
Grid Resource Discovery Model Based on the
Hierarchical Architecture and P2P Overlay Network

Fei Liu, Fanyuan Ma, Shui Yu and Minglu Li

Department of Computer Science and Engineering, Shanghai Jiaotong University,
Shanghai, P. R. China, 200030

{liufei001, fyma, yushui, mlli} @sjtu.edu.cn

Abstract. The Grid technology enables large-scale sharing and coordinated use
of networked resources. The kernel of computational Grid is resource sharing
and cooperating in wide area. In order to obtain better resource sharing and
cooperating, discovering resource must be efficient. In this paper, we propose a
Grid resource discovery model that utilizes the flat and fully decentralized P2P
overlay networks and hierarchical architecture to yield good scalability and
route performance. Our model adapts efficiently when individual node joins,
leaves or fails. Both the theoretical analysis and the experimental results show
that our model is efficient, robust and easy to implement.

1 Introduction

The kernel of computational Grid is resource sharing and cooperating in wide area.
We propose a grid resource discovery model that utilizes the flat decentralized P2P
overlay networks. P2P overlay networks, such as Chord [1], CAN [2] and Tapestry
[3], are always used in file-sharing systems in which the discovery result has to
perfectly mach the request. But resource discovery in Grid are in the absence of a
naming scheme. GRIP [4] is used to access information about resource providers,
while the GRRP [4] is used to notify register nodes services of the availability of this
information. To deal with the problem we combine P2P and hierarchical architecture
in our model. In our model nodes in Grid can be classified into two types. Register
nodes are those that do not provide any resource but only manage the nodes that
provide resource. This mode apply P2P architecture to register nodes, which makes
the framework of register better scalable than traditional register architecture such as
centralized register, hierarchical register etc. Resource nodes are the other nodes that
provide resource and take on a little manage work.

2 Constructing Register and Resource Provider P2P Network

The scalability of centralized architecture is bad because the register node is its
bottleneck. So in our model, we combine P2P overlay network and hierarchical
architectures. There are two P2P overlay networks. One is register P2P overlay

network that consists of register nodes the other is resource provider P2P overlay
network that is constructed by resource provider nodes. We assume that IP is the
identifier of node. We can regard IP as a point in a virtual 4-dimensional Cartesian
coordinate space which is defined as Sa={(0,0,0,0),(255,255,255,255)}. We assume
the 4 axes of Sa are x, y, z, w. The first register node R1 holds space Sa. When the
second register node R2 joins, Sa is divided into two parts averagely. One parts is
controlled by R1 and the other is held by R2. The central point of the space controlled
by R1 is closer to R1 than the other space. R1 records the IP of R2 and space
controlled by R2 and R2 records IP of R1 and space controlled by R2. In this way the
neighbor relationship between R1 and R2 sets up. After the register overlay network
contains m node [R1, R2 ,…, Rm], the (m+1)th register node joins which will split the
space controlled by node Rn {1<=n<=m} which IP is closest to IP of Rm+1 into two
parts.

 We assume P1 is a resource provider node that IP is (162.146.201.148) and it
knows the register node R1 (28.18.36.112). Then P1 sends its GRIP data to R1. R1
checks IP of P1 and its space then transfer the GRIP data of P1 to its neighbor. The
neighbor of R1 does the same as R1 and Finally the GRIP data is received by R2.
After R2 receives the GRIP data, it records the static resource and only dynamic
resource types and sends the feedback to P1. Owning to the dynamic resource
changes over time, if R2 holds the dynamic resource, it has to refresh dynamic
resource periodically which consume much R2 resource and result in low scalable
performance. So we only store dynamic resource types in register nodes. The
feedback contains the IP of R2, space controlled by P1 (in 4-dimensional Cartesian
coordinate space), spaces controlled by P1’s neighbors and static resource and
dynamic resource types of P1’s neighbors. If there is no neighbor of P1, P1 will hold
the space controlled by R2. Then P1 sends its GRIP data to its neighbors and its
neighbors record the dynamic resource of P1. P1 will send message to its neighbors to
refresh the record of its dynamic resource periodically. Thus there are at most 9 nodes
know the dynamic resource of P1. Here P1 registers successfully and P1 join the
resource provider P2P overlay network. In this way, we can construct the resource
provider P2P overlay network.

