
A Workflow-based Grid Portal for Problem
Solving Environment ?

Yong-Won Kwon, So-Hyun Ryu, Jin-Sung Park, and Chang-Sung Jeong

Department of Electronics Engineering Graduate School, Korea University
5-ka, Anam-dong, Sungbuk-ku, Seoul, Korea

{luco|messias|honong13}@snoopy.korea.ac.kr, csjeong@charlie.korea.ac.kr

Tel: 82-2-3290-3229, Fax: 82-2-926-7621

Abstract. In this paper, we present a Workflow-based grId portal for
problem Solving Environment(WISE) which has been developed by in-
tegrating workflow, Grid and web technology to provide an enhanced
powerful approach for problem solving environment. Workflow technol-
ogy supports coordinated execution of multiple application tasks on Grid
resources by enabling users to describe a workflow by composing many
existing applications and new functions, and provides an easy powerful
tool to create new Grid applications. We propose new Grid portal to allow
us to use Grid resources with improved workflow patterns to represent
various parallelisms inherent in parallel and distributed Grid applications
and present Grid Workflow Description Language(GWDL) to specify our
new workflow patterns. Also, We shall show that the MVC(Model View
Control) design pattern and multi-layer architecture provides modularity
and extensibility to WISE by separating the application engine control
and presentation from the application logic for Grid services, and the
Grid portal service from Grid service interface.

1 Introduction

For the success of Grid computing, an easy powerful PSE, which provides com-
puting resources and high quality apparatus to solve complex problems of science
and engineering technology, are needed. In internet and distributed computing,
there are useful technologies for PSE, which have evolved in parallel. Web tech-
nology has emerged with revolutionary effects on how we access and process
information. Grid computing enables us to use a large or nationwide network
of resource as a single unified computing resource[1]. So, clear steps must be
taken to integrate Grid and Web technologies to develop a enhanced powerful
tool for PSE. Workflow technology is very useful because it enables us to de-
scribe a process of work by composing of multiple application tasks on multiple
distributed Grid resources. It allows users to easily develop new applications by

? This work has been supported by a Korea University Grant, KIPA-Information Tech-
nology Research Center, University research program by Ministry of Information &
Communication, and Brain Korea 21 projects in 2004.

composing services and expressing their interaction. In [11, 12, 15, 13, 16, 14, 17–
19], several researches about previous workflow management systems for Grid
computing were published, and have been studied. However, their workflow mod-
els have too simple workflow patterns like sequence, parallel constructs like AND-
split/merge, conditional constructs like XOR-split, and iteration constructs to
implement parallel and distributed Grid applications efficiently.

In this paper, we present a Workflow-based grId portal for problem Solving
Environment(WISE) which has been developed by integrating workflow, Grid
and web technology to provide an enhanced powerful approach for problem solv-
ing environment. Workflow technology supports coordinated execution of multi-
ple application tasks on Grid resources by enabling users to describe a workflow
by composing many existing applications or new functions, and provides an easy
powerful tool to create new grid applications. we show our advanced workflow
pattern and description language. Our new Grid portal allows us to use Grid
resources with improved workflow patterns to represent various parallelisms in-
herent in parallel and distributed Grid applications. Also, we are concerned
about the design and implementation of Grid portal architecture enhanced with
softwares to allows users to transparently access remote heterogeneous resources
through Grid services. We shall show that the MVC(Model View Control) de-
sign pattern and multi-layer architecture provides modularity and extensibility
by separating the application engine control and presentation from the applica-
tion logic, and the Grid portal service from Grid service interface.

The outline of our paper is as follows: In section 2, we describe the basic
concepts of Grid and workflow technology, together with their related works.
In section 3, we present our new workflow pattern and workflow description
language. In section 4, we illustrate the architecture of WISE, and describe the
detailed services. In section 5, we explain the implementation of WISE. In section
6, we give conclusion.

