
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

The Curious Case of Port 0
Mark Luchs and Christian Doerr

Delft University of Technology
2628 CD Delft, The Netherlands

Email: m.luchs, c.doerr@tudelft.nl

Abstract—In order to direct network traffic towards applica-
tions, transport layer protocols such as TCP and UDP add the
notion of a port number. A share of these numbers is registered
for well-known services such as a web or mail, while some is left to
be dynamically assigned by the OS to client connections. A special
case is port 0 which is reserved but was never assigned. Traffic
from and to port 0 is unusual, because it should not occur in the
wild. As port 0 is unassigned, there is no common service listing
for connections here. Furthermore, operating systems usually
interpret the request to open port 0 as the request to allocate and
open any currently unused port. Thus, traffic from and to port 0
should not occur, because no application should listen there and
applications cannot send from port 0.

In practice, we do however see traffic from and to port 0,
which indicates that someone makes the effort to bypass the
normal operating system network stack to create these unusual
packets. As a corner case of network protocols, the aspect of
port 0 has basically never been thoroughly investigated. In this
paper, we analyze network traffic collected through a /15 network
telescope over a period of 3 years to characterize these curious
data flows. We find that port 0 traffic seems to be used in the
wild by a select few for a variety of purposes, from DDoS attacks
to system fingerprinting, and that some of these actors possess a
surprisingly sophisticated knowledge of OS behavior.

Index Terms—port scanning, back scatter, port 0

I. INTRODUCTION

In order to differentiate between network flows and deliver
network traffic to a specific application on the destination host,
transport layers such as TCP or UDP include a port number
as part of their header information. Port numbers are either
registered at IANA and thus standardized for commonly used
protocols such as telnet or HTTP, or dynamically allocated
by the OS for temporary use by applications. The 16-bit port
number in TCP and UDP allows for a total of 65536 ports, out
of which port numbers 49152 through 65535 are designated
for dynamic assignment by clients, and the remainder intended
for services. Operating systems typically classify ports below
1024 as system ports, which for example on Linux may only
be opened with elevated user privileges.

A curious case is port number 0, which is reserved by
IANA but was never assigned to a specific application [1].
When you open a listening socket on a host and request port
0 from the operating system, this call is typically interpreted
as a request to return a single, currently unused port to the
application. In other words, opening a socket on port 0 will
actually open a random port most likely in the range of 1025
to 49151. Also when a client is making a new connection to a

server socket it will require a port number that is stamped onto
the outgoing packets in order to allow the operating system
to properly deliver any incoming returns. As stated above,
system software will usually dynamically allocate one of the
ephemeral port numbers in the range of 49152 through 65535
for these temporary connections. For this reason, there should
not be any outgoing packet that originate from port 0, packets
on the Internet should thus list any port numbers but port 0.

In reality, there exists a small but not negligible amount
of packets on the Internet that either originate from or are
sent to port 0, in some cases even both. Per our analysis
above, this should not happen, as port 0 is neither registered
to a specific application, and normal usage of the operating
system’s networking API should not result in a static or
dynamic allocation of this number. If one would want to send
packets from or to port 0, one strategy would be to bypass
the operating system’s networking stack, craft packets in a
custom application and inject them in the network through
a raw access mode such as libpcap. The required effort
thus implicitly indicates a deliberate effort and an objective.
This hence raises this curious question of the origin of this
unexpected traffic, which we will investigate in this paper.

Being a curious corner case of network protocol design,
the issue of port 0 has never received much consideration
or a systematic analysis over the past 20 years in the trade
or academic literature. In result, most of what is known
about this type of traffic and its use is either speculation or
folklore, with explanations ranging from its use in targeted
system reconnaissance and operating system fingerprinting to
stealth firewall exploitation and bypassing. This issue is further
aggravated by the fact that a systematic study of this extremely
low-volume traffic (< 0.02%) requires a network of significant
size to observe it and draw sound conclusions. Out of 140·109
packets received in the telescope over the period of 3 years,
roughly 20 · 106 had port 0 as destination and/or source port.

This paper is the first systematic evaluation of this unusual
type of network traffic, in which we investigate the origin of
port 0 traffic in detail. Based on a monitoring of two /16 IP
address ranges over 3 years, we find that port 0 traffic is used
for a variety of goals, ranging from specialized DDoS attacks,
scanning and reconnaissance activities to system fingerprin-
ting. Specifically, this paper makes three contributions:

• We investigate the origin of the claim that port 0 is used
for OS fingerprinting and trace the origin to a 2003 tool
named the Gobbler. We show that this proof-of-concept
would however not be effective at distinguishing betweenISBN 978-3-903176-16-4 c©2019 IFIP

IFIP Networking 2019 1570512603

1

current and old operating systems, and based on data from
the telescope prove that it is not a source of port 0 traffic.