3 the Process of Resource Discovery

If a client c knows any node in Grid, it can get at least one register node from that
node. Then c sends request to register node R1 to obtain some resource. After
receiving the request R1 checks the space controlled by it whether contains the
resource c requesting. If the space contains the static resource c asking for, R1 tells c
that the static resource is found and sends the location of the resource to c. Otherwise
R1 transfers the request to its neighbors and waits for the response. If one of its
neighbor has that resource, R1 select the neighbor and sends its IP to c, then c resends
request to the selected neighbor of R1 to ask for resource. If all the neighbors of R1
have not the resource, R1 extends the search extent to make more register nodes check
its resource until at least one register node Rn finds the resource and resource provider
node Pn which belongs to the space controlled by Rn can provide the resource.

If R1 has the dynamic resource c asking for, it randomly select a resource provider
P1 which provides the resource and maximum of the resource is not smaller than c
requesting, then R1 sends the IP of P1 to c. After c receives the feedback, it sends
message to P1 to check the current load of the resource. If the free resource matches
the request of c, P1 accepts the request of c and allocate the free resource to c.
Otherwise P1 use experience-based+random algorithm to transfers the request of c to
its neighbor (Fig. 1-a). The experience-based+random is as follows: nodes learn from
experience by recording the requests answered by other nodes. A request is forwarded
to the peer that answered similar requests previously. If no relevant experience exists,
the request is forwarded to a randomly chosen node. If R1 has not the dynamic
resource c asking for, it do the same as the static resource discovery to find a register
node Rn which contain the dynamic resource and the maximum of the resource is not
smaller than c requesting (Fig. 1-b).

c

register
overlay
 network

R1

Pn

resource
providers
overlay
network

Rn

c

register
overlay
 network

R1

P1

resource
providers
overlay
network

(a) (b)

Fig. 1. The process of dynamic resource discovery

4 Experimental Results

In our experiment, we use GT-ITM models to obtain 2 groups of nodes. One group
contains 5000 nodes that are used as resource providers and the other group contains
100 nodes that are regarded as registers. 20 kinds of static resources and 50 kinds of
dynamic resources are in our simulator. Each kind of static resource has 10 instances
and every kind of dynamic resource has 10 instances too. These resources are
allocated randomly for resource providers.

In our experiment, we investigate the influence of the number of nodes to the
number of hops. We activate 1000, 2000, 3000, 4000, 5000 resource providers
respectively. We randomly select 40 resource providers as client to send requests. The
40 resource providers are divided into 4 groups. Fig. 2 shows that the number of hops
increases slightly with the number of the computing nodes increasing. However there
is still some slight disobedience in the curve because the resource which client search
may be in its local node or neighbor or some near nodes. The four curves are very
similar that shows our model has fine stability.

1000 2000 3000 4000 5000
-10

0
10
20
30
40
50
60
70
80
90

100
110

1000
1500
2000
2500
3000
3500
4000
4500
5000

 Request of first group
 Request of second group
 Request of third group
 Request of fourth group

Av
er

ag
e

N
um

be
r o

f H
op

s
pe

r G
ro

up

Number of nodes

Fig. 2. Average number of hops per group for different resource provider numbers

5 Conclusions

We propose a Grid resource discovery model that utilizes the flat and fully
decentralized P2P overlay networks and hierarchical architecture to yield good
scalability and route performance. Register nodes are organized as P2P overlay
network that removes the single-point failure and improve the performance of
scalability. The register overlay network do some auxiliary manage work for resource
provider overlay network, which improve the route performance. Both the theoretical
analysis and the experimental results show that our model is efficient, robust and easy
to implement.

Acknowledgements. This paper is supported by 973 project
(No.2002CB312002) of China, and grand project of the Science and Technology
Commission of Shanghai Municipality (No. 03dz15027 and No. 03dz15028)..

References

1. Ratnasamy, S.m Francis, P.m Handley, M.m Kapp, R.m And Shenker, S. A scalable
content addressable network. In ACM SIGCOMM (2001)

2. Stoica, I., Morris, R., Karger, D.m Kaashoek, M., and Balakrishnan, H. Chord: A scalable
peer-to-peer lookup service for internet applications. In ACM SIGCOMM (2001)

3. Zhao, B.m Kubiatowicz, J.m And Joseph, A. Tapestry: An infrastructure for fault-resilient
wide-area location and routing. Tech. Rep. UCB//CSD-01-1141, U.C. Berkeley, 2001

4. K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman: Grid Information Services for
Distributed Resource Sharing. Proc. Of the 10th IEEE int’1 Symp. On high Performance
Distributed Compting (2001)

