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Abstract 
In this paper, we study the reliability issue in aggregating data versions for execution 
of real-time queries in a wireless sensor network in which sensor nodes are 
distributed to monitor the events occurred in the environment. We extend the Parallel 
Data Shipping with Priority Transmission (PAST) scheme to be workload sensitive 
(the new algorithm is called PAST with Workload Sensitivity (PAST-WS)) in selecting 
the coordinator node and the paths for transmitting the data from the participating 
nodes to the coordinator node. PAST-WS considers the workload at each relay node 
to minimize the total cost and delay in data transmission. PAST-WS not only reduces 
the data aggregation cost significantly, but also distributes the aggregation workload 
more evenly among the nodes in the system. Both properties are very important for 
extending the lifetime of sensor networks since the energy consumption rate of the 
nodes highly depends on the data transmission workloads. 

1 Introduction 
In this paper, we study the use of in-networking processing approach [MFH03] for 

processing of real-time queries which access to sensor databases maintained by sensor nodes 
distributed in the system to generate timely responses if certain events are detected or 
emergency situations occur [SKH03, YG03]. If the communication workload is concentrated 
on some nodes, not only the energy consumption rate of the nodes will be heavy, the message 
loss problem will also be very serious due to high collision probability in data transmission.  It 
is quite common that the sampled value for a data item may contain errors due to noises. Thus, 
the result generated from a query may contain error too if the data items accessed by the query 
contain error. In [LPSL04], a parallel data shipping scheme, called PAST, is proposed to 
gather the right versions of data items using the time-stamping method for a real-time query at 
a coordinator node so that they are relatively consistent with reduced data transmission cost. In 
this paper, we extend PAST by considering the data communication workload among the relay 
nodes in choosing the path for collecting sensor data for execution of a query. Our objective is 
to satisfy the constraints of the queries and at the same time to minimize the communication 
overhead and improve the reliability in data communication by evenly distribute the 
communication workload in the system.  

 
2 System Model   

A wireless sensor system consists of a base station (BS) and a collection of` sensor nodes 
distributed in the system environment which is divided into a number of square grids with 
length of r as shown in Figure 1. It is assumed that the nodes within the same grid capture the 
same signals of their surrounding environment. The length r of a grid is defined such that a 
node can directly communicate with all the nodes in its neighboring grids. Each sensor node 
generates sensor data values following a pre-defined sampling period which is defined based on 
the dynamic property of the sampled entities. A real-time query Ti can formally be defined as a 
tuple: {Di, Opi, <i, Oi, ∆i, Ri}. Opi is the set of read operations with each operation access to a 



 

sensor data item (Oi). To simplify the discussion, it is assumed that the required data items of a 
query are defined at the grid level. The set of operations Opi in a real-time query is associated 
with precedence constraints (<i) on their execution orders. Due to the responsive nature of a 
real-time query and the dynamic nature of the system environment, it is important that the 
values of the data items accessed by a real-time query are representing the current information 
(“real-time status of the entities”) in the environment. Each real-time query has a currency 
requirement (∆i) on its set of data items. Failing to meet the requirement implies that they are 
too “old” and not correctly describing the current situation. Since a timely response is critical to 
important events occurring in the environments, each real-time query is given a deadline on its 
completion time. In addition to meeting the deadline and currency requirement, another 
important issue is the reliability of the results generated from a query. As the query result 
generated from a set of data items may contain errors, it is important to provide multiple results 
by accessing multiple data versions of data items in processing a real-time query to improve the 
reliability and accuracy of the results. Therefore, a real-time query is associated with a result 
interval (Ri), which specifies the time interval of data items for generating the results.  
 

 

 

 

 

Figure 1: System Model. 
 In this paper, we adopt relative consistency as the correct notion for ensuring the 
correctness of the results and meeting the currency requirement of a real-time query [LP04, 
SBLC03]. Each data version of x is assigned a time-stamp at its generation time to indicate the 
start time of the validity of the data version. It will become invalid when the next version is 
generated. We use a time bound, upper valid time (UVT) and lower valid time (LVT) to label 
the validity interval of a data version. The set of data items for execution of a real-time query 
are relatively consistent if they are temporally correlated to each other, i.e., representing the 
status of entities in the environment at the same time point. 

Relative consistency: Given a set of data versions V from different data items, the versions 
in V are relatively consistent if Φ≠∈ }|)({ VxxVI iiI , where VI(xi) = [ LVT(xi), UVT(xi)]. 

To meeting relative consistency requirement, the deadline constraints and currency 
requirement, for query Ti, the validity of all its accessed data versions should not be earlier than 
(Di − ∆i), where Di and ∆i are the deadline and the currency requirement of Ti, respectively, i.e. 