2 Related Work

2.1 Grid User, PSE and Grid Portal

A Grid user does not want to be bothered with details of its underlying infras-
tructure but is really only interested in execution of application and acquisition of
correct results in a timely fashion. Therefore, a Grid environment should provide
access to the available resources in a seamless manner such that the differences
between platforms, network protocols, and administrative boundaries become
completely transparent, thus providing one virtual homogeneous environment.
Grid requires several design features: a wide range of services on heterogeneous
systems, information-rich environment on dynamic Grid, single sign-on, and use
of standards and the existing applications. Globus toolkit establishes a software
framework for common services of Grid infrastructure by providing a meta com-
puter toolkit such as Meta Directory Service, Globus Security Infrastructure,
and Resource Allocation Manager[2, 3]. However, it is responsibility of applica-
tion users to devise methods and approaches for utilizing Grid services.

PSE is a useful tool for solving problems from a specific domain. Traditionally,
it was developed as client-side tools. Recently, a web-based Grid portals have
been developed to launch and manage jobs on the Grid, via Web, and allow
users to program and execute distributed Grid applications by a conventional
Web browser. Webflow is a pioneering computing web portal work, where http
server is used as computing server proxy using CGI technology[4]. GridPort[5]
allows developers to connect Web-based interfaces with the computational Grid
behind the scenes through Globus Toolkit[2] and Web technologies such as CGI
and Perl. Hotpage user portal is designed to be a single point-of-access to all
Grid resources with informational and interactive services by using GridPort.
Astrophysics Simulation Collaboratory (ASC) portal is designed for the study
of physically complex astrophysical phenomena[6]. It use Globus and Cactus as
a core computational tool.

2.2 Workflow Patterns

In Grid computing, workflow is a process that consists of activities and inter-
actions between them. An activity is a basic unit of work: a grid service or an
application executed on Grid. In [11–13], the existing workflow patterns are in-
troduced for describing the only control flow. Most of them are basic patterns
such as sequence, simple parallel constructs like AND-Split/Join, conditional
constructs like XOR-Split/Join, OR-Split/Join, iteration construct. Other pat-
terns such as N out of M join, deferred choice, and arbitrary cycle are presented
in [11, 15]. These are insufficient to express parallel applications. Triana [13, 14]
presents link elements for data flow and simple control flow patterns such as a
pair of AND-Split and AND-Join, a pair of IF-Split and If-Join, and Count
Loop and While Loop. The Grid Services Flow Language(GSFL) [16] is an
XML based language that allows the specification of workflow descriptions in
the OGSA framework. It also use simple link elements. GridAnt [18] is a client
side workflow tool based on java Apache Ant. It describes parallelism by specify-
ing dependencies between tasks. The myGrid workflow [19] provides a graphical
tool and workflow enactor, but in terms of the parallel control flow, they support
only simple parallelism like the above workflow models and languages.

3 Grid Workflow Description

3.1 New Advanced Workflow Patterns

We need new advanced workflow patterns for Grid applications to describe var-
ious parallelism such as pipeline, data parallelism, and many synchronizing con-
structs and to prevent incomprehensible workflow description. Complex workflow
can be made by simple link patterns, but it is difficult. Moreover, any control
flow produced by composing sequence and arbitrary cycle may generate ambi-
guity which is a state to be too complex and difficult to comprehend correct
meaning. Therefore, to describe a precise workflow easily and fast, the struc-
tured patterns with clear context is more efficient than the non-structured ones

Fig. 1. Advanced basic control patterns: (a) Sequence (b) XOR-Split (c) XOR-Join
(d) Loop (e) Multi-Split (f) Multi-Join (g) AND-Split (h) AND-Join (i) AND-Loop
symbol (i’) AND-Loop description (j) Queue (k) Wait (l) Node copy

made by any compositions of sequences and arbitrary cycles. The details of our
workflow model are published in [20]

