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Abstract. This paper is motivated by the problem of poor searching efficiency 
in decentralized peer-to-peer file-sharing systems. We solve the searching 
problem by considering and modeling the basic trade-off between forwarding 
queries among peers and maintaining lookup tables in peers, so that we can 
utilize optimized lookup table scale to minimize bandwidth consumption, and 
to greatly improve the searching performance under arbitrary system 
parameters and resource constraints (mainly the available bandwidth). Based on 
the model, we design a decentralized peer-to-peer searching strategy, namely 
the Lookup-ring, which provides very efficient keyword searching in high 
dynamic peer-to-peer environments. The simulation results show that Lookup-
ring can easily support a large-scale system with more than 106 participating 
peers at a very small cost in each peer. 

1. Introduction 

The searching efficiency is a crucial factor for peer-to-peer (P2P) file-sharing systems 
(Napster [1], Gnutella [2], Kazaa [3]). Although centralized indexing is efficient (e.g. 
Napster, [1]), it has inherent defects [6] that research communities and internet users 
turn to decentralized systems, in which searching is performed cooperatively by 
forwarding queries among peers and use peers’ lookup tables (containing replication 
of items’ metadata) to find results (e.g. Gnutella [2], KaZaa [3]). Notable 
advancements [3, 4, 5, 6, 11, 13] have been made on decentralized searching to 
improve the performance, however, searching (especially searching by keywords) in 
decentralized P2P system still remains challenging. 

Different from existing approaches which take into account either metadata 
replication [5, 6, 11, 13] or enhanced queries forwarding [4], in this paper we solve 
the problem of decentralized searching by simultaneously considering metadata 
replication and queries, and utilizing optimized lookup tables to minimize bandwidth 
consumption and greatly improve searching performance. Our concept is as follows: 
putting more metadata (e.g. file indices) in peers’ lookup tables makes queries be 
resolved more quickly and reduces bandwidth costs on query forwarding; however, 
more indices imply that system variations (peers’ joining or departure) will cause 
more corresponding updates for expired metadata and increase bandwidth costs on 
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metadata maintenance. So, there is a basic trade-off between queries and metadata 
maintenance, and we model this trade-off to find the optimized scales of peers’ 
lookup tables, so as to minimize total bandwidth consumption or maximize searching 
performance under given environment parameters. In Section II, we propose the 
model to estimate optimized lookup table scales, and find that both bandwidth 
consumption and average searching hops can be reduced to O(N1/2) (N is the number 
of peers) in comparison with the O(N) complexity in conventional random walk 
strategy [5]. Based on the model, we propose a decentralized P2P file-sharing system, 
the Lookup-ring, which implements a general searching strategy with nearly optimal 
performance under arbitrary system parameters (system scale, magnitude of shared 
files and frequency for users issuing queries, etc) and resource constraints (mainly the 
bandwidth constraint in peers). In current Internet environment, Lookup-ring can 
easily afford a system with more than 106 peers where most searching queries are 
resolved within a few hops.  

The rest of paper is organized as follows. Section II gives the model. Section III 
presents details of Lookup-ring design. Section IV presents performance evaluation. 
Section V discusses related works and Section VI concludes the paper. 

2. Model for bandwidth and trade-off 

In this section, we propose an analytic model to estimate bandwidth consumption and 
describe the trade-off between querying and metadata maintenance. We first define 
notations in the model (see Table.1). We consider a system consisting of N peers (N is 
around 106) and sharing U unique files (we don’t count file replicas in U), denoted by 
f1, f2, …fU. Each unique file may have some replicas shared by users who download 
the file. We use ri to denote the number of fi’s replicas, and TR to denotes the total 
replica number (TR = r1+r2+…+rU). For system variations, the peers’ average session 
time is denoted by Tsession. Based on measurement works [7, 8] we have referenced 
values of these system parameters, as listed in the Table.1 (these values are only used 
for reference in the model, not necessary). 