• We perform a systematic analysis of OS responses to
port 0 packets under all possible header combinations
and indeed to find type- and version-specific differences
that could be used for fingerprinting. These fingerprints
are different from what was originally described in the
Gobbler, and an analysis of network traffic reveals that
these fingerprinting techniques are actually adopted by
adversaries in the wild. We further find that these actors
utilize the different fingerprinting steps in a way that max-
imizes entropy, which indicates both detailed knowledge
about OS behavior as well as the intention to operate with
a minimum traffic footprint and visibility.

• We demonstrate that besides OS fingerprinting, the bulk
of port 0 activity is actually linked to distributed denial-
of-service attacks or port scanning. Curiously, DDoS
practices in port 0 somewhat differ from those targeting
specific ports likely due to the hypothesis of an adversary
that port 0 leads to a successful firewall evasion.

The remainder of this paper is structured as follows:
Section II summarizes the existing body of knowledge and
expectations about port 0. Section III briefly outlines our
measurement infrastructure. Section IV describes the principle
of port 0 fingerprinting as described in the original proposal by
[2], and tests the presence of this technique in our longitudinal
dataset. Section V then presents alternative explanations for
port 0 traffic. Section VI reviews our findings and concludes
our investigation of the curious case of port 0.

II. RELATED WORK

As a niche case for transport layer protocols and in general
a tiny portion of network traffic, port 0 has received almost
no systematic attention in the past. In result, much of today’s
claims of what this traffic is about is not rooted in data
analysis and scientific experiments, but rather hypotheses
and sometimes speculation. This is a pity, since there is an
interesting story to tell as we will show in the remainder of
this paper. In the following, we will describe what is known
to date about port 0 and the evolution of these artifacts.

When one queries the Internet for keywords related to port 0
traffic, one discovers a collection of forum questions and blog
posts from network administrators searching for the origin of
this small, but unusual type of traffic. These forum discussions
and support inquiries usually arrive at the conclusion that
port 0 traffic should not normally be generated by hosts
due to the reasons discussed in the introduction, and can be
attributed to malicious fingerprinting activities, reconnaissance
and potentially firewall evasion techniques, for example in [3]
and [4]. Often the precise motivation for these use cases is
rather specific. For example, in case of firewall evasion they
came from some firewall configuration GUIs that allowed ports
to be selected from 1 to 65535 but left out 0. Findings and
claims such as this have led to the notion that port 0 traffic
can hence be used to bypass defenses, and gather information
which would otherwise be blocked by a network filter.

The origin for the fingerprinting hypothesis can be traced
back to a post by Ste Jones to the Nmap developer mailing list
[2], where he put forth the idea of using traffic from and to port
0 as a means of operating system identification. Given seven
different probing packets, Jones’s post lists some differences
between eight operating systems used at the time. The idea
later evolved into a proof-of-concept tool, the Gobbler, whose
open source development was stopped a few months later in
2003. In the meanwhile, the design of the Linux operating
system, header files, and compilers has advanced, and the
Gobbler source code could soon no longer be compiled on
modern environments. Yet, the mailing list post and the proof-
of-concept somehow cemented the idea of port 0 traffic being
related to operating system fingerprinting.

In the expanding universe of penetration testing and security
tools, a number of applications do have support to attempt
detection of the operating system based on subtle variations
in the way they react to network traffic. The most common
tool nmap [5] for example elicits behavioral differences when
sending a train of eight TCP and UDP packets with unusual
header values. Windows 7 should for example react to a TCP
SYN packet sent to an open port with certain options in a
predictable way, returning a SYN+ACK with a TTL between
0x7B and 0x85, the TCP sequence number of the response
being a value not equal to 0 and not the sequence number of
the SYN packet, and the acknowledgement number being the
probe’s sequence number incremented by one. If the observed
response matches this pattern, Windows 7 remains in the pool
of candidate OSes, otherwise Windows 7 is discarded. The
process continues for all eight tests, and nmap returns a set
of operating system guesses based on its current database
of some 5600 patterns. These same principles can to some
extent also be exploited passively, by observing features in
ongoing connections. This is exemplarily implemented by p0f
[6], which stands for passive fingerprinter. P0f also bases its
OS guess on header field initialization or progression values
(it can also discover network topology setups), but injects no
network traffic itself. As header values might be modified
in transit by forwarding (such as the IP TOS, TTL, etc.)
or actively replaced by firewalls, XProbe2 [7] relaxes the
strict matching and introduces fuzzy fingerprint matching.
Instead of ruling out candidates in case of a non-match,
XProbe2 assigns each OS/fingerprint combination a match
based on level of certainty, and thus includes potential but not-
conclusive candidates in the list of results. None of the tools
however leverage the initial discovery by [2]. They implement
OS detection solely on packets sent to open and closed ports,
but do not implement a suite of probes based on port 0.

