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Abstract. How to build the mutual trust among Grid resources sites is crucial 
to secure distributed Grid applications. We suggest enhancing the trust index of 
resource sites by upgrading their intrusion defense capabilities and checking the 
success rate of jobs running on the platforms. We propose a new fuzzy-logic 
trust model for securing Grid resources. Grid security is enforced through trust 
update, propagation, and integration across sites. Fuzzy trust integration reduces 
platform vulnerability and guides the defense deployment across Grid sites. We 
developed a SeGO scheduler for trusted Grid resource allocation.  

The SeGO scheduler optimizes the aggregate computing power with 
security assurance under fixed budget constraints. The effectiveness of the 
scheme was verified by simulation experiments. Our results show up to 90% 
enhancement in site security. Compared with no trust integration, our scheme 
leads to 114% improvement in Grid performance/cost ratio. The job drop rate 
reduces by 75%. The utilization of Grid resources increased to 92.6% as more 
jobs are submitted. These results demonstrate significant performance gains 
through optimized resource allocation and aggressive security reinforcement.     

1.  Introduction 
In Grid computing systems [2], user programs containing malicious codes may 
endanger the Grid resources used. Shared Grid resources once infected may damage 
the user applications running on the Grid platforms [8]. We address these issues by 
allocating Grid resources with security assurance. The assurance is achieved by 
hardware, software, and system upgrades to avoid application disasters in an open 
Grid environment.  

Mutual trust must be established between all participating resource sites.  Like 
human relationship, trust is often expressed by linguistics terms rather numerically. 
Fuzzy logic is very suitable to quantify trust among peer groups. The fuzzy theory 
[10] has not been explored much in network security control. To our best knowledge, 
only Manchala has suggested a fuzzy trust model for securing E-commerce [12].   

Azzedin and Maheswaran [3] and Liu and Shen [11] have developed some 
security-aware models between resource providers and consumers. Globus GSI uses 
public key certificates and proxies for trust propagation [7]. We use fuzzy inferences 
to consolidate security enforcement measures in trusted Grid computing.  
__________________________________________________________________ 
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Our trust assessment involves the measurement of dependability, security, 
reliability and performability. Trust level is updated after the Grid successfully 
executed user jobs. Butt and Fortes, et al [3] protect Grid resources from distrusted 
applications. We choose a reverse approach by assuring security in the resource pool. 
Figure 1 shows the interaction between two Grid Resource sites.   
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Fig. 1. Securing Grid resources with trust integration and resource brokerage 

We propose a Secure Grid Outsourcing (SeGO) scheduler to outsource jobs to 
multiple resources. We aim at maximizing the computing power under security 
scrutiny and cost minimization. In this paper, we report simulation results on the 
SeGO performance by executing 300 jobs on six Grid resource sites. Other studies on 
Grid resource allocation can be found in [2], [4], [6], [14]. 

 The remaining sections are organized as follows. In Section 2, we present our 
distributed security architecture at USC GridSec project. Section 3 introduces the 
fuzzy logic for trust management. Section 4 describes the process of fuzzy trust 
integration. Section 5 introduces the optimized resource allocation scheme. All 
experimental results are reported in Section 6. Finally, we summarize the research 
findings and make suggestions for further work.   

2.  GridSec Project for Trusted Grid Computing 
As shown in Fig.1, the GridSec (Grid Security) project at USC builds security 
infrastructure and self-defense toolkits over multiple Grid resource sites. The security 
functionalities are monitored and coordinated by a security manager in each site. All 
security managers work together to enforce the central security policy. The security 
managers overlook all resources under their jurisdiction [9]. The GridSec architecture 
supports scalability, high-security, and system availability in trusted Grid computing. 
Our purpose is to design for scalability and security assurance at the same time.  