Considering that there are totally ki indices of file fi in all peers’ lookup tables (for 
i=1…U), we call ki as fi’s “indexing factor”. The search process is a sequence of 
probes: when a peer is probed, it attempts to match the query on its local file indices; 
we assume the searching is perfect and strict, i.e. a query for file fi can always and 
only be resolved by a probe to peer containing an index to fi. For random search 
process, the search size (number of probed peers) for resolving a query of fi is a 
random variable, with the expectation equal to N / ki [13, 4]. 

Now we present the model. First we estimate bandwidth costs for querying. Unique 
files have their respective popularities modeled by query distribution. Let q = < q1, 
q2, …qU > be a vector of probability that sum to 1, where qi is the probability that a 
query is for file fi. Therefore, q is the query distribution [13, 4]. Considering there are 
totally Q queries submitted per second, the totally bandwidth for querying is: 

∑
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where mq is the average size of querying message (bits), and (N / ki-1) is the 
expectation of hops to resolve a query for fi. 
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Table 1. Notation and Model Parameters. 

Second, we estimate the maintenance costs. When replica variation occurs, we 
need to update the affected indices in lookup tables. So, the bandwidth costs is made 
up of the following parts: BWpeer_depart for updating expired indices pointing to a 
leaving peer; BWpeer_join for a joining peer downloading its lookup tables from others; 
and BWfile for updating lookup tables due to file variations (both sharing new files and 
removing shared files). We use Vpeer and Vfile to denote the variation frequency (time 
per second) for peer and file respectively. Peer variation are usually modeled with 
Poisson distribution with parameter λpeer =1/Tsession [14, 19], and we have Vpeer =λpeer ·N 
for both joins and departures. For Vfile, in [7] we know the largest number of 
successful downloaded files per peer per day is no more than 75 files (a very large 
number), and thus Vfile ≈ 2·75/(24 × 3600)·N for both new downloaded files and 
removed files. (The model describes stationary system behavior, so we assume 
number of new files to be approximate equal to deleted files in certain duration.)  

Now we calculate maintenance costs. A failure of file replica invalidates all indices 
pointing to it. These “expired” indices should be updated sooner or later; otherwise 
the total number of valid indices will decrease. We suppose the indexing assignment 
has no preference for replicas with higher availability. Thus, for a unique file fi with ri 
replicas and totally ki indices, one replica failure will averagely cause ki/ri expired 
indices. For BWpeer_depart, seeing that departure of a peer P causes failures of all its 
replicas, for file fi with ri replicas the probability that a departing peer P contains fi is 
ri/N. So the expectation of expired indices caused by a peer departure is: 

∑ ∑
= =

=⋅=
U

i

U

i

i

i

ii

N
k

r
k

N
r

1 1

 number  expired  (2) 

Parameter Meanings Referenced value 

N Number of peers in the system 106 

U Number of unique files 10·N = 107 

f1,f2,…fU Unique files shared in the system  

ri Number of fi’s replicas Zipf 

TR ∑ =
= U

i irTR 1  number. replica Total  200·N=2·108 

Q Number of queries per second 1/60·N 

Tsession Average peers’ session time (on-line time) 1 hour  

peerλ  Poisson parameter for peer variations 1/3600 

Vpeer Number of peer variatons per second for both join and departure Npeer ⋅λ  

Vfile 
Number of file varations per second for both adding and 
removing files 1.74× 10-3N 

ki Number of indices of fi  

q=<q1,…qU> 1  on.distributi rateQuery 1 =∑ =
U
i iq  

ii rq ∝  

mq,  mp Average message size for querying and updating expired index 0.5KByte 

Rmsg 
For redundant messging: peer receives one updating message 
for Rmsg times.   
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So, bandwidth consumption for maintaining them is: 

∑
=
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where mp is the average size of updating message. In (3) we use Rmsg to denote the 
redundancy factor of messages, which indicates that in order to updating a single 
index, a peer will averagely receive Rmsg times of the corresponding updating 
message, each of which has complete updating information (this is defined for non-
acknowledged messages. For acknowledged message transmission, Rmsg is defined as 
the double value of non-acknowledged case). The Rmsg is a system parameter to 
characterize updating algorithm in specific system. To make update tolerant to 
message lost, some algorithms utilize redundant messaging where peers may receive 
the same message more than once. In the model we use Rmsg to reflect this manner.  