The first and only academic analysis of port 0 is the analysis
of Bou-Harb et al. [8] in 2014. As part of an incident response
effort, the authors analyzed 30 GB of packet traces collected
from a darknet for two separate days in 2013, and singled
out TCP traffic originating from port 0. In this data set, they
identified 27 hosts sending such packets, of which they linked
28% via malware domain lists to the Sality malware.

The loose ends around the hypothesis of port 0 traffic as a

2

TCP Traffic Port 0 UDP
src 0 & dst !0src !0 & dst 0 s&d 0

71.7% 17.7% 0.18%8.6%

Fig. 1. Percentage of port 0-related traffic by port combination from the
telescope study described in [9].

source of fingerprinting yet the absence of this technique in all
common fingerprinting tools, as well as the limited empirical
analysis of this traffic, does not provide a definite conclusion
what actually is the origin and purpose of this traffic. Using
the /15 network telescope described in [9], we collected a
longitudinal trace of darknet data spanning a period of 3 years
with a total of 11.5 TB of traffic. Aside from a long duration,
we extend the analysis to both TCP and UDP, as well as traffic
from and to port 0. We see that the vast majority of traffic
(71.7%) actually comes from a non-zero port but is directed
to port 0. TCP traffic from source port 0 only accounts for
17.7% in this long term trace, and traffic simultaneously from
and to port 0 accounts for another 8.6%. UDP traffic from
or to port 0 is minor at 0.18% in total as shown in figure 1.
Combined we find a total of 33,776 sources responsible for
all traffic, of these 23,541 send TCP traffic and 10,235 send
UDP traffic. Only 611 sources send both TCP as well as UDP.

The analysis presented in [8] investigates a spike in TCP
traffic directed at port 0 over a period of two days. There is
no discussion however on the presence of other port 0 traffic
however. Our investigation into three years of telescope data
however revealed the presence of both TCP as UDP traffic,
direct at and originating from port 0. Furthermore, the long
term usage of port 0 traffic could be significantly different
from that observed during incidents.

In the remainder of this paper, we will thus analyze both
TCP and UDP traffic both to and from port 0, and perform a
longitudinal analysis over a period of 3 years, to classify the
purpose and the dynamics of this usual type of network traffic.

III. DATA COLLECTION

As soon as one connects a host to the Internet, also
immediately the first packets trickle in, even if the connected
host has not initiated any connection itself. Some of the
packets are network scans, probing publicly connected net-
works for attached hosts and open ports. Knowledge of open
ports and available services can in later steps be used to
launch compromisation attempts or to utilize services with a
high amplification factor between request and response sizes.
Such amplification factors are used in distributed denial-of-
service (DDoS) attacks in order to saturate the connection of
the victim with a large volume of unwanted data. In non-
amplification attacks, an adversary will attack hosts with the
attempt to exhaust some finite resource. Operating systems and
application services typically have a fixed limit of the total
number of simultaneous connections they are willing or able
to handle in parallel, and by making many connection requests
this pool is drained by the attacker so that regular users may no

User Traffic Network Scans Attack
Backscatter

Protocol-
Based Attacks

Volume-
Based Attacks

Incoming Data

Fig. 2. Traffic on an IP address is a traffic mix of user data, network scans
and attack reflections, so-called backscatter.

longer utilize the service. In order to try evasion, an adversary
will normally spoof the network packet’s source IP addresses
in this protocol-based attack to a random value. This means
that the attack cannot be attributed to the perpetrator and is also
much more difficult to block. As the response of the victim to
the connection request is delivered to the alleged origin, this
means that every IP address on the Internet normally receives
a small amount of these attack reflections which can be used
to quantify and assess attack activities on the Internet.

When monitoring the traffic on a publicly-reachable IP
address on the Internet, the incoming data will thus be a
mix of these three traffic sources as shown in figure 2. In
order to increase the prediction power and statistical reliability
of the conclusions, normally a large number of IP addresses
are bundled together to increase the overall volume of scan
and backscatter traffic [9]. A so-called network telescope
observes a large number of otherwise unused IP addresses
for exactly this purpose; as the addresses are not connected to
clients, the traffic collection will also contain no user data and
aside from cleaning the data to only contain malicious traffic,
conveniently addressing the concern of user privacy.