Φ≠∆−∈ ],[})|)({( iiiii DDVxxVI II . The time window (Di  to (Di − ∆i)) is called the 
valid time window for the set of valid results of the query.  
 
3 A Parallel Data Shipping Scheme - PAST 

In Parallel Data Shipping with Priority Transmission (PAST) [LPSL04], the participating 
nodes of a query submit data versions to a carefully selected coordinator node in a parallel and 
synchronized fashion. The submission of data versions from the participating nodes is 
synchronized depending on the farthest participating nodes from the coordinator node.  

Once the base station receives a real-time query, it will determine: (1) which node (grid) 
should be assigned as the coordinator node such that the total transmission cost of the data 
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versions from the participating nodes to the coordinator node is minimized, and (2) which data 
versions from each participating node should be sent to the coordinator node. The data 
transmission delay from a participating node to the coordinator node is measured in terms of 
the number of hops in communication between them as we assume that the data transmission 
delay for sending a data version through one hop is a constant td. Let Gall  = {g1 , g2 , g3 ,….., gn} 
be the set of grids in the system and Fij is defined as the distance (in number of hops) between 
grid i and grid j where i, j = 1, …, n.  Suppose Ti wants to access to u grids/nodes and its 
required nodes are in the grids set Gi  = {gi1 , gi2 , gi3 ,….., gi,u}and u = |Gi|. Let FtotalX be the total 
transmission length defined in terms of hops for choosing grid X as the grid where the 
coordinator node is residing. Then, FtotalX = ∑

∈ iGj
jXF , . Let Dmax be the maximum data 

transmission delay of all the participating nodes of a query measured in grid using the shortest 
distance. The set of data versions to be submitted from each participating node is those data 
versions which are valid within the interval from (Di − Ci − Dmax − Ri) to (Di − Ci − Dmax). The 
maximum number of hops Hi of the participating nodes from the coordinator node is then: Hi = 
Dmax / td. Let the coordinates of a grid k be (Xk,Yk) and ( )ig HS

ik
 be the set of grids which can 

be reached by the data versions originated from gik with a distance of no more than Hi:  

( ) { }allijgijig GjHFgHS
ikik

∈≤= ,,   eqn. (1). 

Eqn. (1) defines a square region with a participating node as the central point of the 
square and the boundary is Hi hop counts from the grid where the participating node is residing. 
Then, we calculate the coordinates of the coordinator node which is within the intersect regions 
of all the participating nodes to minimize the total hop counts is getting all the data items from 
the participating nodes. 

Once the coordinator node and the set of data versions for transmission have been 
determined, the information together with result interval requirement Ri will be sent to the 
participating nodes. The transmission of data versions from the participating nodes to the 
coordinator node through the relay nodes are prioritized so that the arrival time of the data is 
close to the expected time. The priority of a data message Mi for query Ti at node Nj is 
calculated as: (Di – Current time) / number of hops from Nj to the coordinator. A higher priority 
is assigned to a data message for transmission if the calculated value is smaller. The query will 
be processed at the coordinator node according to the order of the operations defined in the 
query and following the relative consistency requirement.  
 
4 Workload Sensitive Data Aggregation – PAST-WS 

In this section, we introduce the extension of PAST, PAST with Workload Sensitivity 
(PAST-WS), with purpose to improve the reliability and to reduce the cost and delay in data 
transmission from the participating nodes to the coordinator node [IEGH02]. Although the total 
aggregation distance defined in hop counts from the participating nodes to the coordinator node 
is minimize in PAST, it has ignored the data loss problem in choosing the coordinator node and 
the aggregation paths. PAST-WS resolves this problem by calculating the mean number of data 
re-transmissions in choosing the coordinator node and the aggregation paths instead of using 
the physical hop counts. Another important benefit of the proposed scheme is that the data 
transmission workload will be more evenly distributed among the nodes in the system. Thus, 
the energy consumption rate of each node will remain similar over the network, enabling a 
longer system lifetime. 

 
4.1 Error Modeling for Data Aggregation in Sensor Networks 

After determining the coordinator node using PAST, the base station will determine the 
paths and the start times for the participating nodes to submit their data versions. Since the 
grids are in a square shape, the shortest path defined in terms of hop counts to the coordinator 



 

node can easily be calculated, i.e., it is the shortest line connecting the participating node and 
the coordinator node using a shortest path searching algorithm. However, this may not be the 
best one in terms of number of communication messages and total transmission time due to 
retransmissions. In particular, if multiple sensor nodes want to send messages to the same node 
N at the same time (or within its transmission time), the receiver N may not be able to receive 
all of them due to collisions. For the calculation of the error probability of message loss, the 
base station maintains an array indicating the current relay workload of each node in processing 
real-time queries in the system. The begin time and the end time of the activated queries are 
also recorded. When the end time of a query is expired, the array will be updated accordingly. 