In figure 1 we show our basic patterns with three groups. In sequential flow,
there are four types: sequence for sequential control flow, XOR-Split for con-
ditional execution, XOR-Join for conditional selection among many executed
activities, and Loop for repetition. In mixed flow, there are two patterns: Multi-
Split for multiple conditional execution, and Multi-Join for multiple conditional
selection. Parallel flow includes AND-Split for parallel execution, AND-Join for
blocked synchronization, AND-Loop, Queue, Wait, and Node copy. Whenever an
iteration of AND-Loop is complete, two control flows occur to two directions like
figure 1 (i’): the one for repetition and the other for next sequential activities.
The circular-arrow in figure 1 (i) is the graphic notation of AND-Loop. AND-
Loop can send many flows to a next node N continuously. If N is bottleneck,
activities that send flows to N may stop or be processed slowly. A pattern is
needed to prevent this situation. In queue pattern, all input control flows are
stored in queue and transferred whenever the next node is idle. In node copy pat-
tern, a node is copied up to the limited number of times. An idle node is selected
and executed in parallel whenever a input control flow occurs. This pattern can
increases computing power and may solve the above bottleneck problem. In wait
pattern, wait node blocks until some or all input control flows are received. For
example, in figure 1 (k) wait node blocks until all control flows generated by
AND-Loop n1 and node ni are received. The symbol ‘*’ means all.

3.2 Grid Workflow Description Language

We define the Grid Workflow Description Language (GWDL) which is an XML
based language that specifies our workflow model using XML Schemas. The
GWDL architecture consists of dataDefine, resourceDefine, activityDefine, and
flowDefine elements. DataDefine lists user data types that are used to describe
input/ouput data of an activity node. ResourceDefine describes host address
or resource specification for executing an activity. ActivityDefine lists activi-
ties which are executions of executable files or requests to running services on

Fig. 2. The Overall Architecture of WISE

Grid resources. It describes function, names and types of input/output data.
FlowDefine defines activity node elements which have an activity and a resource
specification, and both of control and data flows which describe the interac-
tion of activity nodes. It has basic control flow elements for representing our
new workflow patterns in section 3.1. We also define three elements for control
flow: <sequence>, <parallel>, and <loop>. Activity nodes in sequence element
and parallel element are connected sequentially and executed concurrently re-
spectively. Loop element iterates the sub-workflow. It has a ’pipeline’ attribute
which indicates AND-Loop. Also, in flowDefine elements, there are data elements
for describing data flow, which has source, destination, and variable name.

4 WISE Architecture

4.1 Overall Architecture

Our Grid portal has a 3-tier architecture which consists of clients, web appli-
cation server, and a network of computing resources like figure 2. Web appli-
cation server in the middle tier is augmented with Grid-enabling software to
provide accesses to Grid services and resources. It is designed as a multilay-
ered structure which exploits MVC(Model-View-Controller) design pattern and
CoG(Commodity Grid) technology to construct a highly modular and flexible
software environment. Application engine in web server controls and organizes

the overall portal by executing the proper application logic component, accord-
ing to the client request, which in turn carry out Grid services through Grid
service interface, and then activating the presentation module which generates
application specific display to be transmitted to the client’s browser. MVC de-
sign pattern provides modularity and extensibility of Grid portal. Grid service
interface components are implemented by using CoG technology which maps
Grid functionality into a commodity tool.

4.2 WISE User Interfaces

Our Grid portal provides the following functions which allow users to easily
access Grid resources and make new Grid applications efficiently by using our
workflow-based Grid portal.

User Authentication and Profile: This is basic components for Grid por-
tal. A user is authenticated only once and provided all functions of our portal.
WISE has user profile function which manages his/her information such as Grid
certificate creation, update and management, list of available Grid resources,
management of environment variables on many distributed host, request of re-
source authorization to its manager and email address.

Remote File Browser: This is file management functions such as file directory
browsing of remote hosts, creation, delete, editing, upload from local file system,
download to the local, file transfer between two remote hosts by GridFTP, and
edit/save of remote file. By this basic and powerful function for remote file
management, User can modify and move remote files, configuration/parameter
files of application, and so on.