The analysis presented in this paper is based on a network
telescope of two partially-used address ranges of size /16.
The infrastructure has been in use for approximately 3 years,
and has captured approximately 11.5 terrabytes of adversarial
traffic. From this traffic we isolate for our analysis any TCP or
UDP traffic either originating from port 0 or destined to port
0 (or both). As port 0 traffic is a rather obscure case, the total
share of these packets is comparatively small, again underlin-
ing the need to utilize a large telescope and an extended period
of observation to establish reliable results. From the billions of
captured packets, only a total of 19,718,047 packets remains
on which the analysis in the following sections is based.

Universally, scanning traffic is defined as a source sending
more than 3 packets towards a single host. Within the port
0 dataset however we notice there is a significant number
of sources with limited traffic, let alone single IPs. Dropping
traffic which less than k packets has the following effects on
packets and sources that would remain in the dataset:

≤ 0 ≤ 1 ≤ 2 ≤ 3
Packets (%) 100 99.90 99.86 99.84
Sources (%) 100 42.04 30.39 25.13

As we can see, the influence on the number of total packets
is hardly noticeable, however the number of sources will
drop drastically. Filtering our data this way would have the

3

consequence that the total picture of port 0 becomes skewed,
additionally such packets could be sent from so-called slow
scanners collaborating together in scanning campaigns. One
such example will be given further down this research. As
such we maintain the full port 0 dataset for our work.

IV. THE GOBBLER: OS FINGERPRINTING USING PORT 0

As the probing tool the Gobbler is the only reference that
explicitly mentions the use of port 0 to fingerprint operating
systems, it may be that this tool or derivatives of it are today
in use to probe hosts. We have hence analyzed the description
provided by [2] and the source code to compile a distinctive
fingerprint for the tool itself, which allows us to identify usage
of the application in our telescope dataset.

The operational concept behind the Gobbler is the same as
for other tools, sending specifically crafted packets towards a
host. Differences in the observed replies can then be matched
against fingerprints of known operating systems. The Gobbler
is distinctive from other fingerprinting tools in that is only
sends TCP SYN and UDP packets destined for and/or from
port 0, behavior which is not incorporated by any other tools.

A. Gobbler Fingerprinting Techniques

In the context of his fingerprinting proposal, Jones described
seven different probing packets to which operating systems
would respond differently. All probes either originated from
port 0 or were sent to port 0, and depending on whether
a response was returned and the flags it contained, one or
more OS could be a potential candidate for the remote host.
Specifically, the proposal defined the following test packets:

P1 Send TCP packet from source port 0 to port 0
P2 Send TCP packet from source port 6= 0 to port 0
P3 Send TCP packet from source port 0 to open port
P4 Send TCP packet from source port 0 to closed port
P5 Send UDP packet from source port 0 to port 0
P6 Send UDP packet from source port 53 to port 0
P7 Send UDP packet from source port 0 to closed port

which in the source code were executed sequentially without
any further control logic or branches triggered based on
earlier responses. According to the documentation, probe 6 is
specifically tied to port 53, DNS, as it is most likely to bypass
firewall configurations. Why this is not defined specifically for
other probes remains unspecified. Since each probe requires
either an open or closed port, prior knowledge of the system
being probed has to be available. The Gobbler’s documentation
further included a fingerprint database in a similar format
to nmap, which listed a set of reference responses for eight
operating systems from that time. Figure 3 shows an example
for OpenBSD 3.2/3.3. A value of N indicates no response,
an entry of Y that a reply was received. In a return packet
some flags could be set, and A and R indicate that the
acknowledgement bit and reset bit flags were set in the TCP
header. The list appears as a work-in-progress, naming for
example the “Linux OS” but without indicating the distribution
or kernel version. Other entries such as SunOS 5.6 contain

Fingerprint OpenBSD 3.2/3.3
P1(Resp=Y%Flags=AR)
P2(Resp=Y%Flags=AR)
P3(Resp=N)
P4(Resp=Y%Flags=AR)
P5(Resp=N)
P6(Resp=N)
P7(Resp=Y)

Fig. 3. Sample fingerprint from the Gobbler for OpenBSD 3.2/3.3

Y + AR N

VMS on Alpha
Linux / Win 2000

Mac OS X
Gobbler 2.0 Alpha

Open BSD
3.2 / 3.3

Sun OS
Windows NT4

P1

P2
Y + AR Y + AR

P3
Y + AR N Y + AR

P4
Y + AR Y + AR Y + AR

P5
Y N N N

P6
Y N N N

P7
Y Y N Y

TCP 0 0

TCP X 0

TCP 0 open

TCP 0 closed

UDP 0 0

UDP 53 0

UDP 0 closed

Fig. 4. Gobbler probing procedure and original OS fingerprints.

remarks such as “can someone confirm please”, or questions
such as “Service Pack?” or “with checkpoint?”.