A peer loses its lookup table after departure, and should download entire table in 

join time. The average number of indices in lookup table is NkU
i i∑ =1 , So:  
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For file variations, from above analysis a variation of fi may generate ki/ri·Rmsg·mp 
bandwidth cost for updating indices, so totally bandwidth is: 
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where TR is total replica number (see Table.1), and the number of variations for fi is 
assumed to be proportional to fi’s replicas’ number ri (i.e. number of peers containing 
fi). Thus, summate all these cost and we will have the estimation of total bandwidth 
consumption, as follows: 

filepeer_jointpeer_deparquerytotal BWBWBWBWBW +++=  (6) 

Notice that {ki} are independent, and we can minimize each term of the summation 
in (6) by choosing the best ki. The optimized choices of ki for minimum BWtotal is: 
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subject to ki
* ≤  N (recall that ki is the indexing factor of file fi), where θ is a system 

parameter independent to i. The minimum BWtotal is: 
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where we used Cauchy inequality to the summation. So, the average bandwidth cost 
in each peer based on ki

* is: 
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From (7) the optimized ki is proportional to the querying rate qi
1/2 for each file fi. It is 

clear that ki is a trade-off between querying and maintaining the system, since the 
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numerator Q·mq·qi and denominator (Vpeer+Rmsg·(Vpeer+N/TR·Vfile))·mp represent cost for 
queries and maintenance respectively. In (9) we have average bandwidth cost per peer. 
The Q/N is the number of queries each peer submits to system per second (e.g. 1/60). U/N 
is also a stationary environment parameter (e.g. 10~20 based on [8]). So, the bandwidth 
cost per peer is O(N1/2) in optimization. Because of the square root, the scalability of 
system with optimized indexing factor is fairly good. Using practical parameter values in 
(9), we find the random searching strategy becomes surprisingly powerful under 
optimized indexing factors (i.e. optimized lookup table scale). For example, for N=106 
peers with only 1 hour session time, using Rmsg=5 (very redundant messaging) and other 
reference values in Table.1, the optimized strategy can support the heavy queries where 
each peer submit a query per minute, within only 15Kbps bandwidth per peer (both 
upstream and downstream). This is a very low bandwidth cost that modem connections 
can easily afford, and we can even reduce it with more efficient messaging (lower Rmsg). 
For comparison, based on report in year 2001 [18], in Gnutella each peer consumes more 
than 150 Kbps bandwidth both upstream and downstream. 

The model illustrates theoretical lower bound of peer consumptions for 
constructing a lookup system based on random searching process. It shows that with 
appropriate lookup scales and updating mechanism, a uniform system (i.e. no 
supernodes) with simple unbiased search is capable to support very large systems. In 
the following sections we give practical design derived from the model. 

3. Design of Lookup-ring 

This section presents design of Lookup-ring Lookup-ring is derived from the model to 
achieve optimized performance, in which indexing factors is calculated based on 
equation (7). Lookup-ring is built on top of most structured P2P infrastructures, e.g. 
Chord, Pastry [9] and SkipNet [20]. In this paper we illustrate how it works on top of 
Pastry and SkipNet as example. For details of their structures, please refer to [9, 20]. 

3.1 Indexing factor and file levels 

Assuming we know the query rate distribution <q1,q2,…qU> (due to limited space, we 
do not provide estimation of qi, but only point out it is reasonable to assume qi to be 
proportional to replica number ri), we can obtain best indexing factor ki

* with (7). We 
first quantify ki

* into discrete levels, and files whose ki
* belong to the same level have 

the same actual (quantified) indexing factor ki. The indexing factor is quantified into 
m levels with radix 2, i.e. we use a set of m kinds of indexing factor values M={N, 2-

1 ·N, 2-2 ·N, …,2-(m-1) ·N} for all indices. For fi with ki
*, the actual indexing factor ki 

should be the closest 2-j ·N in M to ki
*, and we call fi as a “j-level” file. 

3.2 PeerId, fileId and peer groups 

In Lookup-ring, each peer is assigned with a unique and uniformly distributed peerId. We 
also generate a uniformly distributed fileId for each unique file by hash functions. We use 
peerId to partition peers into groups, and fileId to match unique files with groups. 

