

Reliable Data Aggregation for
Real-time Queries in Wireless Sensor Systems

Kam-Yiu Lam1, Henry C.W. Pang1, Sang H. Son2 and BiYu Liang1

Email: cskylam@cityu.edu.hk, henry@cs.cityu.edu.hk, son@cs.virginia.edu

Department of Computer Science1
City University of Hong Kong
83 Tat Chee Avenue, Kowloon

HONG KONG

Department of Computer Science2
University of Virginia

Charlotte, Virginia
USA

Abstract
In this paper, we study the reliability issue in aggregating data versions for execution
of real-time queries in a wireless sensor network in which sensor nodes are
distributed to monitor the events occurred in the environment. We extend the Parallel
Data Shipping with Priority Transmission (PAST) scheme to be workload sensitive
(the new algorithm is called PAST with Workload Sensitivity (PAST-WS)) in selecting
the coordinator node and the paths for transmitting the data from the participating
nodes to the coordinator node. PAST-WS considers the workload at each relay node
to minimize the total cost and delay in data transmission. PAST-WS not only reduces
the data aggregation cost significantly, but also distributes the aggregation workload
more evenly among the nodes in the system. Both properties are very important for
extending the lifetime of sensor networks since the energy consumption rate of the
nodes highly depends on the data transmission workloads.

1 Introduction
In this paper, we study the use of in-networking processing approach [MFH03] for

processing of real-time queries which access to sensor databases maintained by sensor nodes
distributed in the system to generate timely responses if certain events are detected or
emergency situations occur [SKH03, YG03]. If the communication workload is concentrated
on some nodes, not only the energy consumption rate of the nodes will be heavy, the message
loss problem will also be very serious due to high collision probability in data transmission. It
is quite common that the sampled value for a data item may contain errors due to noises. Thus,
the result generated from a query may contain error too if the data items accessed by the query
contain error. In [LPSL04], a parallel data shipping scheme, called PAST, is proposed to
gather the right versions of data items using the time-stamping method for a real-time query at
a coordinator node so that they are relatively consistent with reduced data transmission cost. In
this paper, we extend PAST by considering the data communication workload among the relay
nodes in choosing the path for collecting sensor data for execution of a query. Our objective is
to satisfy the constraints of the queries and at the same time to minimize the communication
overhead and improve the reliability in data communication by evenly distribute the
communication workload in the system.

2 System Model

A wireless sensor system consists of a base station (BS) and a collection of` sensor nodes
distributed in the system environment which is divided into a number of square grids with
length of r as shown in Figure 1. It is assumed that the nodes within the same grid capture the
same signals of their surrounding environment. The length r of a grid is defined such that a
node can directly communicate with all the nodes in its neighboring grids. Each sensor node
generates sensor data values following a pre-defined sampling period which is defined based on
the dynamic property of the sampled entities. A real-time query Ti can formally be defined as a
tuple: {Di, Opi, <i, Oi, ∆i, Ri}. Opi is the set of read operations with each operation access to a

sensor data item (Oi). To simplify the discussion, it is assumed that the required data items of a
query are defined at the grid level. The set of operations Opi in a real-time query is associated
with precedence constraints (<i) on their execution orders. Due to the responsive nature of a
real-time query and the dynamic nature of the system environment, it is important that the
values of the data items accessed by a real-time query are representing the current information
(“real-time status of the entities”) in the environment. Each real-time query has a currency
requirement (∆i) on its set of data items. Failing to meet the requirement implies that they are
too “old” and not correctly describing the current situation. Since a timely response is critical to
important events occurring in the environments, each real-time query is given a deadline on its
completion time. In addition to meeting the deadline and currency requirement, another
important issue is the reliability of the results generated from a query. As the query result
generated from a set of data items may contain errors, it is important to provide multiple results
by accessing multiple data versions of data items in processing a real-time query to improve the
reliability and accuracy of the results. Therefore, a real-time query is associated with a result
interval (Ri), which specifies the time interval of data items for generating the results.