On inspection of the full database in [2], one can see
that even for the provided examples, there is actually limited
variation in the OS responses which makes the signatures
rather unspecified for the task at hand. Furthermore, if we
analyze the actual entropy which might be reaped from each
probe, we notice that certain probing packets such as a P4
make no difference in response - every OS replies with a
frame where the ACK and the RST bits are set. The proposed
fingerprints have thus limited prediction power.

This issue is visualized in figure 4, which depicts the
responses expected for each of the seven probing methods
for all entries listed in the fingerprinting database. As we can
see from the graph, the first test of a TCP frame from port 0
to port 0 will split the entire database in two sets, on the one
hand SunOS and Windows NT4 and on the other all remaining
database entries. From now on, no probe has any further
prediction power to differentiate between the two candidates
in the first set. Also in the left part of the graph several probes
appear unsuited to further break down the candidate pool. A
more efficient fingerprinting system should inject probes in
order of maximum expected entropy, ideally pruning items in
the probing sequence given new knowledge and selecting those
where the highest new knowledge gain can be expected. Of
more use would have been the static probing order P2, P4, P1,
and P5 which would have resulted in more insightful splits at
a faster pace. We further need to note that to any adversary
P3 and P4 basically appear as one, as apriori a scanner would
not have any knowledge whether a port is actually open or
closed. In order to be effective, this OS fingerprinting must be
preceeded by a port scan for open ports.

4

TABLE I
RESPONSES TO GOBBLER PROBING TO A SELECTION OF UBUNTU AND WINDOWS OPERATING SYSTEMS.

Ubuntu 04.10 Ubuntu 10.04 Ubuntu 12.04 Ubuntu 16.04 Windows 7 Windows 95 Windows XP
P1 Y — 20 Y — 20 Y — 20 Y — 20 Y — 20 Y — 20 Y — 20
P2 Y — 20 Y — 20 Y — 20 Y — 20 Y — 20 Y — 20 Y — 20
P3 N — N — N — N — Y — 20 Y — 20 Y — 20
P4 Y — 20 Y — 20 Y — 20 Y — 20 Y — 20 Y — 20 Y — 20
P5 N — N — N — N — N — N — N —
P6 N — N — N — N — N — N — N —
P7 N — N — N — N — N — N — N —

As the Gobbler database was, and remains, incomplete
and network stack implementations today could leak more or
different information based on this unexpected type of traffic,
we re-implemented the now defunct Gobbler implementation
and tested the strategies on a number of operating systems
that have appeared over the past decade. Table I shows the
responses to the seven probing packets for a variety of Ubuntu
and Windows versions, with an N indicating no response and
the value next to Y describing the decimal value of the flag
combination returned. The only appearing flag combination
20 or 0b010100 (16+4) stands for ACK+RST, given the bit
vector URG ACK PST RST SYN FIN in the TCP header. As
we can easily see from the table, the only difference between
Windows and Ubuntu Linux is the response to P3, a TCP
packet from source port 0 to an open port, while no variations
between the different versions of OS families exist.

B. Measuring Gobbler Usage

Aside from the distinctive sequence of unusual packets, also
the internal implementation of the Gobbler tool contains some
behavioral characteristics in the way it generates and sends
probe packets. Based on a source code review, the tool will

• send a probe and then wait no longer than 250,000µs for
a response. After this period another probe will be sent.
This process will repeat itself 20 times before continuing.

• repeat the process for all 7 probing methods, sequentially
from probe 1 to probe 7. The only decision logic here is
based on whether there is an open or closed port available,
which might lead to skipping of test 3 or 4.

• require knowledge of open and closed ports to do its
fingerprinting analysis. As such, a port 0 fingerprinting
attempt is preceded by a port scan which determines the
state of the ports on a host. The tool itself has references
to do this via nmap’s port scanning functionality.

• send packets, where the TCP sequence number, the IPID,
and MAC addresses are filled with random information.
While the MAC addresses are not visible beyond a LAN,
we can statistically test the header data for randomness.

Given this characteristic fingerprint, we analyzed the incom-
ing network telescope traffic for sequences of the seven probes,
and in a second step verifying the operational interarrival time
or resend patterns specific to the Gobbler implementation. As
in a dark IP space there will be no responses, each test packet
should repeat itself up to the maximum of 20.