Peers are partitioned into hierarchical groups as follows. All peers with the same j-
bit prefixes in peerIds are united into a j-level group, for j=0,1,…(m-1). A j-level 
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group is denoted by the j-bit common prefix of containing peers. The prefix of a 
group is also called the group’s groupId. For example, 010-group is a 3-level group 
with groupId “010”, which consists of all peers with the same 3-bit prefix “010”.  Due 
to uniformity of peerIds, a j-level group has approximately 2-j·N peers. 

Each j-level unique file is matched to one j-level group whose groupId equals to j-
bit prefix of the file’s fileId. If a file is matched to a group, all peers belong to the 
group should contain the file’s index in their lookup tables. Thus, a peer P with peerId 
idP contains indices of all j-level files with fileIds sharing idP’s j-bit prefix, for j=0, 
1, …, m, and a j-level file is indexed by approximately 2-j·N peers, as our original 
purpose. Consequently, any query for a j-level file can be resolved by traversing all j-
level groups, i.e. forwarding query to 2j peers with different j-bit peerId prefixes. If 
doing so, we also obtain all unique files with file level less than j. Therefore, we can 
resolve any query by traveling 2-(m-1)·N peers with different (m-1)-bit prefixes.  

Since Lookup-ring is built on top of structured P2P infrastructure, the peer 
partitioning ought to be consonant with underlying peer organization, and peerId 
should have ability to partition peer into groups in DHT organization. If Lookup-ring 
is built on Pastry, we use Pastry’s nodeId as peerId in Lookup-ring, because in 
Pastry’s organization the nodeIds plays the role of partitioning nodes into prefex-
based groups.2 The peer groups and file levels are shown in Fig.1. 

 
Fig. 1.  Partition on top of Pastry and SkipNet. 

3.3 Searching in Lookup-ring 

Lookup-ring provides searching by keywords and substrings. Each unique file is 
associated with a “label” for searching, e.g. the filename. Each file index defines a 
match between a unique file’s label and location of one of the file’s replicas. Thus, a 
file index contains the file label, IP of location. We also store the file’s fileId and 
location’s peerId in the index. For 20~30-byte file label, we need only about 64-byte 
file index. Based on the model, each peer of a 106-peered system needs to contain 
about 104 indices, and the lookup table size is no more than 1Mbyte. 

Lookup-ring has a “prefix-traversing” searching strategy. Consider a query q 
submitted in peer P0. We first check P0’s lookup table to see whether q could be 

                                                           
2 Other P2P infrastructures (e.g. chord) also have similar nodeId playing the partitioning role. For SkipNet, 

note that it is a “bi-id” system whose NameId indicates proximity between nodes while NumericId 
partition nodes into hierarchical rings. So, we use SkipNet’s NumericId as the peerId in Lookup-ring. 
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resolved locally. Here we obtain all 0-level results of q. If q is satisfied (i.e. get 
enough results) we stop searching, otherwise q is forwarded to a peer P1 which has a 
different 1-bit prefix with P0. From both P0 and P1 we can find all 1-level results of q, 
because P0 and P1 represent all 1-level groups. If still unresolved, we keep up this 
prefix-traversing. In general, before the j-th step q has been forwarded to 2(j-1) peers 
{P0, P1, …P2^(j-1)-1} with the peerIds covering all (j-1)-bit prefixes. In the j-th step we 
forward q to another 2(j-1) peers namely P2^(j-1),…P2^j-1, so that j-bit peerId prefixes of 
all searched peers {P0, P1, …P2^j-1} have covered all the j-bit prefixes. After that, we 
have traversed all groups with no more than j levels and found all results whose levels 
are no more than j. The searching process stops either query is resolved or we reach 
the last level ((m-1)-level) when all unique files’ indices has been searched. 

Due to the consistency of Lookup-ring’ peerId with underlying DHT, it is very 
easy to perform prefix-traversing searching, because it is a natural property of most 
DHTs to perform such prefix-traversing [16]. Therefore, searching in Lookup-ring is 
very efficient without redundant query forwarding. 