Virtual Private Networks (VPNs) are built for Grid trust management among 
private networks through a public network. We establish only a minimum number of 
encrypted channels in the VPN. The VPN has a number of advantages over the use of 
PKI in Grid computing. Using encrypted channels in a Grid reduces or eliminates the 
overheads in frequent authentication; trust propagation, key management, and 
authorization in most Grid operations [14]. VPN achieves single sign-on easily 
without using public-key certificates. VPN also reduces the packet exchanges among 
Grid sites. No certificate authority is needed in VPN-based Grid architecture, once the 



tunnels are established. The design is aimed at optimizing Grid resources under the 
constraints of limited computing power, security assurance, and Grid service budget.  

 

Security Defense Steps:  
Step 1:     Intrusion reported by host-based firewall /IDS  
Step 2:     All security managers are alerted with the intrusion  
Step 3:     Security managers broadcast response to all hosts under their jurisdiction 
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 Fig. 2.  USC GridSec Project: A distributed Grid security architecture, built with 

encrypted tunnels, micro firewalls, and hybrid intrusion detection systems, 
coordinated by cooperative security managers at scattered resource sites 

A self-defense software library, called NetShield, is under development in the 
GridSec project. This package supports fine-grain access control with automatic 
intrusion prevention, detection, and responses [9, 13]. This system is based on 
dynamic security policies, adaptive cryptographic engines, privacy protection, and 
VPN tunneling. Dynamic security demands the adaptability in making policy changes 
at run time. Three steps are shown in Fig.2 for intrusion detection, alert broadcast, and 
coordinated intrusion responses.  

3.  Fuzzy Logic for Trust Management 
The trust relationships among Grid sites are hard to assess due to uncertainties 
involved. Two advantages of using fuzzy-logic to quantify trust in Grid applications 
are: (1) Fuzzy inference is capable of quantifying imprecise data or uncertainty in 
measuring the security index of resource sites. (2) Different membership functions 
and inference rules could be developed for different Grid applications, without 
changing the fuzzy inference engine. 

We close up the security gap by mapping only secure resources to Grid 
applications. Security holes may appear as OS blind spots, software bugs, privacy 
traps, and hardware weakness in resource sites. These holes may weaken the trust 
index value. In our scheme, the trust index Γ (or tij) is determined by job success rate 
Φ and self-defense capability ∆ of each resource pair.  

In Fig.3, we plot the variation of the trust index of a resource site, as the job 
success rate and site self-defense capability are enhanced from low to high values. 



These two attributes enhance each other on many computer platforms. The trust index 
increases with the increase of both contributing factors.  The trust index could 
decrease after network attack incidents. This plot guides the trust integration process.  
We allocate resources with high degree of security assurance.  In subsequent sections, 
we show a systematic method to produce the trusted conditions on Grid sites.   
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Fig. 3.  Variation of trust index Γ with respect to the variations of job success rate Φ and 
intrusion defense capability ∆ at each resource site 

Essentially, previous job execution experiences determine the trustworthiness of 
the peer machines. In the initialization of the trust index of a new resource site, the 
reported job success rate and intrusion defense capability are used to generate an 
initial trust value. The trust index is then updated periodically with the site operations, 
until the site is removed from the Grid domain. 

We treat these security attributes as fuzzy variables, characterized by the 
membership functions in Fig.4.  In Fuzzy logic, the membership function µ (x) for a 
fuzzy element x specifies its degree of membership in a fuzzy set. It maps element x 
into the interval [0, 1], while 1 for full membership and 0 for no membership. Fuzzy 
logic can handle imprecise data or uncertainty in the trust index of a resource site.   

Figure 4(a) shows “high” membership function for trust index Γ.  A resource site 
with 0.75 trust index is considered high trust. Figure 4(b) shows five membership 
functions corresponding to very low, low, medium, high, and very high degree of 
trustworthiness. Figure 4(c) shows the cases of three ascending degrees of the self-
defense capability.  Figure 4(d) shows five levels of job success rate. The inference 
rules are subject to designer’s choice.  