When we plot the distribution the port 0 traffic matched to
the semantics of the seven probes as shown in figure 5, we

Fig. 5. Distribution of Gobbler probing packets in the telescope data.

can immediately notice that the main source of the incoming
port 0 probing traffic cannot be Gobbler fingerprinting traffic
as the number of packets per category is drastically different
while it should be approximately equal. P3 and P4 are listed
together in the figure, as we have no insight whether the
adversary expected to find the targeted port to be open or
closed. Furthermore, we can also conclude that the Gobbler
is not used at all due to the complete absence of P6 probes
from the dataset. Needless to say, no source IP matched the
characteristic interarrival time or repeat pattern of the Gobbler.
It must therefore be another tool that creates these probes.

While we can conclude that the Gobbler tool is no (longer)
in use to facilitate operating system fingerprinting, we can
also notice from figure 5 the astonishing fact that the most
commonly used probing methods in descending order P2 -
P3/P4 - P1 - P5 matches exactly our analysis from above
on the algorithmically most efficient scanning order. As less
than a quarter of probes continue from P2 to P3/P4, it
would also suggest that some information about the progress
is considered into the process. This would suggest that the
techniques originally presented in the Gobbler paper have been
incorporated and potentially further developed by someone
performing port 0 based fingerprinting analysis. We will get
back to this observation in the next section again.

V. THE MIXED USAGE OF PORT 0

While there does not exist any evidence that the Gobbler is
(still) being used for fingerprinting using port 0 traffic, packets
to and from port 0 indeed do elicit a minor difference between
operating systems, and our traffic inspection reveals that these
probes see minuscule usage in practice. In this section, we will
analyze this data for commonalities and recurrent patterns to
identify potential purposes behind this traffic.

When we look at the volume of port 0 packets over time,
we see that it deviates from the normal network activity that is
observed for regular network traffic, such as the typical diurnal
behavior of backbone traffic or the basically continuous port
scanning activity as background noise. Figure 6 shows the
amount of port 0 traffic as a function of time, on the top
of all port 0 packets and at the bottom for TCP SYN+ACK

5

Fig. 6. Incoming port 0 traffic volume averaged by the number of sending
sources, on top for all traffic, on the bottom for TCP SYN+ACKs.

which can be associated with backscatter based on [10]. We
immediately see that the traffic volume is neither static nor
shows any repeating patterns, at the same time we can identify
that much of the activity around port 0 in terms of packets sent
appears in bursts at concise moments in time indicating the
activities of single, coordinated sources. A momentary burst
in backscatter drives also a surge in general port 0 traffic. This
is observed in figure 6 by a spike occuring in both figures
simultaneously. The reverse is however not true, and peaks in
general port 0 traffic can be frequently linked to the presence
of high-speed scan campaigns, as discussed in section V-B.

How we experience port 0 traffic thus depends on the
moment and interval of observation. If we tuned in during
one of the comparatively rare but regularly occurring DDoS
attacks or scan campaigns, an entirely different picture would
emerge than if our analysis would fall into a period of
more background activity. Over a period of 3 years, we have
discovered the following different types of behaviors.

A. Denial of Service

As discussed in section III, TCP SYN+ACK traffic is
typically interpreted as backscatter traffic. Such backscatter
traffic will appear in our sensors when a victim is flooded with
a (D)DoS and the source IP used by the packets is spoofed
and part of our telescope range.

Based on the comparison of total port 0 traffic to port 0
TCP SYN+ACK traffic in figure 6 we have seen that bursts in
overall traffic volume are typically driven by a synchronous
increase in SYN+ACK traffic, in other words port 0 surges are
usually the result of backscatter from denial of service attacks.
If we were to sum and group the volume of received port 0
packets by source IP, we see that when viewed over the entire
time frame 24.7% of the entire DDoS traffic volume originates
from just a single victim (or source IP) while exactly a third of
all packets could be attributed to 10 victims during a handful
of short, but heavy DDoS attack instances. The rarity of these
events becomes further evident in figure 7 which depicts the

Fig. 7. Instances with a ten fold increase in momentary packet count.

data from figure 6, but only displays a data point whenever
the traffic volume during a specific day temporarily exceeded
the moving average by a factor of 10. Over the entire three
year period, we spot only 85 of these instances, but for the
three largest events (indicated by an arrow) the volume actually
exceeds the normal level by a factor of 1000. While a handful
of IP addresses dominate the overall ranking in terms of packet
count and would hence skew our interpretation of port 0 traffic
to be tightly connected with (D)DoS activity, an analysis from
the perspective of unique sources does paint another picture.
Viewed over the three year period, only 10.3% of source IP
addresses ever caught in the telescopes had actually sent a
SYN+ACK packet, and only 8.06% of sources had only been
seen sending such traffic which corresponds to the typical
behavior of a backscatter victim. Thus, while in terms of
volume a few DoS instances stand out, it is actually not the
main activity behind port 0 traffic in terms of the number of
hosts as 90% of all source IPs are engaged in other activities.

