
Build a Distributed Repository for Web Service
Discovery Based on Peer-to-Peer Network1

Yin Li2, Futai Zou2, Fanyuan Ma2, Minglu Li2

2The Department of Computer Science and Engineering,
Shanghai Jiaotong University, Shanghai, China, 200030

{liyin, zoufutai, ma-fy, li-ml}@cs.sjtu.edu.cn

Abstract: While Web Services already provide distributed operation execution,
the registration and discovery with UDDI is still based on a centralized
repository. In this paper we propose a distributed XML repository, based on a
Peer-to-Peer infrastructure called pXRepository for Web Service discovery. In
pXRepository, the service descriptions are managed in a completely
decentralized way. Moreover, since the basic Peer-to-Peer routing algorithm
cannot be applied directly in the service discovery process, we extend the basic
Peer-to-Peer routing algorithm with XML support, which enables pXRepository
to support XPath-based composite queries. Experimental results show that
pXRepository has good robustness and scalability.

1. Introduction

Web services are much more loosely coupled than traditional distributed applications.
Current Web Service discovery employs a centralized repository such as UDDI[1],
which leads to a single point of failure and performance bottleneck. The repository is
critical to the ultimate utility of the Web Services and must support scalable, flexible
and robust discovery mechanisms. Since Web services are widely deployed on a huge
amount of machines across the Internet, it is highly demanded to manage these Web
Services based on a decentralized repository.

Peer-to-peer, as a complete distributed computing model, could supply a good
scheme to build the decentralized repository for the Web Service discovery. Existing
Peer-to-Peer systems such as CFS[3] and PAST[4] seek to take advantage of the rapid
growth of resources to provide inexpensive, highly available storage without
centralized servers. However, because Web Services utilize XML-based open
standard, such as WSDL for service definition and SOAP for service invocation,
directly importing these systems by treating XML documents as common files will
make Web Service discovery inefficient. INS/Twine[5] seems to provide a good
solution for building the Peer-to-Peer XML repository. However, INS/Twine does not
provide a solution to provide XPath-like query.

1 This paper is supported by 973 project (No.2002CB312002)of China, and grand project of the

Science and Technology Commission of Shanghai Municipality (No. 03dz15027 and No.
03dz15028).

We designed a decentralize XML repository for Web service discovery based on
structured Peer-to-Peer network named pXRepository (Peer-to-Peer XML
Repository). Unlike Twine, as We allow index keys to be tree-structured or non-
prefix sub-keys. For improved scalability, index entries are further organized
hierarchically. We have extended the Peer-to-Peer routing algorithm based on
Chord[2] for supporting XPath composite query in pXRepository. We name this
algorithm eXChord (extended XML based Chord). Experimental results have shown
that pXRepository has good scalability and robustness.

2. System Overview

pXRepository is a Peer-to-Peer XML storage facility. Each peer in pXRepository acts
as a service peer (SP for simplicity), which not only provides Web service access, but
also acts as a peer in the Peer-to-Peer XML storage overlay network. The architecture
of the service peer in pXRepository is shown in Fig. 1.

Fig. 1. The architecture of the service peer

In pXRepository, XPath[6] is used as query language for retrieving XML
documents stored over the Peer-to-Peer storage network. Each SP consists of three
active components called the Web Service Discovery Interface, the core component
and the router, and a passive component called the local repository. Web Service
Discovery Interface provides access interface to publish or locate Web services and
also exposes itself as a Web service. The service description resolver is responsible
for extracting key nodes from a description. Each key node extracted from the
description is independently passed to the service key mapper component, together
with service description or query. The service key mapper is responsible for
associating HID(Hash ID) with each key node. It does this by hashing the key node.
More details are given in section 3. The Query Resolver and the Query Key Mapper
work almost the same way as the Service Description Resolver and the Service Key
Mapper do except that the Query Resolver generates query string based on the parsing
tree, which is produced by XPath parser. Service mapper is responsible for mapping
HIDs to service descriptions and will return the results to the application services
through the Web service discovery interface. Local repository keeps the Web service
interface, service descriptions and HIDs that SP is responsible for. The router routes
query requests and returns routing results.

In pXRepository, we organize every service peer in a structured Peer-to-Peer
overlay network. Because Chord has the features of simplicity, provable correctness,
and provable performance compared with other lookup protocols, we use Chord
protocol to organize the SP’s routing table.

3. Web Service Discovery in pXRepository

Service locating algorithm specifies how to route the query to the service peer who
satisfies the service request. In pXRepository, the service request is expressed in
XPath. However, the routing algorithm, Chord, in underlying Peer-to-Peer overlay
network only supports exact-match. We extend the Chord algorithm to support XPath
based match. The extended Chord algorithm is called eXChord.

In pXRepository, WSDL is used to describe the Web service interface, and the
service description metadata is generated based on the content of WSDL document
and the description that the user inputs before publishing. An example of Web service
description metadata is shown in Fig.2.