Fuzzy inference is a process to assess the trust index in five steps: (1) Register the 
initial values of the success rate Φ and defense capability ∆. (2) Use the membership 
functions to generate membership degrees for Φ and ∆.  (3) Apply the fuzzy rule set 
to map the input space (Φ - ∆ space) onto the output space (Γ space) through fuzzy 
‘AND’ and ‘IMPLY’ operations. (4) Aggregate the outputs from each rules, and (5) 
Derive the trust index through a defuzzification process. The details of these five steps 
can be found in Fuzzy Engineering by Kosko [10].  
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                  Fig. 4. Membership functions for different levels of the trust index Γ, 
                              job success rate Φ, and site defense capability ∆ 

Figure 5 shows the trust inference process using the membership functions in Fig.4. 
We consider initial values: Φ = 0.84 and ∆ = 0.26, obtained from previous Grid 
application experiences.  Two example fuzzy inference rules are given below for use 
in the inference process shown in Fig.5.  

Rule 1:   If Φ is very high and ∆ is medium, then Γ is high. 
Rule 2:   If Φ is high and ∆ is low, then Γ is medium. 

 

               Fig. 5. Fuzzy logic inference between job success rate Φ and self-defense 
                           capability ∆ to induce the trust index Γ of a resource site 

All selected rules are inferred in parallel. Initially, the membership is determined 
by assessing all terms in the premise.  The fuzzy operator ‘AND’ is applied to 
determine the support degree of the rules. The AND results are aggregated together. 
The final trust index Γ = 0.6 is generated by defuzzifying the aggregation. The 
“AGGREGATE” superimposes two curves to produce the membership function for Γ. 
There are many other fuzzy inference rules that can be designed using various 
conditional combinations of the fuzzy variables, Φ and ∆.  
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4.  Trust Integration across Grid Resource Sites 
We use trust integration across multiple Grid domains to model transitive trust 

relationship. Each site Sj maintains a trust vector Vj = (t1j , t2j ,…, tmj)T . The trust index 
tij  for 1 ≤ i, j ≤ m represents the trust of site Si by site Sj. tij is a fraction number with 0 
representing the most risky case without any protection and 1 for a full trusted 
condition with the highest security assurance. Any value in between indicates a 
partially secured site. We define a trust matrix for m resource sites by an m×m square 
matrix M = (V1 ,V2 ,…,Vm) = ( tij ). 

Trust update and trust propagation processes are specified in Algorithms 1 and 
Algorithm 2, respectively.  We aim at reducing the site vulnerability and by upgrading 
its self-defense capability ∆. Suppose that the SeGO agent of site Si has monitored all 
jobs executed on site Sj for some time to know its success rate and defense capability.  
Let sij be the new security stimulus between sites Si and Sj at certain time instant.  
Equation (1) calculates the new trust index from the old value and present stimulus.  

new
ijt = α

old
ijt + (1- α) ijs  

(1) 

The weighting factor α is a random variable in the range (0, 1).  For security-
critical applications, the trust index should change timely to reflect new situation, thus 
a small α is adopted such as α < 0.3. But for low security applications, a large α is 
adopted with α > 0.9.  In general situations, one can set α in the range of (0.7, 0.8). 

Algorithm 1: Trust_Update(index_TTL reports, i, j) 
(1) Ri calculate success rate of Rj:  Φ = number of success jobs/index_TTL; 
(2) Ri assess defense rate ∆ of Rj; 
(3) Calculate the stimulus value:  Sij = Fuzzy_inference(Φ, ∆); 

(4) Calculate the new trust index:  (1 )= + −new old
ij ij ijt t sα α ; 

(5) if (( <new old
ij ijt t ) or ( <new

ijt average trust requirement))  

Enhance defense capability of Rj,  ∆(Rj) = ∆(Rj) + ε(∆). 

Algorithm 2: Trust_Propagation(i) 
(1) Ri broadcasts Vi; 
(2) for j = 1 to i-1, i+1 to M 
(3)     ( )1= − +new old

ij jV m m V V m .  

We introduce two simulation terms: the trust index_TTL and trust vector_TTL, to 
measure user applications submitted to each site. When site Sj accumulates index_TTL 
job reports from site Si, it updates the trust index tij using Eq.(1). With fuzzy trust 
quantification, the stimulus value sij is determined first. Then the new trust index tij is 
updated, accordingly.  If the trust index decreases or it is lower than the average, the 
defense capability ∆ of Sj is forced to increase by an amount ε characterized in Eq.(2).  

