaluate the system 
performance. Third step, through the different system topologies, we connect the system 
characteristics together for a performance analysis. Finally, we run the same MPI program 
to evaluate the system performance of different system architectures. Our new scheme can 
guarantee whether what kind of parallel loop scheduling situation happen, they can be 
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properly well-arranged in our approach and achieved better performance than other scheme 
developed before, all of the performance analysis are presented in Figures 4, 5, and 6. 

Figures 4, 5, and 6 note that our approach connects these grid systems together to form a 
grid environment (In our testbed is grid Alpha, Beta and Gamma) Then, running the same 
MPI program to evaluate the system performance and implements FSS, GSS, and TSS 
group approach. In previous methods, NFSS, NTSS, and NGSS get worse performance 
than new scheme with dynamic parameterization and systematic adjustment automatically. 
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Figure 4. A chart of execution time of different sizes of matrix multiplication by grid α+β+γ. 
Figure 5. A chart of execution time of  different sizes of matrix multiplication by grid β. 
Figure 6. A chart of execution time of  different sizes of matrix multiplication by grid β+γ. 

4.2.2. Irregular Workload 

The experiment consists of three scenarios: Differences performance presentation of 
scheduling schemes in (1) Increasing workload. (2) Decreasing workload and (3) Random 
workload. Fig 7, 8, 9, note that execution time of simulated increasing, random, and decreasing 
workload loop by various self-scheduling approaches grid α+β+γ. 
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Figure 7                                        Figure 8                                       Figure 9 

Figure 7. A chart of execution time of simulated increasing workload loop by various self-scheduling 
approaches grid α+β+γ. 
Figure 8. A chart of execution time of simulated random workload loop by various self-scheduling 
approaches grid α+β+γ. 
Figure 9. A chart of execution time of simulated decreasing workload loop by various self-scheduling 
approaches grid α+β+γ. 
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5. Conclusion and Future Work 
In this paper, we can find that Grid Computing technology certainly can bring more 
computing performance than the traditional PC Cluster or SMP system. Moreover, we try 
to draw up and integrate a nice and complete system implemented on parallel loop self-
scheduling. The system can guarantee whether what kind of parallel loop scheduling 
situation happen, they can be properly well-arranged in our system and achieved better 
performance than other scheme developed before. We revise known loop self-scheduling 
schemes to fit both homogeneous and heterogeneous PC clusters and Grid environment 
when loop style is regular or irregular. After enough feedback information has been 
investigated, collected, and analyzed, the performance will well-improved in each time of 
feedback information collection and job submission. Now we combine Grid Computing  
technology, the HINT Performance Analyzer, our α self-scheduling scheme, and the 
dynamic adjustment of scheduling parameters into a whole new approach successfully. The 
goal of achieving good performance on parallel loop self-scheduling by our approach is 
definitely practicable. The appropriate method to investigate the performance trend after the 
new computing nodes added and the proper way to adjust the value of αare our future 
work. 
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