
Fuzzy Trust Integration for Security
 Enforcement in Grid Computing*

Shanshan Song, Kai Hwang, and Mikin Macwan

Internet and Grid Computing Laboratory
University of Southern California, Los Angeles, CA. 90089 USA

{shanshas, kaihwang}@usc.edu

Abstract. How to build the mutual trust among Grid resources sites is crucial
to secure distributed Grid applications. We suggest enhancing the trust index of
resource sites by upgrading their intrusion defense capabilities and checking the
success rate of jobs running on the platforms. We propose a new fuzzy-logic
trust model for securing Grid resources. Grid security is enforced through trust
update, propagation, and integration across sites. Fuzzy trust integration reduces
platform vulnerability and guides the defense deployment across Grid sites. We
developed a SeGO scheduler for trusted Grid resource allocation.

The SeGO scheduler optimizes the aggregate computing power with
security assurance under fixed budget constraints. The effectiveness of the
scheme was verified by simulation experiments. Our results show up to 90%
enhancement in site security. Compared with no trust integration, our scheme
leads to 114% improvement in Grid performance/cost ratio. The job drop rate
reduces by 75%. The utilization of Grid resources increased to 92.6% as more
jobs are submitted. These results demonstrate significant performance gains
through optimized resource allocation and aggressive security reinforcement.

1. Introduction
In Grid computing systems [2], user programs containing malicious codes may
endanger the Grid resources used. Shared Grid resources once infected may damage
the user applications running on the Grid platforms [8]. We address these issues by
allocating Grid resources with security assurance. The assurance is achieved by
hardware, software, and system upgrades to avoid application disasters in an open
Grid environment.

Mutual trust must be established between all participating resource sites. Like
human relationship, trust is often expressed by linguistics terms rather numerically.
Fuzzy logic is very suitable to quantify trust among peer groups. The fuzzy theory
[10] has not been explored much in network security control. To our best knowledge,
only Manchala has suggested a fuzzy trust model for securing E-commerce [12].

Azzedin and Maheswaran [3] and Liu and Shen [11] have developed some
security-aware models between resource providers and consumers. Globus GSI uses
public key certificates and proxies for trust propagation [7]. We use fuzzy inferences
to consolidate security enforcement measures in trusted Grid computing.
__
* The work was presented in the IFIP International Symposium on Network and Parallel
Computing (NPC-2004), Wuhan, China, October 18-22, 2004. This research was supported
by NSF/ITR Grant ACI-0325409 to the University of Southern California.

Our trust assessment involves the measurement of dependability, security,
reliability and performability. Trust level is updated after the Grid successfully
executed user jobs. Butt and Fortes, et al [3] protect Grid resources from distrusted
applications. We choose a reverse approach by assuring security in the resource pool.
Figure 1 shows the interaction between two Grid Resource sites.

 Resource Site Ri

Trust
Manager i

Resource
Broker i

Resource Site Rj

Resource
Broker j

Trust
Manager j

Job Requests/ Replies

Trust Updates

Fig. 1. Securing Grid resources with trust integration and resource brokerage

We propose a Secure Grid Outsourcing (SeGO) scheduler to outsource jobs to
multiple resources. We aim at maximizing the computing power under security
scrutiny and cost minimization. In this paper, we report simulation results on the
SeGO performance by executing 300 jobs on six Grid resource sites. Other studies on
Grid resource allocation can be found in [2], [4], [6], [14].

 The remaining sections are organized as follows. In Section 2, we present our
distributed security architecture at USC GridSec project. Section 3 introduces the
fuzzy logic for trust management. Section 4 describes the process of fuzzy trust
integration. Section 5 introduces the optimized resource allocation scheme. All
experimental results are reported in Section 6. Finally, we summarize the research
findings and make suggestions for further work.

2. GridSec Project for Trusted Grid Computing
As shown in Fig.1, the GridSec (Grid Security) project at USC builds security
infrastructure and self-defense toolkits over multiple Grid resource sites. The security
functionalities are monitored and coordinated by a security manager in each site. All
security managers work together to enforce the central security policy. The security
managers overlook all resources under their jurisdiction [9]. The GridSec architecture
supports scalability, high-security, and system availability in trusted Grid computing.
Our purpose is to design for scalability and security assurance at the same time.