Graphic Workflow Editor: This editor is for creating a GWDL file. User can
describe a workflow by graphical tool or text-based XML editor. First activities
and its input/output data are defined. Second, User describes the interaction
between them by making a workflow with them. User can specify the host to
execute an activity, or yield the choice of host to workflow execution function.

Our workflow system provides not only an executable file execution but also
WISE-activity which interacts workflow supervisor tightly and can send data to
another WISE-activity with socket. Workflow supervisor monitors the state of
WISE-activity and controls its execution and data transfer through socket. User
can program and compile WISE-activity codes with this workflow editor after
define its name and input/output data in GWDL. User will use WISE-activities
to implement new Grid applications or monitoring programs to report input,
output, and state of an executed legacy application efficiently.

Workflow Execution: After edit a GWDL file, we run it with this function.
This shows the state of executed workflow graphically. The execution of an ac-
tivity, state of input/output data transfer, values of some variables in workflow,
and standard output/error of an running activity are displayed. If user specifies
the requirement for the host to run an activity, workflow supervisor will selects
an idle host by using resource mapping portal service.

Data Viewer: User can select a data file through file browser and see it with
a data viewer which is associated with the data type. User can add new data
viewer that is implemented by java or Microsoft COM to our Grid portal.
Resource Information: Resource Information function enables us to find data
and status about Grid resources such as CPU, memory, file system, network, os,
and software through MDS.
Simple Job Submission: User can send a request to run single executable file
to a remote host and see the text type standard output of it.

4.3 Grid Portal Service

The Grid portal services forms the foundation of WISE, and are used directly
by the application logic and presentation activated by the application engine.
Each application logic and presentation has one-to-one correspondence with a
user request from GUI on client side for solving a specific application problem
on remote resources. In this subsection, we describe how various Grid portal
services complete their missions by executing Grid services through the Grid
service interface components.
Single Job Submission: Job submission service can be executed in two modes.
In user mode, user can prepare a job specification using RSL component, and
job submission service executes the jobs in the remote resources as specified in
RSL by using GRAM component. In automatic mode, job submission service
finds a computing resources from resource mapping service.
Information Service: Information service provides static and dynamic infor-
mation on resources by querying and formatting results obtained from the MDS
component in Grid service interface layer. It supports querying the MDS for
hardware information such as CPU type, number of CPUs, CPU load and queue
information that can be used by the user to make more efficient job scheduling
decisions.
Data Transfer Service: Data transfer provides file transfer capabilities be-
tween client and target machine, or between third-party resources as well as file
browsing to facilitate the transfer of programs or data files for remote execution
and data retrieval by using GridFTP in Grid service interface layer.
Security: Security service simplifies the authentication task by exploiting GSI
of Globus which provides a secure method of accessing remote resources by
enabling a secure, single sign-on capability, while preserving site control over
access control policies and local security infrastructure.
User Profile Service: User profile allows user to keep track of past jobs
submitted and results obtained by maintaining the user history, and in addition
enables the customization of a particular set of resources by users to provide
additional application specific information for a particular class of users. Also
sending an email, and management of user certificate are provided.
Workflow Supervisor: Workflow supervisor consists of three parts: parser,
scheduler, and dispatcher. First, a GWDL file is inserted into workflow parser.