3.4 “Principle of logical locality” for location choices 

Because a unique file usually has more than one replica, there is a problem for 
choosing location for file’s indices. For each of the file’s index we choose only one 
replica as the location. We propose our “principle of logical locality” for choosing 
locations of indices and for easy maintenance. 

For a j-level unique file fi, all fi’s indices are stored in a matched j-level group g. If 
one of fi’s replicas P fails, we need to efficiently update all affected indices in g, i.e. 
indices picking P as fi ’s location. To make maintenance easy and save bandwidth, peers 
in g whose indices of f pick the same location should to be situated in a logical locality 
in g (i.e. a continuous region is id-space), so that we can perform locality-based update 
in which messages are precisely spread to all peers in the affected region that exactly 
“need” the update, while other peers will not receive the message. For this purpose, we 
use “principle of logical locality” to choose location for each index, i.e., when chooses 
the location for an index of a unique file, a peer should always pick the logically 
“closest” replica of that file. In other words, location in peer’s index should always be 
the living replica which is current the closest one to the peer in logical distance. The 
goal of maintenance is to keep this invariance after system variations. 

Similar to the peerId, here the “locality” should also be consonant with underlying 
peer organization to facilitate updating algorithm. In Pastry, both locality and peer 
portioning is based on Pastry’s nodeId. Thus, we ask each Lookup-ring peer to choose 
the replica whose peerId is currently the closest one. Obviously this design fits all 
fundamental considerations of our design, e.g., locality-based updating, since peers 
choosing the same location of a file are logically adjacent in DHT’s id-space. 
However, from Fig.1 and Fig.2 the replica locations being chosen in a certain group 
are not uniformly distributed, since peerIds in a group have a common prefix and do 
not fill in peerId-space where replicas’ peerIds scatter themselves. So, we can extend 
this approach to get better uniformity of choosing locations (this extension is not 
necessary to Lookup-rings). We first map peerIds of replicas into the group with 
linear transformation before using principle of locality. For a j-level file f matched to 
a j-level group g with j-bit groupId idg, we map all peerIds of f’s replicas into g by 
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right-shifting them by j-bits and add j-bit prefix idg. After this linear transformation, 
replicas’ mapped peerIds are uniformly distributed in g while also keep their primary 
order. Then, peer in g picks the replica of f whose mapped peerId is the closest one. 
Fig.2 shows this mapping, and in Fig.2 the I, II, and III are the three sections in the 
group (i.e. locality) which consist of peers choosing replica a, b, and c as the location 
of index, respectively. When variation occurs (e.g. b suddenly fails), peers in section 
II should be updated with new replica locations. Based on the principle, section II is 
then divided into I’ and III’ which should update their locations with a and c, and be 
merged into I and III, respectively. The boundaries of I’ and III’ can be determined 
only with peerId of a, b and c (the boundary between I’ and III’ has the equivalent 
distance to peerId(a) and peerId(c)). So, after b’s failure we have the following update 
strategy: b’s neighbor replica a and c find b’s failure (how they find the failure is 
explained in Section 3.5), send their locations and boundaries of I’ and III’ to two 
certain peers in I’ and III’ correspondingly (the dashed lines in Fig.2), and these peers 
spread received messages in I’ and III’ for updating all other peers in the either 
locality. When b joins there’s a similar process: b calculates section II’s boundaries 
from a’s and c’s locality and spread updating message in II.3 

 
Fig. 2.  Principle of locality in Lookup-ring, and the updates of indices after variation 

3.5 Maintaining Lookup-ring 

For maintenance, we should actively detect variations and update affected indices. We 
construct file-ring in Lookup-ring, where all replicas of a unique file connect to form a 
ring structure and keep connections with heart-beating messages, so that variations can 
be soon detected. After that, the detector generates an appropriate update immediately. 

3.5.1 File-rings 
A file-ring is shown in Fig.3. Consider a certain unique file fi with r replicas stored in 
r peers. These peers are connected into a ring structure (file-ring), ordered with 
logical locality in DHT, namely P1,P2,…Pr (logical locality is defined in last Section). 
Peers participating in a file-ring should hold the links to its two neighbors 
(predecessor and successor in ring) and send “heart-beating” messages to them every 
Tprobe of time to maintain connectivity. A peer may participate in many file-rings 
according to its shared unique files. 