Virtual Private Networks (VPNs) are built for Grid trust management among
private networks through a public network. We establish only a minimum number of
encrypted channels in the VPN. The VPN has a number of advantages over the use of
PKI in Grid computing. Using encrypted channels in a Grid reduces or eliminates the
overheads in frequent authentication; trust propagation, key management, and
authorization in most Grid operations [14]. VPN achieves single sign-on easily
without using public-key certificates. VPN also reduces the packet exchanges among
Grid sites. No certificate authority is needed in VPN-based Grid architecture, once the

tunnels are established. The design is aimed at optimizing Grid resources under the
constraints of limited computing power, security assurance, and Grid service budget.

Security Defense Steps:
Step 1: Intrusion reported by host-based firewall /IDS
Step 2: All security managers are alerted with the intrusion
Step 3: Security managers broadcast response to all hosts under their jurisdiction

Security
Manager

Host

3
3

3

 GRS No.2

3

1

2

2

Host
Host

Host
Host

Computing Grid

3

3

GRS No.3

Security
Manager

Security
Manager

Host

3
3

3

GRS No.1

Host Host

GRS: Grid Resource Site

Host

 Fig. 2. USC GridSec Project: A distributed Grid security architecture, built with

encrypted tunnels, micro firewalls, and hybrid intrusion detection systems,
coordinated by cooperative security managers at scattered resource sites

A self-defense software library, called NetShield, is under development in the
GridSec project. This package supports fine-grain access control with automatic
intrusion prevention, detection, and responses [9, 13]. This system is based on
dynamic security policies, adaptive cryptographic engines, privacy protection, and
VPN tunneling. Dynamic security demands the adaptability in making policy changes
at run time. Three steps are shown in Fig.2 for intrusion detection, alert broadcast, and
coordinated intrusion responses.

3. Fuzzy Logic for Trust Management
The trust relationships among Grid sites are hard to assess due to uncertainties
involved. Two advantages of using fuzzy-logic to quantify trust in Grid applications
are: (1) Fuzzy inference is capable of quantifying imprecise data or uncertainty in
measuring the security index of resource sites. (2) Different membership functions
and inference rules could be developed for different Grid applications, without
changing the fuzzy inference engine.

We close up the security gap by mapping only secure resources to Grid
applications. Security holes may appear as OS blind spots, software bugs, privacy
traps, and hardware weakness in resource sites. These holes may weaken the trust
index value. In our scheme, the trust index Γ (or tij) is determined by job success rate
Φ and self-defense capability ∆ of each resource pair.

In Fig.3, we plot the variation of the trust index of a resource site, as the job
success rate and site self-defense capability are enhanced from low to high values.

These two attributes enhance each other on many computer platforms. The trust index
increases with the increase of both contributing factors. The trust index could
decrease after network attack incidents. This plot guides the trust integration process.
We allocate resources with high degree of security assurance. In subsequent sections,
we show a systematic method to produce the trusted conditions on Grid sites.

Defense capability ∆

Trust index Γ

Success rate Φ

1.01.0

0.5 0.5

0.8
0.6

0.4
0.2
0

1.0

0 0

Fig. 3. Variation of trust index Γ with respect to the variations of job success rate Φ and
intrusion defense capability ∆ at each resource site

Essentially, previous job execution experiences determine the trustworthiness of
the peer machines. In the initialization of the trust index of a new resource site, the
reported job success rate and intrusion defense capability are used to generate an
initial trust value. The trust index is then updated periodically with the site operations,
until the site is removed from the Grid domain.

We treat these security attributes as fuzzy variables, characterized by the
membership functions in Fig.4. In Fuzzy logic, the membership function µ (x) for a
fuzzy element x specifies its degree of membership in a fuzzy set. It maps element x
into the interval [0, 1], while 1 for full membership and 0 for no membership. Fuzzy
logic can handle imprecise data or uncertainty in the trust index of a resource site.

Figure 4(a) shows “high” membership function for trust index Γ. A resource site
with 0.75 trust index is considered high trust. Figure 4(b) shows five membership
functions corresponding to very low, low, medium, high, and very high degree of
trustworthiness. Figure 4(c) shows the cases of three ascending degrees of the self-
defense capability. Figure 4(d) shows five levels of job success rate. The inference
rules are subject to designer’s choice.