We model the probability of message loss at a node Pn as a function of the number of 
nodes (n) concurrently sending data to it. We assume that the transmission delay (S) and 
transmission period (P) are the same for all senders. For the case n = 2, i.e. there are two 
senders to the same receiver, the probability of having a conflict in transmission is p2 = S/P. 
This can be observed in Figure 2. If node 2 sends a message during the first conflict time 
interval (marked grey in Figure 2), the message from node 2 may be lost since the receiver is 
receiving a message from node 1. Within a period, if a message from node 1 is sent after the 
first conflict time interval, there will be no loss of node 2 message. So the message loss 
probability for the case of having two senders is S/P. 

 
Figure 2: Data Collisions Probability for two senders. 

In an interval of time P, at most  SPm =  messages can be sent, i.e. a period can be 
divided into m small time intervals in which only one message can be sent. Since there are n 
(suppose n < m) senders, there are mn number of combinations for choosing message 
transmission intervals for these nodes. Among these mn possibilities, there 
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−=    eqn. (2). 

We can solve equation (2) to get pn for different values of n. After we do this for n = 1, 
2, …, m, we get the distribution of loss probability. 

To calculate the average transmission cost for a single hop (measured in hop counts), we 
assume that the receiving node is the relay node of k nodes. Then, the loss probability of 
message sending to the receiving node is pk. So the probability of successfully sending data to 
the receiving node by sending once is 1 – pk. The probability that the sender needs to send twice 
(i.e. the first message sent is lost, and the second one is received) is pk(1 – pk). Similarly, the 
probability that the sender need to send K times is (i.e. the first (K – 1) transmissions are all lost, 
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and the final one is received) is ( ) ( )k
K
k ppKp −= − 11 . So the expected message cost of 

sending one message through a single hop to the receiving node is: 
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The cost of a path Cpath is the sum of the costs of all the hops in the path. When the 
probability of message loss is considered in calculating the propagation cost, the message 
transmission delay of a path is no longer a constant proportional to number of hop counts. It is a 
random variable and larger than that of no message loss case. We can estimate the average 
number of times a message that has to be sent in one single hop. In order to calculate the mean 
delay of a path, we need to estimate the mean time length of intervals between consecutive 
message resend events. The probability distribution of the number of successive message loss is 
the same as the distribution of the number of resends, i.e. p(K) discussed in eqn. (2). Thus the 
average time length between two consecutive retransmissions is: 

( ) hop

N

K
CPKpPK ⋅=⋅⋅∑

=1
     eqn. (4) 

We get the expected delay Dhop of a single hop by multiplying it with the average number 
of retransmissions Chop, i.e. Dhop =

2
hopCP ⋅ . 

 
4.2 Calculating the Aggregation Path and Coordinator Node 

In choosing the path for data propagation, we need to ensure that the expected delay 
satisfies the currency requirement such that (Di − Ci − Dhop) > 0. Algorithm 1 shows the steps 
of finding the coordinator node and the best path to forward the data versions to the coordinator 
node. If message loss is considered, the delay is larger than that of no message loss. The set of 
possible coordinators under the case of message loss is a subset of that of the case with no 
message loss. In this way, we exclude most of the impossible candidates for the coordinator 
node. Assuming a straight path (the shortest connection path between a participating node and 
the possible coordinator node), we find a coordinator node satisfying the currency requirement 
with the minimum cost. Finally, we find a feasible replacement of the maximum for each path; 
and for each replacement, we calculate the reduction in cost. We choose the replacement with 
the maximum cost reduction. The final step is repeated until there is no feasible replacement.  

Objective: To find the coordinator node and the paths from the participating nodes of Ti 
with total minimum communication cost. 
Inputs: The node status of all the participating nodes: n (number of receivers), S (mean 
message delay to send a data version) and P (mean data transmission period); Gi = {Gi1, 
Gi2, Gi3,….., Giu}, Ri 
Outputs: The coordinator node and the set of paths from the participating nodes with 
minimum communication cost. 
 
Call Algorithm 1 (PAST) to find the set of possible coordinator S; 

for each coordinator node c_node in S  
{ /* exclude non-candidate coordinators from S */ 
 for each participating node p_node in Gi  { 
  path = the straight path from c_node to p_node; 
  ∑

∈
=

pathH
hop HDD )( ; 

  if (D > ∆i − Ci − Ri) then  { 
   S = S – {c_node};  /* cannot be a coordinator */ 
break;  /* break and continue to check the next c_node */} 



 