∆(Sj) = ∆(Sj) + ε(∆) (2) 



In Eq. (2), the increment ε(∆) is a function of the current ∆ value. If current ∆ is 
high, ε should be set with a small increment. If ∆ is low, ε should be larger. The site 
that has low ∆ should catch up faster this way. The ultimate purpose of trust 
integration is to enhance the trust index or security level at weak resource sites. Trust 
integration leads to normalization and equalization of trust indices at all sites. The 
trust vectors are broadcasted periodically. When a site Sj has accumulated vector_TTL 
of job execution reports, it broadcasts its trust vector to other sites.  With m sites, the 
contribution from each site is roughly 1/m. Algorithm 2 is used to calculate the new 
trust vector for site Si by each resource site Sj for j = 1,2,…, m.   

5.  Optimization of Trusted Resource Allocation 
Based on the fuzzy trust model, we present below in Algorithm 3 the SeGO scheduler 
for optimized Grid resource allocation. The SeGO scheduler was developed under the 
following assumptions: (1) non-preemptive job scheduling, (2) divisible workload 
across Grid sites, and (3) space sharing in a batch mode over multiple jobs. Our SeGO 
scheduler is specified with a nonlinear programming model [5]. 

Algorithm 3: SeGO (Rj, Job = (W, D, T, B)) 
Input:  Submit Job = (W, D, T, B) to resource site Rj at time τ, Rj requests        

resources from all m sites. 
Output:  Workload distribution (W1, W2, …, Wm) and estimated execution time 

L for Job based on allocation X = (x1, x2, …, xm) generated. 
(1) Rj sends requests to obtain available resources information from all sites; 
(2) for i = 1 to m 
(3)     if  (tij < T)   xi

 = 0. 
(4) end for 
(5) Estimate execution time L = D - τ; 
(6) Generate the allocation vector X = (x1, x2, …, xm), which maximize  

1 1= =
∑ ∑=
m m

i i i i iiji i
E x P Lt x P LC , subject to the following constraints  

1=
∑ ≥
m

i i
i

x P L W , 
1=

∑ ≤
m

i i i
i

x P LC B , and  0 1≤ ≤ix ; 

(7) for i = 1 to m       Wi = xiPiL; 
(8) return (W1, W2, …, Wm, L) with allocation X = (x1, x2, …, xm). 

 

A job is submitted with the descriptor Job = (W, D, T, B), representing the 
workload, execution deadline, minimum trust, and budget limit. A job is required to 
complete execution before the posted deadline. Denote the current time instant by τ. 
This is the start time of a job execution. The estimated job execution time is denoted 
by L = D - τ.  Let xi be the percentage of the peak power Pi allocated to the job J.  The 
product xiPi represents the actual power allocated. We define Wi = xiPiL as the 
workload to be executed at site Ri for the job J. 

The input to Algorithm 3 is the successive job descriptions including the site and 
the time when job is submitted. After passing a qualification test, step (2)-(4), the 
unqualified sites are filtered out. The estimated execution time L is registered first. 



Then, the resource allocation vector X = (x1, x2,…, xm) is generated by optimizing the 
objective function or the trusted performance/cost ratio E, defined below.  

The numerator is the aggregate computing power, weighted by the trust index tij 
and allocated from m Grid sites. The denominator is the total Grid service charge for 
executing the job. The terms Pi and Ci are the computing power and service charge at 
site Ri. The SeGO solution is obtained with a nonlinear programming solver, subject 
to the constraints listed in step 6.    

1 1 1 1= = = =
= =∑ ∑ ∑ ∑

m m m m

i ij i i i i ij i i i
i i i i

E W t W C x P Lt x P LC  
(3) 

Algorithm 4 specifies the trust integration process, in which n jobs are mapped to 
m sites. The trust vectors are propagated and integrated periodically. If a job is 
submitted to Rj, this site is responsible to dispatch workload to all sites and monitors 
the job execution. Once a job is finished, the occupied resources are released for other 
jobs. User applications can resubmit their jobs, if the earlier execution was 
unsuccessful.  The trust integration process includes trust update (Algorithm 1), trust 
propagation (Algorithm 2), and SeGO optimization (Algorithm 3). The inputs to this 
algorithm are jobs submitted at all sites. The output is the trusted resource allocation 
and the updated trust vectors.  