Fuzzy inference is a process to assess the trust index in five steps: (1) Register the
initial values of the success rate Φ and defense capability ∆. (2) Use the membership
functions to generate membership degrees for Φ and ∆. (3) Apply the fuzzy rule set
to map the input space (Φ - ∆ space) onto the output space (Γ space) through fuzzy
‘AND’ and ‘IMPLY’ operations. (4) Aggregate the outputs from each rules, and (5)
Derive the trust index through a defuzzification process. The details of these five steps
can be found in Fuzzy Engineering by Kosko [10].

(a) High Trust index, Γ (b) 5 levels of trust index, Γ

(c) Self-defense capability, ∆ (d) 5 levels of job success rate, Φ

 Fig. 4. Membership functions for different levels of the trust index Γ,
 job success rate Φ, and site defense capability ∆

Figure 5 shows the trust inference process using the membership functions in Fig.4.
We consider initial values: Φ = 0.84 and ∆ = 0.26, obtained from previous Grid
application experiences. Two example fuzzy inference rules are given below for use
in the inference process shown in Fig.5.

Rule 1: If Φ is very high and ∆ is medium, then Γ is high.
Rule 2: If Φ is high and ∆ is low, then Γ is medium.

 Fig. 5. Fuzzy logic inference between job success rate Φ and self-defense
 capability ∆ to induce the trust index Γ of a resource site

All selected rules are inferred in parallel. Initially, the membership is determined
by assessing all terms in the premise. The fuzzy operator ‘AND’ is applied to
determine the support degree of the rules. The AND results are aggregated together.
The final trust index Γ = 0.6 is generated by defuzzifying the aggregation. The
“AGGREGATE” superimposes two curves to produce the membership function for Γ.
There are many other fuzzy inference rules that can be designed using various
conditional combinations of the fuzzy variables, Φ and ∆.

µ (Γ) µ high (Γ)

µ (∆) µ (Φ)

Φ = 0.84 ∆ = 0.26

Rule 1: Φ is very high AND ∆ is medium IMPLY Γ is high

Γ = 0.6

Rule 2: Φ is high AND ∆ is low IMPLY Γ is medium

↓

AGGREGATE

4. Trust Integration across Grid Resource Sites
We use trust integration across multiple Grid domains to model transitive trust

relationship. Each site Sj maintains a trust vector Vj = (t1j , t2j ,…, tmj)T . The trust index
tij for 1 ≤ i, j ≤ m represents the trust of site Si by site Sj. tij is a fraction number with 0
representing the most risky case without any protection and 1 for a full trusted
condition with the highest security assurance. Any value in between indicates a
partially secured site. We define a trust matrix for m resource sites by an m×m square
matrix M = (V1 ,V2 ,…,Vm) = (tij).

Trust update and trust propagation processes are specified in Algorithms 1 and
Algorithm 2, respectively. We aim at reducing the site vulnerability and by upgrading
its self-defense capability ∆. Suppose that the SeGO agent of site Si has monitored all
jobs executed on site Sj for some time to know its success rate and defense capability.
Let sij be the new security stimulus between sites Si and Sj at certain time instant.
Equation (1) calculates the new trust index from the old value and present stimulus.

new
ijt = α

old
ijt + (1- α) ijs

(1)

The weighting factor α is a random variable in the range (0, 1). For security-
critical applications, the trust index should change timely to reflect new situation, thus
a small α is adopted such as α < 0.3. But for low security applications, a large α is
adopted with α > 0.9. In general situations, one can set α in the range of (0.7, 0.8).

Algorithm 1: Trust_Update(index_TTL reports, i, j)
(1) Ri calculate success rate of Rj: Φ = number of success jobs/index_TTL;
(2) Ri assess defense rate ∆ of Rj;
(3) Calculate the stimulus value: Sij = Fuzzy_inference(Φ, ∆);

(4) Calculate the new trust index: (1)= + −new old
ij ij ijt t sα α ;

(5) if ((<new old
ij ijt t) or (<new

ijt average trust requirement))

Enhance defense capability of Rj, ∆(Rj) = ∆(Rj) + ε(∆).

Algorithm 2: Trust_Propagation(i)
(1) Ri broadcasts Vi;
(2) for j = 1 to i-1, i+1 to M
(3) ()1= − +new old

ij jV m m V V m .

