
Paramecium: Assembling Raw Nodes Into
Composite Cells ?

Ming Chen, Guangwen Yang, Yongwei Wu, Xuezheng Liu
cm01@mails.tsinghua.edu.cn, ygw@mail.tsinghua.edu.cn,

wuyw@tsinghua.edu.cn, xuezhengliu00@mails.tsinghua.edu.cn

Dept. of Computer Science and Technology, Tsinghua University

Abstract. In conventional DHTs, each node is assigned an exclusive
slice of identifier space. Simple it is, such arrangement may be rough. In
this paper we propose a generic component structure: several indepen-
dent nodes constitute a cell; a slice of identifier space is under nodes’
condominium; part of nodes in the same cell cooperatively and trans-
parently shield the internal dynamism and structure of the cell from
outsiders; this type of structure can be recursively repeated. Cells act
like raw nodes in conventional DHTs and cell components can be used
as bricks to construct any DHT-like systems. This approach provides en-
capsulation, scalable hierarchy, and enhanced security with bare incurred
complexity.

1 Introduction

Many Distributed Hash Tables (DHTs) ([1], [2], [3], [4], [5], [6]) have been pro-
posed in recent years. A distinguishing feature provided by these systems is
scalable routing performance while keeping a scalable routing table size in each
node. Of those algorithms, every node has a unique numerical identifier and
the identifier space is allocated among participant living nodes, which is solely
responsible for its assigned exclusive slice, or zone, of identifier space. There is
no central node and every node is identical and visible to all other nodes. The
methodology discarding role difference is simple but may be rigid in practice.

In previous decade, success in object-oriented programming revealed the
power of encapsulation: objects encapsulate internal implementations and states;
they supersede discrete functions and variables, and communicate through ex-
ported public properties and methods. We are enlightened to present Parame-
cium architecture: raw nodes aggregate into composite cells, which communicate
with each other through exported constituent nodes. The extension is simple but
promising in two traits: encapsulation and shared zone.

? This project is supported by the National Natural Science Foundation of China
under Grant No. 60373004, No. 60373005, and No. 60273007, and by the National
High Technology Development Program of China under Grant No. 2002AA104580



2 Design of Paramecium

Paramecium’s goal is to shield highly dynamic behaviors of unstable nodes in
system and improve security in P2P’s open environment. To achieve this goal,
Paramecium brings in encapsulation and condominium through cell structure.
In this section, we describe Paramecium’s cell structure, necessary exported
properties and functions. To be generic, we only depict abstract implementation
of Paramecium, and leave specific-related issues to concrete implementation.
For conciseness, the difference and comparison between Paramecium and other
conventional DHTs are here emphasis.

2.1 Cell Structure

Atom Cell Adjacent independent nodes in identifier space constitute an atom
cell, which could be identified by an exclusive slice, named cell zone, of identifier
space. The set of all cell zones covers the whole identifier space. A node resides
and only resides in one atom cell. And a cell can be made up of only one node.
There is no existent dissociative node. Nodes in the same atom cell are called
sibling nodes.

Sibling nodes can be organized into flat structure (eg: full connection or
DHTs), or hierarchic structure (eg: spanning tree). Paramecium does not spec-
ify any material internal structure, including cell zone’s division among sibling
nodes, and maintenance mechanism in a cell.

Nodes in a cell are categorized into two role types: boundary nodes and hidden
nodes. As representatives of their resident cells, boundary nodes are responsible
for requests from nodes in different cells. Hidden nodes facilitate sibling bound-
ary nodes to perform exported functions of resident cell, but they don’t serve as
representatives. Besides a certain type of request, hidden nodes will reject any
request from outsiders. Hidden nodes can directly request non-sibling boundary
nodes for services, or sibling boundary nodes for relaying requests. Every node,
whether boundary node or hidden node, provides a type of service called give-
MeRepresentatives. The semantic of giveMeRepresentatives is self-explaining and
straightforward: when a node X receives a request of this type, X corresponds
with the representatives of its resident cell. Role’s selection depends on node’s
discretion and giveMeRepresentatives’s implementation. The latter is specific-
related and out of the concern of Paramecium. Drawing an analogy between
Paramecium and class, we can image that similar to a class, boundary nodes are
cell’s public methods while hidden nodes are its protected or private methods.
Boundary nodes encapsulate implementation of resident cells and export cor-
responding properties and functions. Hidden nodes’ rejection to outer requests
enforces the rule of encapsulation. We suggest that representatives free hidden
nodes from inter-cell level business, allowing them to concentrate on internal
affair. To be concise, we use cell and cell’s boundary nodes exchangeably in the
rest of this paper if no confusion exists.