The parser parses it and sends the activity node information into scheduler. Sec-
ond, despatcher acquires data about executable files of activities and distributes
the executables to Grid resources. Third, Scheduler runs the input GWDL file
with the activity node information. It sends requests of activity execution to
activity manager, monitors the information of activities, and controls activities.
If no host name for an activity node, it get a host from resource mapping service.
Activity Manager: Activity manager controls an execution of activities with
Globus GRAM service, acquires the state of activities, and manages input/output
data of activities with GridFTP service. Also it controls and monitors WISE-
activity directly with socket for state acquisition and data transfer.
WISE-Activity Editing/Complile: First, user describe the name, and in-
put/output data of WISE-activity in a GWDL file, and then workflow editor
generates the template codes for WISE-activity from content of the GWDL.
Second, User can program logic of WISE-activity and compile the codes. This
service provides two functions: making template codes and compiling user codes.
Resource Mapping: This service finds computing resources to which a user
can submit jobs by using MDS component, and return idle resources according
to the user requirements such as memory size, CPU performance, and etc.

4.4 Grid Service Interface

Grid service interface defines classes that provide access to basic Grid services
and enhanced services suitable for PSE, and encapsulates the functionality for
Grid services offered in Globus toolkit by using CoG.

RSL component provides methods for specifying resource requirements in
Resource Specification Language(RSL) expressions. GRAM component provides
methods which allows users to submit jobs on remote machines as specified in
RSL, monitor job status and cancel jobs. GridFTP[8] component provides file
transfer on Grid. GASS component supports the access of remote file system
on Grid. MDS component allows users to easily access MDS service in Globus.
MyProxy is a secure online certificate repository for allowing users to store cer-
tificates and then to retrieve them at a later time. User can acquire Globus proxy
with ID and password from MyProxy server.

5 Implementation

WISE deploys Apache web server, a free, open source web server that support
SSL. WISE was developed under the open source Tomcat java servlet container
which is freely and widely available and implemented by usig java language, JSP,
Java Beans, and java servlet. Grid service interfaces are implemented in Java
packages that provide the interface to the low level Grid services by using Java
CoG kit[10]. WISE provides users with various interactive operations : login/out,
job submission, MDS query, GridFTP, file browsing, user profile, workflow edit-
ing and running. They support transparent access to heterogeneous resources by

providing a unified and consistent window to Grid by allowing users to allocate
the target resources needed to solve a specific problem, edit and transfer pro-
grams or data files to the target machines for remote execution and data retrieval,
select and submit the application jobs automatically, query the information on
the dynamic state of hardware and software on Grid for the more efficient job
scheduling decisions as well as private user profile. In addition, WISE also pro-
vides a easy-to-use user interface for using workflow-based parallel programming
environment on Grid, by supporting graphical workflow editor, resource finding,
authentication, execution, monitoring, and steering. Therefore, Grid portal pro-
vides a transparent mapping between user interface and remote resources, hiding
the complexity of the heterogeneous backend underlying systems.

6 Conclusion

Commodity distributed computing technology in Web enables the rapid con-
struction of sophisticated client-server applications, while Grid technology pro-
vides advanced network services for large-scale, wide area, multi-institutional
environments and applications that require the coordinated use of multiple re-
source. In this paper, we present a web-based Grid Portal which bridge these two
worlds on internet in order to enable the development of advanced applications
that can benefit from both Grid services and commodity web environments. Also
We provide new workflow patterns and GWDL which can overcome the limita-
tions of the previous approaches by providing several powerful workflow patterns
used efficiently to represent parallelisms inherent in parallel and distributed ap-
plications. To describe a workflow of grid application without ambiguity, we have
proposed formally new advanced basic patterns such as And-Loop, queue, wait,
node copy and etc by classifying them into three categories; sequential, parallel,
and mixed flow. Our workflow-based Grid portal have been designed to provide
a powerful problem solving environment by supporting a unified and consistent
window to Grid which enables a substantial increases in user ability to solve prob-
lems that depend on use of large-scale heterogeneous resources. It provides users
with a uniform and easy to use GUI for various interactive operations for PSE
such as login/out, job submission, information search, file browsing, file trans-
fer, and user profile, and especially supports interfaces for using workflow-based
parallel programming environment on Grid, by supporting graphical workflow
editor, resource finding, authentication, execution, monitoring, and steering. We
have proposed a multi-layer architecture which can provide modularity and ex-
tensibility by each layer interacting with each other using the uniform interfaces.
Also, we have shown that MVC design pattern provides flexibility and modular-
ity by separating the application engine control and presentation from the appli-
cation logic for Grid services, and that commodity-to-Grid technology for Grid
service interface supports various platforms and environments by mapping Grid
functionality into a commodity distributed computing components. As a future
work, we are extending our Grid portal which enables the automatic conversion

of a given problem into optimized parallel programming models by supporting
more specific coarse-grained parallel programming models in our system.