<services><service>
<name>ListPriceService</name>
<documentation>List the product price</documentation>
<location>http://services.companya.com/product/

ListProductService.wsdl</location></service>
<service><name>OrderService</name>
<documentation>Make order to product</documentation>
<location>http://services.companya.com/product/

OrderService.wsdl</location></service></services>
<description><company>CompanyA</company>
<industry>Manufactory</industry><region>China</region>
<keyword>Automobile Price Order</keyword>
<comments>……</comments>
</description>

Fig. 2. An example of Web service description metadata in pXRepository

Fig. 3. A sample NVTree converted from service description shown in Fig. 2.

To publish the Web Services, the Web Service description metadata will be first
converted to a canonical form: a node-value tree (NVTree). Fig.3 shows an example
of the NVTree converted from the Web Service description shown in Fig. 2.

pXRepository extracts each node from the NVTree. Fig.4 shows the concatenating
strings produced from the left sub-tree in Fig.3. Each node in Fig.4 is associated with
a string called node key (denoted by S1,S2,…). The node key is concatenated by the
child node keys and its self’s node value with a slash(/) between them. If the node has
multiple child nodes, each child node key is enclosed by a bracket and concatenated
in left-to-right order. The concatenating process is a recursive step in post tree
scanning order. The right sub-tree in Fig.3 is produced in the same way.

Fig. 4. Splitting a NVTree into service description key strings

Each node key is passed to the hash function to produce a HID, which will be used
as a key to insert into the underlying Peer-to-Peer overlay network. In pXRepository,
the hierarchical relationship of the nodes in NVTree will be preserved as shown in
Fig.5. Each element in Fig.5 resides in a specific service peer in pXRepository
correspond to the hash value of its node key (denoted as h(S1), h(S2),…).

Fig. 5. Distributing node keys across pXRepository

Before presenting pXRepository service publishing and locating algorithm which
is named as eXChord, we first introduce some definitions:

Definition 1. Let SD stands for a Web Service description document, then Ü(SD)
stands for the URI of the document, Γ(SD) represents the NVTree of SD, andΝ(SD)
stands for the set of NVTree nodes, whereΝ(SD)={N1, N2 ,…,Nm }.

Definition 2. Let N stands for a NVTree node, thenΡ(N) stands for its parent node
andК(N) represents the node key.

The pseudocode of eXChord service description publishing algorithm is given in
Fig.6. Function Publish is run on peer n, take a service description (SD) as input and
publishes the SD into the Peer-to-Peer overlay network.

1 n.Publish(SD){
2 key=hash(Ü(SD)); n`=n.Route(key); // Chord routing algorittm
3 n`.Insert(key, SD); ComputeΝ(SD)={N1, N2 ,…,Nm };
4 for each Ni inΝ(SD){
5 nodekey=К(Ni); parentkey=К(Ρ(Ni));
6 n.Distribute(nodekey, parentkey,SD); }
7 }
8 n.Distribute(nk, pk, SD){
9 id = hash(nk); n`=n.Route(id);
10 n`.Insert(id, nk, Ü(SD), hash(pk));
11 }

Fig. 6. The pseudocode of eXChord service description publishing algorithm

1 Let R=Φ // R is the result set of the query
2 n.Locate(QD){
3 ComputeΝ(QD)={N1, N2 ,…,Nm };
4 for each Ni inΝ(QD){
5 key=hash(К(Ni)); n`=n.Route(key);
6 NV= n`.get(key); /*NV represents the set of nodes having the

 node key value of К(Ni) */
7 for each NVi in NV {
8 SD= n`.Match(NVi, QD); /*Macth is a recursive process finding

 matching document set*/
9 if SD !=NULL then R=R∪SD;}
10 }
11 }
12 n.Match(N, QD){
13 status = IsMatch(N, QD);/*status can be Yes, No, or Not Sure*/
14 if status=Yes then
15 return SD; // SD is the service description document that matches QD
16 elseif status=No then return NULL;
17 else{
18 key=hash(К(Ρ(N))); // get parent node key hash value
19 n`=n.Route(key); NV= n`.get(key);
20 for each NVi in NV{
21 SD= n`.Match(NVi, QD);
22 if SD !=NULL then R=R∪SD;}
23 }
24 }

Fig. 7. The pseudocode of eXChord service locating algorithm.

To search for a Web Service, the client must specify the query requirement, which
is expressed in XPath language. pXRepository supports composite XPath queries, and
each XPath query only contains text matching constraints. An XPath query can be
converted to a tree called XPTree. Because each node key in NVTree preserves the
sub-tree structure information, the Web Service searching process can be a sub-tree
matching problem.

To present the Web Service locating algorithm, we first introduce some definitions:

Definition 3. Let QD stands for a XPath query, then Γ(QD) represents the XPTree
of QD, and Ν(QD) stands for the set of leaf nodes, whereΝ(QD)={N1, N2 ,…,Nm }.

Definition 4. Let N stands for a XPTree node, then К(N) represents the value of
the node.