While the relative distribution of DoS attack sizes somewhat
resembles the skewed distribution of non-port-0 backscatter in
[9], port 0-based reflections do also differ significantly from
previous attacks observed. Recall from our brief introduction
on network telescopes in section III the general working
principle of protocol-based DDoS attacks such as TCP SYN
floods, where the perpetrator will normally spoof the source
IP addresses of the attack packets to random IP addresses
to cloak his identity and make mitigation more difficult.
Statistically speaking, this random spoofing would result in an
approximately equal amount of backscatter traffic across our
telescope. Figure 8 displays the actual count of backscatter
received for the IP addresses in our two telescope ranges.
We notice that while some source IP randomization is going
on, this practice seems to be not well developed for port 0-
based DoS as most telescope IPs are never hit with backscatter.
While massive source randomization is a standard practice in
“regular” resource-depletion DDoS attacks, this practice is not
adopted to the same extent in these type of DDoS attacks.
Thus, the denial-of-service attack actually does appear less
distributed from the perspective of the victim. This would
make it in principle easier to defend against, but the fact that
we actually receive port 0-related backscatter implies that the
victims have not configured their firewalls to filter out port 0
traffic in the first place. If this filter would be applied, how
randomized and distributed the DDoS attack actually is would
no longer matter, as any port 0 DDoS traffic would hit this

6

Fig. 8. Backscatter received per IP from sources only sending SYN+ACK.

rule. This lack might serve as an explanation why actors might
forego source randomization in port 0 DDoS attacks.

B. Scanners

Recall from our discussion above that port 0-related DoS at-
tacks were only experienced by a comparatively small amount
of source IPs. This in turn implies that most are actually
engaged in other activities, specifically we found that the bulk
of port 0 traffic was related to port scanning. TCP SYN traffic,
which is typically interpreted as scanning traffic, constitutes
48.8% of all traffic. Port scanners are traditionally classified
into three groups. First, vertical scanners that test a large
number of ports on a single host, which typically occurs when
an adversary is trying to break into a specific host and needs
to locate any available open port. Second, horizontal scanners
test the same port across a large range of hosts. They specialize
in a specific type of service and aim to find any host with that
service that they can exploit. And third, block scanners which
test a selection of ports across a large number of hosts.

Figure 9 displays the targeting behavior of sources sending
traffic towards our IP ranges, in subfigure (a) a histogram of
the number of IPs in our telescope that are targeted per source
IP, in (b) the total number of ports a particular source IP scans
on a given target. From the graphs and a combination of the
data points which is not shown here, we actually find all three
scanning behaviors are present in the port 0 traffic: (1) there
exist a large number of scanners that only target a few IPs but
scan many ports, (2) there exist scanners which target one IP
across wide ranges and (3) there are those which test thousands
of hosts for hundreds of open ports. Note that the number of
ports and hosts is displayed logarithmically, which is necessary
to the heavy skew in the distribution. What stands out is that
most sources only scan a few IPs, and that by overall volume
most only specialize on a limited number of ports.

If source IPs target only a few destination IPs, this could
either mean that the scanner is not very determined to accom-
plish a high coverage, or that multiple sources work together
while individually sending only a few packets. This would
allow such a group to stay under the radar and avoid detection.
While we will discuss an example of such collaborative
behavior in the next section, we will now focus on the high
volume scanners that systematically test our IP ranges at scale.
In figure 9(a), we identify 14 such instances which do probe
more than 40,000 IP addresses in the telescope. Taken together,
these 14 senders account for a whopping 45.31% of all port
0 packets in the entire dataset.

(a) Number of destinations scanned

(b) Number of ports scanned

Fig. 9. Number of destination hosts and ports scanned.

Despite their similar profile and comparable activities, these
horizontal and block scanners are actually quite different in
how they go about their scan. Table II lists the total number
of destination IP addresses targeted, the total number of unique
IP IDs in the probing traffic, the total number of destination
ports targeted, the total amount of source ports, the total
number of unique TCP sequence numbers in the fingerprinting
traffic, and the number of days these high profile scanners
were observed. While most share one property, for example
most are horizontal scanners of which half have a fixed IP ID
in common, groups of the same property do not in general
align with those groups identical in another way. In other
words, the only common criteria is that they scan a lot,
but it appears that they all differ in the concrete way they
instantiate and operate their scan. A low number of unique
IP IDs, source ports, or TCP sequence numbers for most
of them does indicate that these probe packets are custom
crafted and directly injected into the network by a specific low-
level tool, as the operating systems networking stack would
normally randomize these values. The tools normally leave a
distinctive fingerprint in the packet headers - like the resend
pattern and probe interarrival time in case of the Gobbler -
and we tested the probing traffic with the method described in
[11], which can identify the most common port scanning tools
nmap, unicorn, masscan and zmap. The port 0 traffic matched
however none of these commonly used tools, therefore hinting
to a special tool developed for this purpose.