Algorithm 4: Trust integration for optimized resource allocation 
Input:   n jobs submitted at m resource sites. 
Output:  Resource allocation for jobs and updated trust vectors for all sites. 
(1) Do until (all submitted jobs are executed) 
(2)     if (τ  = arrival time of current Job = (W, D, T, B)) 
(3)         Job is put in the job queue of Rj; 
(4)        (W1, W2, …, Wm, L) ←SeGO (Rj, Job); 
(5)         for i = 1 to m   resource reservation, i.e., Pi = Pi – W i/L; 
(6)     end if 
(7)     if (Rj gets the previous Job = (W, D, T, B)  report at time τ ) 
(8)         for i = 1 to m  
(9)             resource release, i.e., Pi = Pi + Wi/L; 
(10)             if (Rj accumulates index_TTL job reports from Ri)   
(11)                 Trust_Update (index_TTL reports, i, j); 
(12)             if (Rj accumulates execution reports for vector_TTL jobs)   
(13)                 Trust_Propagation (j); 
(14)         end for 
(15)     end if  
(16) end do  

6.   Simulation Results on Trusted Grid Resource Allocation 
We have developed a discrete-event simulator at USC to simulate the trust integration 
and resource optimization processes.  We simulated n = 300 jobs running on m = 6 
Grid resource sites. Each resource site is configured with computing power, which is 



set between 1 Tflop/s and 5 Tflop/s, randomly. Each site is configured with a site 
reliability and intrusion defense capability in the range (0, 1).  

Jobs are mapped evenly across sites, and all job arrivals are modeled by a Poisson 
distribution with an inter-arrival time of 10 minutes. The job workload demand varies 
between 4 Tflop to 50 Tflop. The deadline varies between 4 minutes and 20 minutes 
after the job is submitted. The minimum trust is set in the range (0.4, 0.7) randomly. 
Both the resource unit service charge and user application budget limitations are set 
between $180K/Tflop and $320K/Tflop, randomly. 

Figure 6 depicts the variation of the trust index values at 6 resource sites, R1 
through R6. The intial trust index values at step 0 vary from 0.07 to 0.77 for sites R1 
through R6 along the Y-axis. The x-axis represents the trust integration step taken 
during simulation runs. The average trust index at each site increases steadily after 
each step. Through the process, all trust indices grow to the range (0.7, 0.93) at step 5. 

In the best case, the lowest index value of 0.07 at site R1 increases to 0.7 in 5 steps. 
This corresponds to a security enhancement of 90% = (0.7 - 0.07)/0.7 for site R1. In 
the worst case for site R6, the trust index is upgraded from 0.7 to 0.93 in 5 steps. 
There is a normalization effect of the trust integration process, which brings the 
security levels of all sites to almost the same high level.   
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Fig. 6. Variation of the trust indices of six resource sites after five trust integration steps 

We present in Fig.7 and Fig.8 two scatter plots of the performance/cost ratio. The 
two scatter plots result from running the SeGO simulation under different trust 
management polices. Each triangle represents the performance/cost ratio of one job. 
Both figures plot the Grid performance under limited budget with initial trust values 
ranging from 0.07 to 0.77 given at step 0 in Fig.6.   

Figure 7 depicts performance/cost ratio E of 300 jobs with fixed trust, meaning no 
security upgrade over the resource sites. Figure 8 plots E with trust integration to 
upgrade the defense capabilities at six resource sites. We observed two job groups in 
these plots.  One group consists of those dropped jobs due to short of resources before 
the deadline expired. Those jobs are represented with E = 0 along the X-axis. The 
second job group contains the successful executed jobs. There are 76 dropped jobs in 
Fig.7 and 18 dropped jobs in Fig.8 out of 300 jobs simulated. This translates to a job 
drop rate of 76/300 = 25.3% in Fig.7 and 18/300 = 6% in Fig.8. 