We introduce two simulation terms: the trust index_TTL and trust vector_TTL, to
measure user applications submitted to each site. When site Sj accumulates index_TTL
job reports from site Si, it updates the trust index tij using Eq.(1). With fuzzy trust
quantification, the stimulus value sij is determined first. Then the new trust index tij is
updated, accordingly. If the trust index decreases or it is lower than the average, the
defense capability ∆ of Sj is forced to increase by an amount ε characterized in Eq.(2).

∆(Sj) = ∆(Sj) + ε(∆) (2)

In Eq. (2), the increment ε(∆) is a function of the current ∆ value. If current ∆ is
high, ε should be set with a small increment. If ∆ is low, ε should be larger. The site
that has low ∆ should catch up faster this way. The ultimate purpose of trust
integration is to enhance the trust index or security level at weak resource sites. Trust
integration leads to normalization and equalization of trust indices at all sites. The
trust vectors are broadcasted periodically. When a site Sj has accumulated vector_TTL
of job execution reports, it broadcasts its trust vector to other sites. With m sites, the
contribution from each site is roughly 1/m. Algorithm 2 is used to calculate the new
trust vector for site Si by each resource site Sj for j = 1,2,…, m.

5. Optimization of Trusted Resource Allocation
Based on the fuzzy trust model, we present below in Algorithm 3 the SeGO scheduler
for optimized Grid resource allocation. The SeGO scheduler was developed under the
following assumptions: (1) non-preemptive job scheduling, (2) divisible workload
across Grid sites, and (3) space sharing in a batch mode over multiple jobs. Our SeGO
scheduler is specified with a nonlinear programming model [5].

Algorithm 3: SeGO (Rj, Job = (W, D, T, B))
Input: Submit Job = (W, D, T, B) to resource site Rj at time τ, Rj requests

resources from all m sites.
Output: Workload distribution (W1, W2, …, Wm) and estimated execution time

L for Job based on allocation X = (x1, x2, …, xm) generated.
(1) Rj sends requests to obtain available resources information from all sites;
(2) for i = 1 to m
(3) if (tij < T) xi

 = 0.
(4) end for
(5) Estimate execution time L = D - τ;
(6) Generate the allocation vector X = (x1, x2, …, xm), which maximize

1 1= =
∑ ∑=
m m

i i i i iiji i
E x P Lt x P LC , subject to the following constraints

1=
∑ ≥
m

i i
i

x P L W ,
1=

∑ ≤
m

i i i
i

x P LC B , and 0 1≤ ≤ix ;

(7) for i = 1 to m Wi = xiPiL;
(8) return (W1, W2, …, Wm, L) with allocation X = (x1, x2, …, xm).

A job is submitted with the descriptor Job = (W, D, T, B), representing the
workload, execution deadline, minimum trust, and budget limit. A job is required to
complete execution before the posted deadline. Denote the current time instant by τ.
This is the start time of a job execution. The estimated job execution time is denoted
by L = D - τ. Let xi be the percentage of the peak power Pi allocated to the job J. The
product xiPi represents the actual power allocated. We define Wi = xiPiL as the
workload to be executed at site Ri for the job J.

The input to Algorithm 3 is the successive job descriptions including the site and
the time when job is submitted. After passing a qualification test, step (2)-(4), the
unqualified sites are filtered out. The estimated execution time L is registered first.

Then, the resource allocation vector X = (x1, x2,…, xm) is generated by optimizing the
objective function or the trusted performance/cost ratio E, defined below.

The numerator is the aggregate computing power, weighted by the trust index tij
and allocated from m Grid sites. The denominator is the total Grid service charge for
executing the job. The terms Pi and Ci are the computing power and service charge at
site Ri. The SeGO solution is obtained with a nonlinear programming solver, subject
to the constraints listed in step 6.

1 1 1 1= = = =
= =∑ ∑ ∑ ∑

m m m m

i ij i i i i ij i i i
i i i i

E W t W C x P Lt x P LC
(3)

Algorithm 4 specifies the trust integration process, in which n jobs are mapped to
m sites. The trust vectors are propagated and integrated periodically. If a job is
submitted to Rj, this site is responsible to dispatch workload to all sites and monitors
the job execution. Once a job is finished, the occupied resources are released for other
jobs. User applications can resubmit their jobs, if the earlier execution was
unsuccessful. The trust integration process includes trust update (Algorithm 1), trust
propagation (Algorithm 2), and SeGO optimization (Algorithm 3). The inputs to this
algorithm are jobs submitted at all sites. The output is the trusted resource allocation
and the updated trust vectors.