Figure 1: System Model.
 In this paper, we adopt relative consistency as the correct notion for ensuring the
correctness of the results and meeting the currency requirement of a real-time query [LP04,
SBLC03]. Each data version of x is assigned a time-stamp at its generation time to indicate the
start time of the validity of the data version. It will become invalid when the next version is
generated. We use a time bound, upper valid time (UVT) and lower valid time (LVT) to label
the validity interval of a data version. The set of data items for execution of a real-time query
are relatively consistent if they are temporally correlated to each other, i.e., representing the
status of entities in the environment at the same time point.

Relative consistency: Given a set of data versions V from different data items, the versions
in V are relatively consistent if Φ≠∈ }|)({ VxxVI iiI , where VI(xi) = [LVT(xi), UVT(xi)].

To meeting relative consistency requirement, the deadline constraints and currency
requirement, for query Ti, the validity of all its accessed data versions should not be earlier than
(Di − ∆i), where Di and ∆i are the deadline and the currency requirement of Ti, respectively, i.e.

Φ≠∆−∈],[})|)({(iiiii DDVxxVI II . The time window (Di to (Di − ∆i)) is called the
valid time window for the set of valid results of the query.

3 A Parallel Data Shipping Scheme - PAST

In Parallel Data Shipping with Priority Transmission (PAST) [LPSL04], the participating
nodes of a query submit data versions to a carefully selected coordinator node in a parallel and
synchronized fashion. The submission of data versions from the participating nodes is
synchronized depending on the farthest participating nodes from the coordinator node.

Once the base station receives a real-time query, it will determine: (1) which node (grid)
should be assigned as the coordinator node such that the total transmission cost of the data

r

r

BS

user

X

 r2

versions from the participating nodes to the coordinator node is minimized, and (2) which data
versions from each participating node should be sent to the coordinator node. The data
transmission delay from a participating node to the coordinator node is measured in terms of
the number of hops in communication between them as we assume that the data transmission
delay for sending a data version through one hop is a constant td. Let Gall = {g1 , g2 , g3 ,….., gn}
be the set of grids in the system and Fij is defined as the distance (in number of hops) between
grid i and grid j where i, j = 1, …, n. Suppose Ti wants to access to u grids/nodes and its
required nodes are in the grids set Gi = {gi1 , gi2 , gi3 ,….., gi,u}and u = |Gi|. Let FtotalX be the total
transmission length defined in terms of hops for choosing grid X as the grid where the
coordinator node is residing. Then, FtotalX = ∑

∈ iGj
jXF , . Let Dmax be the maximum data

transmission delay of all the participating nodes of a query measured in grid using the shortest
distance. The set of data versions to be submitted from each participating node is those data
versions which are valid within the interval from (Di − Ci − Dmax − Ri) to (Di − Ci − Dmax). The
maximum number of hops Hi of the participating nodes from the coordinator node is then: Hi =
Dmax / td. Let the coordinates of a grid k be (Xk,Yk) and ()ig HS

ik
 be the set of grids which can

be reached by the data versions originated from gik with a distance of no more than Hi:

() { }allijgijig GjHFgHS
ikik

∈≤= ,, eqn. (1).

Eqn. (1) defines a square region with a participating node as the central point of the
square and the boundary is Hi hop counts from the grid where the participating node is residing.
Then, we calculate the coordinates of the coordinator node which is within the intersect regions
of all the participating nodes to minimize the total hop counts is getting all the data items from
the participating nodes.

Once the coordinator node and the set of data versions for transmission have been
determined, the information together with result interval requirement Ri will be sent to the
participating nodes. The transmission of data versions from the participating nodes to the
coordinator node through the relay nodes are prioritized so that the arrival time of the data is
close to the expected time. The priority of a data message Mi for query Ti at node Nj is
calculated as: (Di – Current time) / number of hops from Nj to the coordinator. A higher priority
is assigned to a data message for transmission if the calculated value is smaller. The query will
be processed at the coordinator node according to the order of the operations defined in the
query and following the relative consistency requirement.

4 Workload Sensitive Data Aggregation – PAST-WS

In this section, we introduce the extension of PAST, PAST with Workload Sensitivity
(PAST-WS), with purpose to improve the reliability and to reduce the cost and delay in data
transmission from the participating nodes to the coordinator node [IEGH02]. Although the total
aggregation distance defined in hop counts from the participating nodes to the coordinator node
is minimize in PAST, it has ignored the data loss problem in choosing the coordinator node and
the aggregation paths. PAST-WS resolves this problem by calculating the mean number of data
re-transmissions in choosing the coordinator node and the aggregation paths instead of using
the physical hop counts. Another important benefit of the proposed scheme is that the data
transmission workload will be more evenly distributed among the nodes in the system. Thus,
the energy consumption rate of each node will remain similar over the network, enabling a
longer system lifetime.