           } 
} 
if( S ==Φ) then abort;  /* no feasible solution */ 
Cmin = infinity; 

for each node c_node in S do 
{ /* assuming a straight path (the shortest path), find the coordinator node with 

minimum cost */ 
  Ctotal = 0; 
  for each participating node p_node in Gi 

           { path = the straight path from c_node to p_node; 
Cpath = Sum of Chop of each hop of the path; 
Ctotal = Ctotal + Cpath;} 
if (Ctotal < Cmin)  { 

coordinator_node = c_node; 
Cmin = Ctotal;} 

} 
 Spath = the set of straight path (the shortest path) from participating nodes to 
coordinator_node; 

do 
 { /* adjust the paths */ 
  Cmax = 0; 
  Rpath = NULL;  /* path to be replaced */ 

Rmax = NULL;  /* path which will replace Rpath */ 
F = false; 

  for each path in Spath  
  {CR = 0; 

for each replacement r of path { 
              if(r satisfies delay constraint AND Cpath – Cr + ∆Cdecrease – 

∆Cincrease > CR ){ 
   CR = Cpath – Cr + ∆Cdecrease – ∆Cincrease; /* cost reduction */ 
   R = r;} 

} 
   if(CR > 0 ) { 

F = true; 
    if(CR > Cmax) 
    { Rmax = R; 
     Cmax = CR; 
     Rpath = path;} 
   } 
  } 
  Spath = Spath + {Rmax} – {Rpath}; /* replace the path Rpath with Rmax */ 
 } while(F == true); 
 return Spath, coordinator_node; 

Algorithm 1: Finding the coordinator node and the path loss. 
5  Performance Results 

Figures 3 through 6 show the results when we vary the size of a real-time query. As 
shown in Figure 3, increasing the query size (number of grids), the data transmission workload 
will be increased. Comparing with PAST, the data transmission workload of PAST-WS is 
consistently lower as shown in Figures 3 and 4. Figure 5 and Figure 6 show the distribution of 
data transmission workload of the nodes in the system. It can be seen that the workload is more 
evenly distributed in PAST-WS than in PAST. The numbers of heavy and medium loaded grids 
in PAST-WS are smaller than in PAST. In addition, we have measured the mean value and 



 

variance in workload of the nodes. Consistent with the results in Figures 5 and 6, both the mean 
and variance of PAST-WS are smaller than that of PAST.  

Figure 3: Query Size Vs. Data transmission 
cost 

Figure 4: Percentage improvement of 
PAST-WS 

Figures 7 and 8 show the results of PAST-WS and PAST respectively when we vary the 
currency requirement of a query. We can see that PAST-WS only not gives a smaller 
transmission cost, it can complete more queries successfully, i.e., meeting the deadline, 
currency and result requirements. In PAST, due to long aggregation time and heavy workload 
as a result of re-transmissions, a large number of queries can only be partially completed and 
some of them are even failed, i.e., no results are generated, especially when the currency 
requirement is tight. The situation is less serious in PAST-WS as shown in Figure 7 as its data 
transmission workload is lower after considering the workloads of the relay nodes in choosing 
the coordinator node and the relay nodes. We also have investigated the impact of varying the 
locality factor of a query to their performance. (Due to space limitation, we do not show the 
result figures.) Similar to the results discussed before, PAST-WS shows a better performance. 

 

 
 
Figure 5: Distribution of transmission 
workload (PAST-WS) 

 

 
 
Figure 6: Distribution of transmission 
workload (PAST) 

6    Conclusions 
In this paper, we have studied how to improve the reliability in data aggregation for 

execution of real-time queries in a wireless sensor system. The real-time queries are associated 
with a deadline on their completion times and it is important to generate the results before the 
deadlines since it is mainly for generating responses to the events occurred in the system. To 
meet the query processing requirements with minimum data transmission cost, a parallel 
execution scheme, called PAST was proposed.  However, the workload at the relay nodes was 
not taken into consideration in selecting the coordinator node and the aggregation paths. If the 

11 grids with high 
work load  
217 grids with  
medium workload 
1372 grids with  
low workload 

Average number 
(mean) of data 
transmission per 
grid = 660 
 Variance = 505893

15 grids with high 
work load  
293 grids with  
medium workload 

1292 grids with  
low workload 

Average number 
 (mean) of data 
transmission per  
grid = 732 
Variance = 630450 



 

workload at the relay nodes is heavy, the data loss probability will be high and the consequence 
is either some data are lost or a lot of re-transmissions are required. A lot of re-transmission not 
only increases the energy consumption rate at the relay nodes, but also increases the data 
transmission workload in the system and the delay in gathering the data versions for processing 
of the queries. In this paper, we extend the PAST to include a workload sensitive scheme in 
selecting the coordinator node and the paths for data aggregation. The new algorithm is called 
PAST-WS. Simulation results have shown that PAST-WS can significantly reduce the 
aggregation workload and delay and at the same time can distribute the aggregation workload 
evenly in the system. 

Figure 7: Currency Vs. Completed query 
percentage(PAST-WS) 

Figure 8: Currency Vs. Completed query 
percentage (PAST) 
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