                                                           
3 In SkipNet the logical locality is defined by NameId rather than NumericId, because in each SkinNet-ring 

the sequence and neighborhood of peers are indicated by NameId. So, on top of SkipNet we use 
NameIds of replicas to determine the sections and guide location choosing. Fig.2 shows one group (i.e. a 
SkipNet-ring) and its sections based on replicas’ NameIds.  
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Fig. 3. Maintaining file-ring connectivity 

3.5.2 Active variation detection and file-ring recovery 
Peers periodically probe their file-ring neighbors. To reconnect broken file-ring, peers 
should be aware of not only its direct neighbor but also some nearby peers, namely 
“adjacent-set”, similar to Pastry’s leaf set [9]. When neighbor fails, a peer can 
reconnect file-ring with adjacent set. Then, it keeps heart-beating with its new 
neighbors, and also notify nearby peers for updating their adjacent-sets. Fig.3 shows a 
file-ring with 8 peers and adjacent-sets. When replica c fails (either peer failure or 
dropping replica), b and d will detect the failure after (Tprobe+Tout) and begin to repair 
file-ring. Peer b and d first find each other from adjacent-sets and reconnect file-ring 
(b and d exchange adjacent-sets for verification and updating). Then, b sends its new 
adjacent-set to a and h for updating expired adjacent-sets in them, and d also updates 
e’s and f’s adjacent-sets. For replica c joining file-ring, a similar procedure is 
performed that b and d receive the joining request, break their interconnection and 
turn to keep the connection with c, and notify a, h and e, f for updating adjacent-sets. 

We set the Tprobe as 60 seconds and keep 16 peers in the adjacent-set. For variation, 
each detector notifies 7 peers in its side, with an acknowledged messaging. 

3.5.3 Updating lookup tables after system variations 
Replicas in file-ring are ranged by logical locality; therefore the two detectors of 
replica failure are exactly the two replicas whose locations should be used to update 
expired indices. Thus, in Fig.2 peer a and c will detect b’s failure within (Tprobe+Tout) 
due to file-ring heartbeat messaging. After that, a and c calculate their respective 
updating sections (i.e. I’ and III’), and each of them immediately sends an update 
message to one peer in corresponding section for maintaining lookup tables, via 
underlying P2P routing. The update message contains the new location of replica (a 
or c), the fileId of the unique file, and boundaries of section inside of which the 
message should be spread. The peer receiving the updating message then spreads it to 
entire updating section in the file’s group, by way of message broadcasting algorithm 
in the underlying structured peer organization. 

In detail, most DHTs can perform locality-based message broadcasting as a basic 
service, i.e. broadcasting messages to all peers in a consecutive section based on its 
logical locality in a partitioned group [16]. Lookup-ring utilizes DHT-based 
broadcasting for spreading its update messages, following the algorithm proposed in 
[16]. On top of Pastry (and Chord, etc), we can derive from the routing tables a 
spanning tree for an arbitrary nodeId section (rooted by any peer in the section). Via 
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broadcasting the first peer can spread the update information to all other M peers in 
the section through exactly (M-1) messages [16]. This broadcast has no message 
redundancy that each peer receives the needed message exactly once. So, the Rmsg in 
the model (see Section.2) should be 1. To further guarantee the update, we use 
confirmed messaging that all updating messages should be acknowledged. If an 
acknowledgement is not received within a timeout period the message is 
retransmitted. Therefore, considering both acknowledgement and redundancy during 
broadcast, the message redundancy factor Rmsg in our model should be 2 for Pastry.4 

4. Performance evaluation 
We perform our evaluation of Lookup-ring with simulations. We run our simulator on 
Linux running on Pentium IV CPU with 2G memory, which can support more 104 
simulated peers. We construct and evaluate Lookup-ring on top of SkipNet. We 
implement SkipNet based on [20], using basic type of SkipNet with only R-table and 
density parameter k equal to 2. For shared files, the unique file number is 10 times of 
the peer number and the total file number is 200 times of peer number, derived from 
[8, 7]. The simulation has two aspects. First we examined feasibility and efficiency of 
Lookup-ring by simulating environments with different peer numbers and peer 
availabilities, in order to see bandwidth cost in each peer to support a heavy query 
load (one query per peer per minute). Second, we compared Lookup-ring with 
random walks searching [5] in order to see how much improvement we have gained. 
We are mostly concerned about the following two metrics: the average search size (in 
hop number), and the maximum query workload under a fixed bandwidth. The former 
indicates how quickly a query is resolved, and the latter shows system scalability. 