4.1 Error Modeling for Data Aggregation in Sensor Networks

After determining the coordinator node using PAST, the base station will determine the
paths and the start times for the participating nodes to submit their data versions. Since the
grids are in a square shape, the shortest path defined in terms of hop counts to the coordinator

node can easily be calculated, i.e., it is the shortest line connecting the participating node and
the coordinator node using a shortest path searching algorithm. However, this may not be the
best one in terms of number of communication messages and total transmission time due to
retransmissions. In particular, if multiple sensor nodes want to send messages to the same node
N at the same time (or within its transmission time), the receiver N may not be able to receive
all of them due to collisions. For the calculation of the error probability of message loss, the
base station maintains an array indicating the current relay workload of each node in processing
real-time queries in the system. The begin time and the end time of the activated queries are
also recorded. When the end time of a query is expired, the array will be updated accordingly.

We model the probability of message loss at a node Pn as a function of the number of
nodes (n) concurrently sending data to it. We assume that the transmission delay (S) and
transmission period (P) are the same for all senders. For the case n = 2, i.e. there are two
senders to the same receiver, the probability of having a conflict in transmission is p2 = S/P.
This can be observed in Figure 2. If node 2 sends a message during the first conflict time
interval (marked grey in Figure 2), the message from node 2 may be lost since the receiver is
receiving a message from node 1. Within a period, if a message from node 1 is sent after the
first conflict time interval, there will be no loss of node 2 message. So the message loss
probability for the case of having two senders is S/P.

Figure 2: Data Collisions Probability for two senders.

In an interval of time P, at most SPm = messages can be sent, i.e. a period can be
divided into m small time intervals in which only one message can be sent. Since there are n
(suppose n < m) senders, there are mn number of combinations for choosing message
transmission intervals for these nodes. Among these mn possibilities, there

are
)!(

!)1()1(1
)1(

1
1

1

nm
mnmmmCCC nmmm −

=+−⋅⋅⋅⋅−=⋅⋅⋅⋅⋅ −−− combinations that will not

cause any message loss .Thus the probability of message loss from any node is:

n
n

n m
nmmp)!(!1)1(1 −

−=−−

That is:
n

nn nmm
mp

/1

)!(
!1

−⋅
−= eqn. (2).

We can solve equation (2) to get pn for different values of n. After we do this for n = 1,
2, …, m, we get the distribution of loss probability.

To calculate the average transmission cost for a single hop (measured in hop counts), we
assume that the receiving node is the relay node of k nodes. Then, the loss probability of
message sending to the receiving node is pk. So the probability of successfully sending data to
the receiving node by sending once is 1 – pk. The probability that the sender needs to send twice
(i.e. the first message sent is lost, and the second one is received) is pk(1 – pk). Similarly, the
probability that the sender need to send K times is (i.e. the first (K – 1) transmissions are all lost,

P

Node 1

Node 2

S

and the final one is received) is () ()k
K
k ppKp −= − 11 . So the expected message cost of

sending one message through a single hop to the receiving node is:

() ()∑∑
=

−

=
−⋅=⋅=

N

K
k

K
k

N

K
hop ppKKpKC

1

1

1
1 eqn. (3).

The cost of a path Cpath is the sum of the costs of all the hops in the path. When the
probability of message loss is considered in calculating the propagation cost, the message
transmission delay of a path is no longer a constant proportional to number of hop counts. It is a
random variable and larger than that of no message loss case. We can estimate the average
number of times a message that has to be sent in one single hop. In order to calculate the mean
delay of a path, we need to estimate the mean time length of intervals between consecutive
message resend events. The probability distribution of the number of successive message loss is
the same as the distribution of the number of resends, i.e. p(K) discussed in eqn. (2). Thus the
average time length between two consecutive retransmissions is:

() hop

N

K
CPKpPK ⋅=⋅⋅∑

=1
 eqn. (4)

We get the expected delay Dhop of a single hop by multiplying it with the average number
of retransmissions Chop, i.e. Dhop =

2
hopCP ⋅ .