In Fig.7, the E-plot for successful jobs varies from 1.67 to 2.71 Tflop/$1M with an 
average E = 2.27 Tflop/$1M.  In Fig.8, the successful jobs achieve E = 1.67 to 3.57 
Tflop/$1M with an average E = 2.92 Tflop/$1M. Overall, the scatter plot in Fig.7 
shows almost no increasing trend as more jobs are submitted. However, the E-plot in 
Fig.8 increases steadily as more jobs are submitted. Considering the last 50 jobs, we 
achieved E = 2.94 to 3.57 Tfop/$1M in Fig.8. We observe an improvement factor by 
114% = (3.57-1.67)/1.67 for the best-case scenario. 
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            Fig. 7. Grid performance/cost ratio for 300 jobs allocated to six resource sites  
                        with fixed trust index and no site security reinforcement 
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                       Fig. 8. Improved Grid performance/cost ratio for 300 jobs allocated  
                                   to 6 resource sites after trust integration and  security upgrade 

In summary, our trusted resource allocation (Fig.8) shows a 76% - 114% 
improvement in Grid performance/cost ratio E. The job drop rate is reduced by (76-
18)/76 = 75% in favor of trust integration solution. On the average E, a performance 
gain of 28% = (2.92-2.27)/2.27 was resulted from trusted resource allocation. As a 
matter of fact, the trust-integration process is at work very early on. After the 
submission of the first 15 jobs, the E starts to climb, and achieves more than 3.0 
Tflop/$1M at the 100th job.  The results clearly demonstrate the effectiveness of trust 
integration. Trusted Grid sites accommodated 94% = 1 – 6% of 300 user jobs. 

Utilization rate is defined as percentage of allocated resources among all available 
resources. The utilization rate for resources with fixed trust values remains at the 
constant level at 40% during the simulation runs. The utilization rate for resources 
with integrated trust values varies from a low of 48.1% to a high of 92.6%. The 
utilization of Grid resources increases with more jobs submitted. These results 
demonstrate significant gain in Grid performance through optimized resource 
allocation and aggressive security reinforcement by trust integration. 



Table 1. Utilization  of Grid Resources at Six Sites for the Execution of 300 Jobs 

 Job Number Grid resource  
utilization rate 

1 - 50 51 - 100 101 - 150 151 - 200 201 - 250 251 - 300 

With fixed trust 39.4% 45.1% 43.0% 34.9% 45.1% 38.4% 

With trust integration 48.1% 78.0% 65.4% 84.2% 92.6% 82.9% 

7.   Conclusions  and Suggestions for Further Research 
This work offers the first step towards trusted Grid computing. In several recent 

reports from USC Internet and Grid Computing Laboratory, one can find 
comprehensive treatment of the GridSec architecture [9], Internet traffic datamining 
for automated intrusion detection [13], and trusted Grid resource allocation [14]. We 
summarize below research findings and make a few suggestions for further research. 
• Fuzzy trust integration reduces platform vulnerability and guides the defense 

deployment across Grid sites. Our VPN-supported trust integration is meant to 
enforce security in Grids beyond the use of PKI services [2, 9, 14].  
Comprehensive simulation results were reported in [14] to prove the effectiveness 
of the SeGO scheduler for trusted resource allocation in computational Grids.   

• Self-defense toolkits are needed to secure Grid computing [9]. We have 
suggested the use of distributed firewalls, packet filters, virtual private networks, 
and intrusion detection systems at Grid sites. A new anomaly-based, intrusion 
detection system was developed with datamining of frequent traffic episodes in 
TCP, UDP, and ICMP connections as reported in [13].   

• Regarding future research directions, we suggest to integrate the SeGO scheduler 
with other Grid job/resource management toolkits such the Globus/GRAM, 
AppLex, and NimRod/G [2, 4]. Grid security policies and Grid operating systems 
are needed to establish truly secure Grid computing environment [15].    
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