
Annex to ISBN 978-3-903176-39-3© 2021 IFIP

Applying 5G and Edge Processing in Smart
Manufacturing

Jari Montonen, Jukka Koskinen, Jukka Mäkelä, Sami Ruponen, Tapio Heikkilä, Markku Hentula
VTT Technical Research Centre of Finland Ltd.

Espoo, Finland
firstname.surname@vtt.fi

Abstract— This paper presents a concept for next generation
collaborative assembly stations for manufacturing industry. It
applies a collaborative mobile platform, AI and 5G technologies.
Feasibility of the 5G and Edge processing was studied in this
paper. Remote operations and data processing were realized
with 5G New Radio wireless connection together with edge
processing in order to support low latency communication for
data transfer.
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I. INTRODUCTION

A tendency in manufacturing has been towards short
production series, one-of-kind production, which requires
high flexibility from assembly stations. The high flexibility
can be achieved for instance by using mobile robot platforms
equipped with a robot arm (manipulator), vision sensors and
AI techniques.

Highly flexible assembly cells are characteristically dynamic
environments where constant changes occur. The mobile
platforms must be robust against such environments. This
requires use of 3D vision sensors and high computational
power for object detection and identification in order to
control tasks of the mobile platforms. High bandwidth with
5G New Radio (NR), the fifth generation of mobile
communications systems defined by 3GPP, [1] with Multi-
access Edge Technology (MEC) technology [2] can provide
scalable computational power with bounded communication
latency. Vision based control software of a mobile robot
platform can be moved from on-board computer to the edge.

In this paper we present a concept of the next generation
assembly cell. Fig. 1 illustrates the concept. In following
sections, setup, scenarios, requirements, and outcome of the
demonstration are given.

Fig. 1. Concept of the next generation assembly station

II. SETUP AND SCENARIO DESCRIPTION

A. Setup
The demonstration consists of a mobile robot platform

(MiR 100) equipped with a robot arm (Universal Robots
UR10), two 3D cameras (MS Kinect v1&v2) and three 2D
web-cameras. In Fig. 2, the demonstration platform is shown.

Both the remote control software and the object detection
software are running at the 5G network MEC platform, a
onboard laptop streams the video and sensor data for remote
use. The onboard laptop also handles locally cognitive
information sensing human presence and responding to voice-
activated actions. The mobile robot and the manipulator have
their control software running in their control systems.

Fig. 2. The demonstration platform

The mobile robot platform is connected to VTT’s 5G test
network. Wireless connectivity is provided with a 5G Non-
standalone (NSA) network deployment. In Fig. 3, the high-
level network architecture with main components of the 5G
setup are shown.

Fig. 3. The high-level 5G network architecture

The 5G network includes several indoor remote radio heads
(RRH), both LTE and NR, to provide sufficient coverage to
the indoor lab environment. The NR radios are using 3.5 GHz
frequency band with a 60 MHz bandwidth. Here, a 5G NSA
capable Evolved Packet Core (EPC) is used. The radio
network (RAN) consists of an indoor radio solution including
several pico RRHs, a radio aggregation point (sHUB), and the
4G and 5G baseband units (BBU).

The 5G network setup is equivalent to a private network likely
to be used in manufacturing industry. One key enabler in
private networks is the possibility for a local break out
function enabling data processing at the local.



B. Scenario
High level scenario is as follows: A mobile robot platform

is moving in a dynamic environment and serves an assembly
worker; it assists the worker in assembly tasks by carrying
parts or tools and delivers them to the worker, who can work
in different locations in an assembly cell. There can be several
such platforms in multiple locations performing equivalent
tasks. The demonstrated scenario has three subscenarios.

Scenario 1: When the mobile robot platform is unable to
navigate autonomously to its destination, it raises a message
in a remote cockpit after which a remote operator can then use
video streams and sensor information remotely and guides the
robot to avoid the problematic area. The remote cockpit,
shown in Fig. 4, displays real-time video streams for
monitoring the platform and surroundings. A navigation map
is embedded with 360° sensor data and a joystick for
controlling the platform.

Fig. 4. User interface of the remote cockpit

Scenario 2: The platform can be requested to fetch an item
from an arbitrary position e.g. “fetch screwdriver from the
trolley in the room 544”. The trolley may have been moved
within the room, the platform needs to request AI-control,
powered by Tensorflow [1] to take over to drive to the
previously unknown position. Same functionality is utilized
while delivering the item to the worker, who may have moved
around the working area. The platform uses the AI-control to
locate and drive to the worker. The AI-control receives a video
stream from the platform. Objects (tables, chairs, persons etc.)
are identified utilizing a Convotional Neural Network (CNN)
[4]. The AI control analyses distance from the 3D-data to the
target object, drives the platform next to it, and instructs the
platform to continue the original task. Fig. 5 displays the
object detection with corresponding depth data in action.

Fig. 5. The object detection (left) and corresponding depth data (right)

Scenario 3: When the platform is in a location where the
robot arm needs to reach over, a 3D-sensor is utilized to detect
workers or other objects in the work area. The robot arm can
then wait until the area is free, warn the worker or request help
before performing the actions. In addition to the 3D-sensing

functions, the cognitive sensing software handles the voice-
activated actions for all of the scenarios where the worker
could request the robot to make an action, e.g. pick or place,
or complete a task, e.g. deliver or fetch. Fig. 6 shows the
cognitive sensing software GUIError! Reference source not
found. It displays the working area of the robot-arm as a
bounding box highlighting objects breaking the zone. The
software also displays available commands and speech
detection state with confidence value.

Fig. 6. User interface for cognitive sensing

III. SYSTEM REQUIREMENTS

5G-connection requirements: for the remote driving to
work like clockwork and safely, the video stream delay may
not be more than 30 ms; maximum delay of 90 ms delay is
possible with slow driving speeds. The minimum bandwidth
using 640x480 MJPEG-video streams is 70 Mbit/s, using
several full HD-cameras the requirement would rise to 475
Mbit/s.

IV. OUTCOME

The setup and implementation of the concept were realized
with a real industrial mobile robot platform and standard 5G
technology. The realized use cases and tests showed very
promising results. A lot of experience was gained about the
feasibility of the 5G and Edge processing for industrial robot
use cases. Bottleneck of current wireless connection has been
the limited performance considering the latency and
bandwidth capacity in the wireless networks. The first
experiences were made with 5G NSA setup optimized for
broadband downlink use cases. With the edge processing and
the private network setup we were able to realize a proof of
concept for collaborative robots. With future enhancement for
5G connectivity solution, it is foreseen that technology will
boost industrial cases further.
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