4.2 Calculating the Aggregation Path and Coordinator Node

In choosing the path for data propagation, we need to ensure that the expected delay
satisfies the currency requirement such that (Di − Ci − Dhop) > 0. Algorithm 1 shows the steps
of finding the coordinator node and the best path to forward the data versions to the coordinator
node. If message loss is considered, the delay is larger than that of no message loss. The set of
possible coordinators under the case of message loss is a subset of that of the case with no
message loss. In this way, we exclude most of the impossible candidates for the coordinator
node. Assuming a straight path (the shortest connection path between a participating node and
the possible coordinator node), we find a coordinator node satisfying the currency requirement
with the minimum cost. Finally, we find a feasible replacement of the maximum for each path;
and for each replacement, we calculate the reduction in cost. We choose the replacement with
the maximum cost reduction. The final step is repeated until there is no feasible replacement.

Objective: To find the coordinator node and the paths from the participating nodes of Ti
with total minimum communication cost.
Inputs: The node status of all the participating nodes: n (number of receivers), S (mean
message delay to send a data version) and P (mean data transmission period); Gi = {Gi1,
Gi2, Gi3,….., Giu}, Ri
Outputs: The coordinator node and the set of paths from the participating nodes with
minimum communication cost.

Call Algorithm 1 (PAST) to find the set of possible coordinator S;

for each coordinator node c_node in S
{ /* exclude non-candidate coordinators from S */
 for each participating node p_node in Gi {
 path = the straight path from c_node to p_node;
 ∑

∈
=

pathH
hop HDD)(;

 if (D > ∆i − Ci − Ri) then {
 S = S – {c_node}; /* cannot be a coordinator */
break; /* break and continue to check the next c_node */}

 }
}
if(S ==Φ) then abort; /* no feasible solution */
Cmin = infinity;

for each node c_node in S do
{ /* assuming a straight path (the shortest path), find the coordinator node with

minimum cost */
 Ctotal = 0;
 for each participating node p_node in Gi

 { path = the straight path from c_node to p_node;
Cpath = Sum of Chop of each hop of the path;
Ctotal = Ctotal + Cpath;}
if (Ctotal < Cmin) {

coordinator_node = c_node;
Cmin = Ctotal;}

}
 Spath = the set of straight path (the shortest path) from participating nodes to
coordinator_node;

do
 { /* adjust the paths */
 Cmax = 0;
 Rpath = NULL; /* path to be replaced */

Rmax = NULL; /* path which will replace Rpath */
F = false;

 for each path in Spath
 {CR = 0;

for each replacement r of path {
 if(r satisfies delay constraint AND Cpath – Cr + ∆Cdecrease –

∆Cincrease > CR){
 CR = Cpath – Cr + ∆Cdecrease – ∆Cincrease; /* cost reduction */
 R = r;}

}
 if(CR > 0) {

F = true;
 if(CR > Cmax)
 { Rmax = R;
 Cmax = CR;
 Rpath = path;}
 }
 }
 Spath = Spath + {Rmax} – {Rpath}; /* replace the path Rpath with Rmax */
 } while(F == true);
 return Spath, coordinator_node;

Algorithm 1: Finding the coordinator node and the path loss.
5 Performance Results

Figures 3 through 6 show the results when we vary the size of a real-time query. As
shown in Figure 3, increasing the query size (number of grids), the data transmission workload
will be increased. Comparing with PAST, the data transmission workload of PAST-WS is
consistently lower as shown in Figures 3 and 4. Figure 5 and Figure 6 show the distribution of
data transmission workload of the nodes in the system. It can be seen that the workload is more
evenly distributed in PAST-WS than in PAST. The numbers of heavy and medium loaded grids
in PAST-WS are smaller than in PAST. In addition, we have measured the mean value and

variance in workload of the nodes. Consistent with the results in Figures 5 and 6, both the mean
and variance of PAST-WS are smaller than that of PAST.