The pseudocode of eXChord service locating algorithm is given in Fig.7. Function
Locate is run on peer n, take query requirement QD as its input and searches the Peer-
to-Peer overlay network for the services that satisfy its requirements.

4. Evaluation and experimental results

In this section, we evaluate pXRepository by simulation and compare pXRepository
with centralized service management approach such as UDDI. We compared latency,
space overhead, load, and robustness of pXRepository with UDDI.

We use the Georgia Tech Internetwork Topological Models (GT-ITM)[7] to
generate the network topologies used in our simulations. We use the “transit-stub”
model to obtain topologies that more closely resemble the Internet hierarchy than pure
random graph. An Internetwork with 600 routers and 28800 service peers (node for
simplicity) are used in our experiment.

4.1 Latency

We evaluate the latency metric in the number of the hops in the network. Fig.8 shows
the effect of number of nodes on latency. Since the routing table of pXRepository is
same as that of Chord, which has the logarithmic relationship between logical hops
and number of the nodes. If the average latency of single logical hop is κ , thus,
latency of pXRepository LatencypXRepository =κ × log(NH).

Experimental results further show that the latency of UDDI is roughly 80. This is
because the logical hops of UDDI is 2, and has nothing to do with NH. Although
latency of pXRepository is higher than that of UDDI, pXRepository has lower space
overhead, lower load, and good robustness (refers to 4.2, 4.3, 4.4).

4.2 Space overhead

In order to analyze conveniently, we first give a definition and two assumptions:
Definition 5. The memory size of routing ID and corresponding IP is called

memory unit, size of which is σ .
Assumption 1. Node ID and Web service description ID are distributed uniformly

in ID space, and there are n service peers in the system, each peer publishes m service
description documents in average. For each service description, s keys will be
generated by extracting the concatenating strings from the service description.

Assumption 2. The average overhead of each service description item is k× σ .
Overhead of pXRepository is:

Space pXRepository = log()n σ× + σ××× ksm (1)

Since UDDI maintains all information in central repository, overhead of UDDI is:
SpaceUDDI = n m k σ× × × (2)

For m = 80 , k = 2 , s=10 andσ =200, the effect of number of nodes NH on space
overhead is shown in Fig.9. Experimental results in Fig.9 reveal that the space
overhead of pXRepository is much better than that of UDDI.

Fig. 8. Effect of number of nodes on latency

Fig. 9. Effect of number of nodes on Space
overhead

Fig. 10. Load of pXRepository and UDDI Fig. 11. The effect of node failure

4.3 Load

Load is an important metric to evaluate Web service management approach. This
paper uses the number of messages in and out of the node as a metric to evaluate the
load. We assume that each service lookup query will generate 3 keys in average, and
each key will be used to locate the service. Fig.10 shows the comparisons in loads
between pXRepository and UDDI. The load of UDDI increases linearly with the
number of nodes, however, the load of pXRepository and the number of nodes is in
logarithmic relationship.

4.4 Robustness

In this experiment, we consider 28800 nodes with each node distribute 10 pieces of
service descriptions, and each service description will generate 10 keys. We also
assume that each service query requirement issued by client user will generate 2 keys
covered by the service description keys. Then we randomly select a fraction of the
nodes that fail. After the failures occur, we wait for the network to stabilizing, and
then measure the fraction of the keys that could not be located correctly. Fig.11 plots
the effect of node failure on service lookup.

Since in eXChord algorithm used in pXRepository, for each service key, there will
be a service description copy distributed in the underlying Peer-to-Peer overlay
network, the client can still continue to locate the appropriate service description by
using other keys in case some service peers fail.

5. Conclusions

In this paper, we propose a distributed XML repository, based on a Peer-to-Peer
infrastructure called pXRepository for Web Service discovery. In pXRepository, the
Web service descriptions are managed in a totally distributed way, which avoids
single point of failure and can be scalable and robust. We also extend the basic Peer-
to-Peer routing algorithm with XPath support.

References:

1. http://www.uddi.org/, UDDI Version 3.0, Published Specification.
2. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.

Chord: a scalable Peer-to-Peer lookup service for Internet applications. Proceedings of
ACM SIGCOMM`01, San Diego, September 2001.

3. F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative
storage with CFS. SOSP ’01, October 2001.

4. P. Druschel and A. Rowstron. PAST: A large-scale persistent Peer-to-Peer storage utility.
In Proc. HOTOS Conf., 2001.

5. M. Balazinska, H. Balakrishnan, and D. Karger, “INS/Twine: A scalable Peer-to-Peer
architecture for intentional resource discovery,” in Proceedings of the International
Conference on Pervasive Computing, August 2002.

6. W3C. XML Path Language (XPath) 1.0. http://www.w3.org/TR/xpath, November 1999.
7. Zegura, E. w., Calvert. k., and Bhattacharjee, S. How to model an Internetwork. In

Proceed-ings of IEEE INFOCOM (1996).