Algorithm 4: Trust integration for optimized resource allocation
Input: n jobs submitted at m resource sites.
Output: Resource allocation for jobs and updated trust vectors for all sites.
(1) Do until (all submitted jobs are executed)
(2) if (τ = arrival time of current Job = (W, D, T, B))
(3) Job is put in the job queue of Rj;
(4) (W1, W2, …, Wm, L) ←SeGO (Rj, Job);
(5) for i = 1 to m resource reservation, i.e., Pi = Pi – W i/L;
(6) end if
(7) if (Rj gets the previous Job = (W, D, T, B) report at time τ)
(8) for i = 1 to m
(9) resource release, i.e., Pi = Pi + Wi/L;
(10) if (Rj accumulates index_TTL job reports from Ri)
(11) Trust_Update (index_TTL reports, i, j);
(12) if (Rj accumulates execution reports for vector_TTL jobs)
(13) Trust_Propagation (j);
(14) end for
(15) end if
(16) end do

6. Simulation Results on Trusted Grid Resource Allocation
We have developed a discrete-event simulator at USC to simulate the trust integration
and resource optimization processes. We simulated n = 300 jobs running on m = 6
Grid resource sites. Each resource site is configured with computing power, which is

set between 1 Tflop/s and 5 Tflop/s, randomly. Each site is configured with a site
reliability and intrusion defense capability in the range (0, 1).

Jobs are mapped evenly across sites, and all job arrivals are modeled by a Poisson
distribution with an inter-arrival time of 10 minutes. The job workload demand varies
between 4 Tflop to 50 Tflop. The deadline varies between 4 minutes and 20 minutes
after the job is submitted. The minimum trust is set in the range (0.4, 0.7) randomly.
Both the resource unit service charge and user application budget limitations are set
between $180K/Tflop and $320K/Tflop, randomly.

Figure 6 depicts the variation of the trust index values at 6 resource sites, R1
through R6. The intial trust index values at step 0 vary from 0.07 to 0.77 for sites R1
through R6 along the Y-axis. The x-axis represents the trust integration step taken
during simulation runs. The average trust index at each site increases steadily after
each step. Through the process, all trust indices grow to the range (0.7, 0.93) at step 5.

In the best case, the lowest index value of 0.07 at site R1 increases to 0.7 in 5 steps.
This corresponds to a security enhancement of 90% = (0.7 - 0.07)/0.7 for site R1. In
the worst case for site R6, the trust index is upgraded from 0.7 to 0.93 in 5 steps.
There is a normalization effect of the trust integration process, which brings the
security levels of all sites to almost the same high level.

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 tr
us

t i
nd

ex

Trust integration steps

 R
6

 R
5

 R4
 R

3
 R

2
 R1

Fig. 6. Variation of the trust indices of six resource sites after five trust integration steps

We present in Fig.7 and Fig.8 two scatter plots of the performance/cost ratio. The
two scatter plots result from running the SeGO simulation under different trust
management polices. Each triangle represents the performance/cost ratio of one job.
Both figures plot the Grid performance under limited budget with initial trust values
ranging from 0.07 to 0.77 given at step 0 in Fig.6.

Figure 7 depicts performance/cost ratio E of 300 jobs with fixed trust, meaning no
security upgrade over the resource sites. Figure 8 plots E with trust integration to
upgrade the defense capabilities at six resource sites. We observed two job groups in
these plots. One group consists of those dropped jobs due to short of resources before
the deadline expired. Those jobs are represented with E = 0 along the X-axis. The
second job group contains the successful executed jobs. There are 76 dropped jobs in
Fig.7 and 18 dropped jobs in Fig.8 out of 300 jobs simulated. This translates to a job
drop rate of 76/300 = 25.3% in Fig.7 and 18/300 = 6% in Fig.8.