References

1. I. Foster, C. Kesselman, S. Tuecke, ”The Anatomy of the Grid: Enabling Scalable
Virtual Organizations,” International J. Supercomputer Applications, 15(3), 2001.

2. Globus Toolkit, http://www.globus.org
3. I. Foster, and C. Kesselman, ”The Globus Project: A Status Report,” Heteroge-

neous Computing Workshop, pp. 4-18, 1998.
4. W. F. Erol Akarsn, G. C. Fox and T. H. Haupt, ”Webflow High-level Program-

ming Environment and Visual Authoring Toolkit for High Performance distributed
Computing, In Proceedings of Supercomputing ’98, 1998.

5. S. M. Mary thomas, and J. Boisseau, ”Development of Web Toolkits for compu-
tational Science Portals: The NPACI Hot page,” In Proceedings of HPDC 9, pp.
308-309, Aug. 2000.

6. Astrophysics Simulation collaboratory: ASC Grid Portal, http://www. ascpor-
tal.org.

7. K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman, ”Grid Information Ser-
vices for Distributed Resource Sharing,” Proceedings of the Tenth IEEE Inter-
national Symposium on High-Performance Distributed Computing (HPDC-10),
IEEE Press, August 2001.

8. W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, S. Tuecke,
”GridFTP Protocol Specification,” GGF GridFTP Working Group Document,
September 2002.

9. K. Czajkowski, I. Foster, and C. Kesselman, ”Resource Co-Allocation in Computa-
tional Grids,” Proceedings of the Eighth IEEE International Symposium on High
Performance Distributed Computing (HPDC-8), pp. 219-228, 1999.

10. G. V. Laszewski, I. foster, J. Gawor and P. Lane,”A Java Commodity Grid Kit.”
concurrency and computation: Practice and Experience, pp. 645-662.

11. B. Kiepuszewski, Expressiveness and suitability of languages for control flow
modelling in workflows, http://tmitwww.tm.tue.nl/research/patterns/download/
phd bartek.pdf

12. W.M.P. van der Aalst, A.H.M, Hofstede, B. Kiepusziewski, A.P. Barros. (2003).
Workflow Patterns, Distributed and Parallel Databases, Jule 2003, pp. 5-51

13. Junwei C., Stephen A. J., Subhash S., and Grahan R. N., GridFlow: Workflow
Management for Grid Computing, Proc. 3rd IEEE/ACM Int. symp. on cluster
Computing and the Grid, 2003

14. Triana Workflow, http://www.gridlab.org/WorkPackages/wp-3/D3.3.pdf
15. Dan C. M., A Grid Workflow Management Architecture,

http://www.cs.ucf.edu/ dcm/GWfA.pdf
16. Sriram K., Patrick W., Gregor von L., GSFL:A Workflow Framework for Grid

Services http://www-unix.globus.org/cog/projects/workflow/gsfl-paper.pdf
17. Hugh P. B., Grid Workflow http://vir.sandia.gov/ hpbiven/ggf/draft-bivens-grid-

workflow.pdf
18. GridAnt, 2003, http://www-unix.globus.org/cog/projects/gridant/
19. myGrid workflow, 2003, http://www.mygrid.org.uk/myGrid/
20. Kwon Y. W., Ryu S. H., Jeong C. S. and Park H. W., XML-Based Workflow

Description Language for Grid Applications, LNCS 3043, ICCSA 2004. pp. 319-
327