Fig.4.a shows the messages and bandwidth consumptions for each peer in 
supporting one query per peer per minute, under different peer availability (Tsession) 
and system scale (number of total peers). If mq and mq is both 1Kbit message on 
average, the values in y-axis of Fig.4.a is also the needed bandwidth for each peer. 
We can see the trend of bandwidth consumptions when enlarge system scale, which is 
roughly in proportion with the square root of peer number, e.g. when expand peer 
number for 10 times from 103 to 104, the bandwidth increase from 0.36 to 1.42 Kbps 
(i.e. 3.9 times, nearly 101/2) for 1.5 hours online time (Tsession=5400s). From this trend, 
we can deduce that for 106 peers, the bandwidth is nearly 10 times of the case with 
104 peers, i.e. nearly 16Kbps for Tsession=3600s and 12Kbps for Tsession=7200s, in both 
upstream and downstream. This result shows very good scalability for large systems.  

Fig.4.b is the average search size of Lookup-ring and random walk. The results 
demonstrate the improvement of search size in our strategy. In 104 peers, the search size 
is only 1/40 of random walk. This outperforming becomes more remarkable when peer 
number N grows, since we have O(N1/2) search size while random walk is nearly O(N).  

Fig.4.c is the comparison of maximum supported query workload under different 
bandwidth. We compare Lookup-ring with random walk in system of 5000 and 10000 
peers (Tsesson=3600s), with 1Kbit querying messages. From the results we also see that 
Lookup-ring greatly overcome the Gnutella-like system, esp. when system scale 

                                                           
4 On top of SkipNet there’s a slight difference that the derived spanning tree has some redundancy, where 

each peer will averagely receive an updating message for 1.5 times, and Rmsg should be 3 for confirmed 
messaging. Here we omit the discussions and readers can refer to [12] for details. 
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grows. The reason is because by using adaptive indices, we significantly save query 
hops and simultaneously constrain the maintenance cost to a low level. 

 
Fig. 4. Performance evaluation. a) up-left.  b) up-right. c). bottom. 

5. Related works 
To improve searching efficiency, researches try to exploit all aspects of typical query-
based decentralized searching. In strategy of forwarding queries, [5] propose to 
replace flooding-based query-forwarding with random walks, so that network traffic 
is reduced. [4] further exploit data correlations and user interests to guide forwarding 
directions and improve searching performance. Instead of [4], Lookup-ring doesn’t 
need specific data correlations, and thus is suitable for more applications. In the 
aspect of local lookup tables, results caching [11] and supernode [3] are employed. 
[13] suggests replicating files in accordance with their query rates, so that the 
expectation of searching size is optimized. In comparison, Lookup-ring has fully 
controlled and optimized caching (the indices), and doesn’t need supernode. Recently, 
researchers present to employ biased overlay topology towards peers with larger 
lookup tables, and Gia in [6] is an integrative design combining many above features. 
For DHT-based approaches, most DHTs support only precise search with precise 
resource ID, while the others have very limited capability in keyword search [6, 17]. 
Lookup-ring uses DHT as underlying organization for system maintenance, and the 
efficient keyword search is built on a higher level.  
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6. Conclusions 
Our contribution is in the following aspects. First, we propose an analytic model to 
describe trade-off between query and maintenance, based on which the optimized 
lookup table scales can be estimated. Second, we design a efficient decentralized P2P 
searching strategy, where there are no supernodes and all peers are utilized uniformly. 
Third, we demonstrate the maximum query load and system scale that an unbiased 
decentralized P2P system can support. We show that unbiased decentralized P2P 
system can achieve a heave query load in a large-scale system, with low peer costs. 
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