In Fig.7, the E-plot for successful jobs varies from 1.67 to 2.71 Tflop/$1M with an
average E = 2.27 Tflop/$1M. In Fig.8, the successful jobs achieve E = 1.67 to 3.57
Tflop/$1M with an average E = 2.92 Tflop/$1M. Overall, the scatter plot in Fig.7
shows almost no increasing trend as more jobs are submitted. However, the E-plot in
Fig.8 increases steadily as more jobs are submitted. Considering the last 50 jobs, we
achieved E = 2.94 to 3.57 Tfop/$1M in Fig.8. We observe an improvement factor by
114% = (3.57-1.67)/1.67 for the best-case scenario.

0 50 100 150 200 250 300
0

1

2

3

4

E
in

 T
flo

p/
$1

M

Job number

 Fig. 7. Grid performance/cost ratio for 300 jobs allocated to six resource sites
 with fixed trust index and no site security reinforcement

0 50 100 150 200 250 300
0

1

2

3

4

E
in

 T
flo

p/
$1

M

Job number

 Fig. 8. Improved Grid performance/cost ratio for 300 jobs allocated
 to 6 resource sites after trust integration and security upgrade

In summary, our trusted resource allocation (Fig.8) shows a 76% - 114%
improvement in Grid performance/cost ratio E. The job drop rate is reduced by (76-
18)/76 = 75% in favor of trust integration solution. On the average E, a performance
gain of 28% = (2.92-2.27)/2.27 was resulted from trusted resource allocation. As a
matter of fact, the trust-integration process is at work very early on. After the
submission of the first 15 jobs, the E starts to climb, and achieves more than 3.0
Tflop/$1M at the 100th job. The results clearly demonstrate the effectiveness of trust
integration. Trusted Grid sites accommodated 94% = 1 – 6% of 300 user jobs.

Utilization rate is defined as percentage of allocated resources among all available
resources. The utilization rate for resources with fixed trust values remains at the
constant level at 40% during the simulation runs. The utilization rate for resources
with integrated trust values varies from a low of 48.1% to a high of 92.6%. The
utilization of Grid resources increases with more jobs submitted. These results
demonstrate significant gain in Grid performance through optimized resource
allocation and aggressive security reinforcement by trust integration.

Table 1. Utilization of Grid Resources at Six Sites for the Execution of 300 Jobs

 Job Number Grid resource
utilization rate

1 - 50 51 - 100 101 - 150 151 - 200 201 - 250 251 - 300

With fixed trust 39.4% 45.1% 43.0% 34.9% 45.1% 38.4%

With trust integration 48.1% 78.0% 65.4% 84.2% 92.6% 82.9%

7. Conclusions and Suggestions for Further Research
This work offers the first step towards trusted Grid computing. In several recent

reports from USC Internet and Grid Computing Laboratory, one can find
comprehensive treatment of the GridSec architecture [9], Internet traffic datamining
for automated intrusion detection [13], and trusted Grid resource allocation [14]. We
summarize below research findings and make a few suggestions for further research.
• Fuzzy trust integration reduces platform vulnerability and guides the defense

deployment across Grid sites. Our VPN-supported trust integration is meant to
enforce security in Grids beyond the use of PKI services [2, 9, 14].
Comprehensive simulation results were reported in [14] to prove the effectiveness
of the SeGO scheduler for trusted resource allocation in computational Grids.

• Self-defense toolkits are needed to secure Grid computing [9]. We have
suggested the use of distributed firewalls, packet filters, virtual private networks,
and intrusion detection systems at Grid sites. A new anomaly-based, intrusion
detection system was developed with datamining of frequent traffic episodes in
TCP, UDP, and ICMP connections as reported in [13].

• Regarding future research directions, we suggest to integrate the SeGO scheduler
with other Grid job/resource management toolkits such the Globus/GRAM,
AppLex, and NimRod/G [2, 4]. Grid security policies and Grid operating systems
are needed to establish truly secure Grid computing environment [15].

References
1. F. Azzedin and M. Maheswaran, “Towards Trust-Aware Resource Management in Grid

Computing Systems”, Proc. of Int’l Symp. on Cluster Computing and the Grid, 2002.
2. F. Berman, G. Fox, and T. Hey, (Editors), Grid Computing: Making The Global

Infrastructure a Reality, John Wiley & Sons, 2003.
3. Butt, S. Adabala, N. Kapadia, R. Figueiredo, and J. Fortes, “Fine-Grain Access Control for

Securing Shared Resources in Computational Grids”, Proceedings of Int’l Parallel and
Distributed Processing Symposium, April 2002.