Figure 3: Query Size Vs. Data transmission
cost

Figure 4: Percentage improvement of
PAST-WS

Figures 7 and 8 show the results of PAST-WS and PAST respectively when we vary the
currency requirement of a query. We can see that PAST-WS only not gives a smaller
transmission cost, it can complete more queries successfully, i.e., meeting the deadline,
currency and result requirements. In PAST, due to long aggregation time and heavy workload
as a result of re-transmissions, a large number of queries can only be partially completed and
some of them are even failed, i.e., no results are generated, especially when the currency
requirement is tight. The situation is less serious in PAST-WS as shown in Figure 7 as its data
transmission workload is lower after considering the workloads of the relay nodes in choosing
the coordinator node and the relay nodes. We also have investigated the impact of varying the
locality factor of a query to their performance. (Due to space limitation, we do not show the
result figures.) Similar to the results discussed before, PAST-WS shows a better performance.

Figure 5: Distribution of transmission
workload (PAST-WS)

Figure 6: Distribution of transmission
workload (PAST)

6 Conclusions
In this paper, we have studied how to improve the reliability in data aggregation for

execution of real-time queries in a wireless sensor system. The real-time queries are associated
with a deadline on their completion times and it is important to generate the results before the
deadlines since it is mainly for generating responses to the events occurred in the system. To
meet the query processing requirements with minimum data transmission cost, a parallel
execution scheme, called PAST was proposed. However, the workload at the relay nodes was
not taken into consideration in selecting the coordinator node and the aggregation paths. If the

11 grids with high
work load
217 grids with
medium workload
1372 grids with
low workload

Average number
(mean) of data
transmission per
grid = 660
 Variance = 505893

15 grids with high
work load
293 grids with
medium workload

1292 grids with
low workload

Average number
 (mean) of data
transmission per
grid = 732
Variance = 630450

workload at the relay nodes is heavy, the data loss probability will be high and the consequence
is either some data are lost or a lot of re-transmissions are required. A lot of re-transmission not
only increases the energy consumption rate at the relay nodes, but also increases the data
transmission workload in the system and the delay in gathering the data versions for processing
of the queries. In this paper, we extend the PAST to include a workload sensitive scheme in
selecting the coordinator node and the paths for data aggregation. The new algorithm is called
PAST-WS. Simulation results have shown that PAST-WS can significantly reduce the
aggregation workload and delay and at the same time can distribute the aggregation workload
evenly in the system.

Figure 7: Currency Vs. Completed query
percentage(PAST-WS)

Figure 8: Currency Vs. Completed query
percentage (PAST)

References
[IEGH02] C. Intanagonwiwat, D. Estrin, R. Govindan and J. Heidemann, “Impact of Network

Density on Data Aggregation in Wireless Sensor Networks”, in Proceedings of ICDCS’02,
Vienna, Austria, July 2002.

[LP04] Kam-Yiu Lam and Henry C.W. Pang, “Correct Execution of Continuous Monitoring
Queries in Wireless Sensor Systems”, in Proceedings of the Second International
Workshop on Mobile Distributed Computing (MDC’2004), Tokyo, Japan, March 2004.

[LPSL04] Kam-Yiu Lam, Henry C.W. Pang, Sang H. Son, BiYu Liang, “On Using Temporal
Consistency for Parallel Execution of Real-time Queries in Wireless Sensor Systems”,
Technical Report, Department of Computer Science, City University of Hong Kong
(www.cs.cityu.edu.hk/~henry).

[MFH03] S. Madden, M. J. Franklin and J.M. Hellerstein, “The Design of an Acquisitional
Query Processor For Sensor Networks”, in Proceedings of SIGMOD 2003, June 9-12, San
Diego, CA.

[SBLC03] Mohamed A. Sharaf, Jonathan Beaver, Alexandros Labrinidis, Panos Chrysanthis,
“TiNA: A Scheme for Temporal Coherency-Aware in-Network Aggregation”, in
Proceedings of 2003 International Workshop in Mobile Data Engineering.

[SKH03] Narayanan Sadagopan, Bhaskar Krishnamachari and Ahmed Helmy, “Active Query
Forwarding in Sensor Networks (ACQUIRE)”, to appear in Ad Hoc Networks.

[YG03] Y. Yao and J. E. Gehrke, “Query Processing in Sensor Networks”, in Proceedings of
the First Biennial Conference on Innovative Data Systems Research (CIDR 2003),
Asilomar, California, January 2003.