Evolve to Organism As a natural extension, the cell structure can be recur-
sively repeated: cells conglomerate into a larger and higher level cell (organism).
The grammar expressed in BNF (Backus-Naur Form) is: cell ::= cell|{cell}. All
cells immediately forming a new cell X are called X ′s child cell. This is a hier-
archic architecture abiding with the principle of encapsulation. Child cells can
serve in two ways: as boundary cells or as hidden cells. Only boundary cells
are exported to the outside world of their resident cell. The implementation,
maintenance, and internal dynamics of a cell are shielded by its boundary cells,
similar to an atom cell. A higher level cell has no knowledge and interest of low
level businesses. Considering the consequential benefit, the incurred complexity
should be justifiable.

2.2 Modification to Conventional DHTs

Routing Table In addition to its own zone and traditional routing table called
inter-cell routing table here in Paramecium, a node must maintain the state
composed of its resident cell zone and its intra-cell routing table. Each entry in
the intra-cell routing table contains NodeID, zone, and other implementation-
related information of a sibling, node or subcell. A node’s intra-cell routing table
can include partial or entire siblings. The connection topology in a cell and the
maintenance of intra-cell routing table depend on concrete implementation.

The inter-cell table can be constructed and maintained by Chord[2], Pas-
try[3], or other DHT protocols. Although an entry in an inter-cell routing ta-
ble points to an appropriate top-layer cell, the content is cell’s boundary node,
as well as cell’s zone. The selection of boundary nodes through service give-
MeRepresentatives is also implementation-related. But we must remember that
all sibling boundary nodes are eligible candidates. Sibling nodes/subcells can
share a completely same inter-routing table. Thus, only part of nodes have to
actively maintain inter-routing tables and disseminate results to their siblings.
This difference tells Paramecium from other DHTs.

Routing The amendment to conventional routing schemas is trivial. A node
first checks whether the routing target falls into its resident cell’s zone. If yes,
the node employs implementation-related approach with the help of intra-cell
routing table to route the request (the simplest scenario is that when sibling
nodes are full-connected, the final target can be reached in one-hop by local
lookup). Otherwise, the request is routed by inter-cell routing table and specific
inter-cell routing algorithm.

Node join The join operation is intuitive. Assumed a node X wants to join an
existing Paramecium system, X first finds an atom cell C whose zone covers X
through routing algorithm described in above paragraph. X then informs other
sibling nodes residing in C of joining message. Meanwhile, X learns intra-cell
and inter-cell routing tables from them. If X only acts as hidden node, there
is no perceivable changes to other cells. Otherwise, other cells will eventually
detect the X’s arrival in process of periodical update of inter-cell routing table
by the service giveMeRepresentatives.



Node departure Ordinarily, a node can crash or leave system unpredictably to
relevant nodes. Similar to node’s join, the departure of a hidden node does not
affect other cells’ routing table except the node’s sibling nodes’ intra-cell routing
table. The effectiveness of encapsulation apply here again.

3 Related Work

There are many existing or under development DHTs. To the best as we know,
Paramecium is the first general architecture that introduces the concepts of
encapsulation and jointly governed zone by a group of nodes.

There are some similarities between Paramecium and CAN[1], Chord[2], Pas-
try[3], Tapestry[4], SkipNet[5], and Koorde[6]. In these conventional DHTs, how-
ever, each node exclusively takes portion of identifier space and exposes itself to
others in a system level. Nodes can share partial routing table, but they don’t
support encapsulation, too.

4 Conclusion

Recognizing that raw nodes acting as bricks to build DHTs may not be flexible,
Paramecium extends the construction unit from primitive node to composite cell
which is made of nodes/subcells in a intuitive and efficient way. The cell structure
shields its internal dynamism and structure through the distinguished charac-
teristics of encapsulation: cells interact with each other only through boundary
nodes/subcells. Recursive cell composition provides analogy to hierarchal struc-
ture in a scalable way. With the help of the trait of jointly shared zone among
sibling nodes/subcells, Paramecium can also enhance security to some degree
through Practical Byzantine-like algorithms.

References

1. S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A Scalable
Content-Addressable Network. In ICSI Technical Report, Jan. 2001.

2. I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan. Chord: A Scal-
able Peer-to-Peer Lookup Service for Internet Applications. In Proceedings ACM
Sigcomm 2001, San Diego, CA, Aug. 2001.

3. A. Druschel and P. Rowstron. Pastry: Scalable, Distributed Object Location and
Routing for Large-scale Peer-to-peer System. In proceedings of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware 2001).

4. B. Y. Zhao, J. Kubiatowicz, A. D. Joseph. Tapestry: An Infrastructure for Fault-
toleratnt Wide-area Location and Routing. Technical Report UCB/CSD-01-1141.

5. Nicholas J. A. Harvey, Michael B. Jones, S. Saroiu, M. Theimer and A. Wolman.
SkipNet: A Scalable Overlay Network with Practical Locality Properties. Proceed-
ings of the USENIX Symposium on Internet Technologies and Systems USITS
2003.

6. Frans Kaashoek and David R. Karger. Koorde: A Simple Degree-optimal Hash
Table. In Proceedings of the 2nd International Workshop on Peer-to-Peer Systems
(IPTPS’03).