4. R. Buyya, M. Murshed and D. Abramson. “A Deadline and Budge Constrained Cost-Time
Optimization Algorithm for Scheduling Task Farming Applications on Global Grids”, Int’l
Conf. on Parallel and Distributed Processing Techniques and Applications, 2002.

5. R. Byrd, M. E. Hribar, and J. Nocedal. “An Interior Point Method for Large Scale
Nonlinear Programming”, SIAM Journal on Optimization, Vol. 9, 1999, pp. 877-900.

6. K. Czajkowski, I. Foster, and C. Kesselman, “Resource Co-Allocation in Computational
Grids”, Proc. of the 8th IEEE Int’l Symp. on High Perf. Distributed Computing, 1999.

7. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, “A Security Architecture for
Computational Grids”, Proc. of ACM Conf. on Computer and Comm. Security, 1997.

8. M. Humphrey and M. Thompson, “Security Implications of Typical Grid Computing
Usage Scenarios”, Proceedings of Int’l Symposium on High Performance Distributed
Computing (HPDC), San Francisco, CA. Aug. 7-9, 2001.

9. Hwang, et al, “The GridSec and Netshield Architecture for Securing Grid and Distributed
Computing”, Technical Report 2004-15, USC Internet and Grid Computing Lab, 2004.

10. B. Kosko, Fuzzy Engineering, Prentice Hall, 1997.
11. H. Liu and J. Shen, “A Mission-Aware Trust Model for Grid Computing Systems”, Int’l

Workshop on Grid and Cooperative Computing, Sanya, China, Dec. 26, 2002.
12. Manchala, “E-Commerce Trust Metrics and Models”, IEEE Internet Computing, March

2000, pp. 36-44.
13. M. Qin and K. Hwang, “Anomaly Intrusion Detection by Internet Datamining of Traffic

Episodes”, Technical Report No. 2004-6, USC Internet and Grid Computing Lab, also
submitted to ACM Trans. on Information and System Security (TISSec), March 2004.

14. S. Song and K. Hwang, “ Security Binding for Trusted Resource Allocation in
Computational Grids”, Technical Report 2004-8, USC Internet and Grid Computing Lab,
also submitted to IEEE Trans. on Parallel and Distributed Systems, May 2004.

15. Z. Xu, W. Li, H. Fu, and Z. Zeng,“ The Vega Grid Project in China“, Institute of
Computing Technology, Chinese Academy of Sciences, Beijing, China, April 2003.
http://link.springer.de/link/service/series/0558/papers/2436/24360228.pdf

Biographical Sketches:
Shanshan Song received her BS degree in Computer Science from a special class for

gifted young in the University of Science and Technology of China, Hefei, in 2001, and the MS
degree in Computer Science from University of Southern California (USC) in 2003. Currently,
She is pursuing the Ph.D. degree in Department of Computer Science at USC. Her research
interest lies primarily in the area of network security and dynamic resource allocation for
computational Grids. She can be reached at shanshas@usc.edu.

Kai Hwang is a Professor and Director of Internet and Grid Computing Laboratory at the
University of Southern California. He received the Ph.D. from the University of California,
Berkeley. An IEEE Fellow, he specializes in computer architecture, parallel processing,
Internet and wireless security, cluster and Grid computing systems. Presently, he leads a NSF-
supported ITR Grid security project at USC. The GridSec group develops security-binding
techniques for trusted outsourcing in Grid computing. They build self-defense software toolkits
for protecting Grid and distributed computing resources. Dr. Hwang can be reached at
kaihwang@usc.edu or through the URL: http://GridSec.usc.edu/Hwang.html

Mikin Macwan received the B.E. degree from Pune University, India in 1999, and the
M.S. degree in Computer Science from Texas A&M University - College Station, in 2001.
After working as a Software Engineer at Sun Microsystems, CA (2001 - 2002), he joined the
Computer Science Program at USC. He is now pursuing the Ph.D. degree at USC. His primary
areas of research are Network Security and Intrusion Detection and Response Systems. He can
be reached at macwan@usc.edu.