One property which was common across most scanners
was the surprising speed in which they combed through our
telescope ranges, typically finishing their scan in a matter of a

7

TABLE II
BEHAVIORAL SIMILARITIES OF THE SCANNERS TARGETING AT LEAST 40.000 IP ADDRESSES.

source IP # dIPs # unique IP IDs # dPorts # sPorts # TCP seq Days active
212.90.62.209 40729 30420 1 1 40729 4
116.66.207.130 45167 24553 1 1 24558 1
46.244.10.94 55059 1 1 1 0 2
162.244.28.23 55595 37521 1 2 55594 1
195.19.11.226 57185 38097 1 1 57184 3
195.168.26.64 57222 38222 1 1 57221 2
122.224.153.110 57554 38437 1 2 57554 1
107.154.64.10 42715 1 10551 1 1 34
119.9.107.156 57448 1 1 27117 90641 4
155.94.254.133 54880 1 1 27622 54880 4
80.82.64.213 57389 1 3 1 127767 2
119.9.107.180 57501 1 1 28123 156500 2
222.39.152.147 57498 32768 1 1 100267 3
123.151.42.61 58921 1 1 10 49 33
113.108.21.16 61942 1 1 20 208 95

Jan
2015

Jan
2016

Jan
2017

Jul Jul Jul

Percentage of Time Elapsed

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f
Te

le
sc

op
e

IP
s s

ca
nn

ed

46.244.10.94
80.82.64.213
107.154.64.10
113.108.21.16
116.66.207.130
119.9.107.156
119.9.107.180
122.224.153.110
123.151.42.61
155.94.254.133
162.244.28.23
195.19.11.226
195.168.26.64
212.90.62.209
222.39.152.147

Fig. 10. Progression of the horizontal and block scans over time.

few days. Figure 10 shows the percentage of the IPs a scanner
has tested in the telescope as a function of time over the
observation period. As we can see in the graph, every scanner
only performs one scan which is finished in one sweep. As
soon as the scan is completed, these addresses never come
back during the entire three year period, but every couple of
months another IP address again targets our range.

C. Fingerprinting

Starting point for our investigation of port 0 was the
widespread belief that these unusual packets were meant to
fingerprint operating systems. Over the course of the analysis
in this section we have however seen the bulk of the traf-
fic could be attributed to backscatter from denial-of-service
attacks and port scanning activities. Still, we do find that
there is a small yet interesting amount of operating system
fingerprinting happening on port 0.

While the Gobbler had proposed fingerprinting based on
TCP and UDP packets from and to port 0, it had based
its method on plain packet headers, in other words aside
from the port number the packets did not contain any header
information which would be illegal or otherwise unusual.
In order to test whether operating systems did indeed react
differently to corner cases in TCP header values in com-
bination with port 0, we reran our fingerprinting study for
a variety of operating systems for all possible header flag
combinations. This would hence include flag combinations

Fig. 11. Distribution of TCP header flag combinations for P1, P2, and P3.

which are undefined or prohibited, and would thus be well
suited to trigger customized and unusual responses from OS
implementations. Given the 8-bit flag header of TCP, this
resulted to a total of 256 combinations per probing method,
thus yielding 1028 signatures per operating system. Given this
extended test set, a set of 52 flag combinations stand out as
they trigger clear differences between almost all OSes tested.
Table III shows a small set of five TCP probes from port 0 to an
open port (which the tool named P3) for different TCP flags
from the total list of all variations. Our comprehensive fin-
gerprinting not only allows a differentiation between Ubuntu
Linux and Windows as the original tool was able to, but also
to distinguish between old and more recent versions of them.
Our finding shows that fingerprinting using port 0 is indeed
possible. Compared to other fingerprinting techniques however
the obtained knowledge is best used during initial exploration,
especially considering that port 0 is hardly monitored and
easily escapes detection.

When we look at the TCP flags in use across all port 0
traffic as shown in figure 11, we find that for the TCP traffic
from port 0 to port 0 (in Gobbler’s terminology P1) and TCP
from port 6= 0 to port 0 (P2) no unusual combinations are
actually used excessively in practice. This is however different
for P3/P4, a TCP packet from port 0 to an open/closed port,
for which a handful of TCP flag combinations stand out from
the crowd. Interestingly, the flag combinations that are targeted
above average in the wild have for the top 20 flags a significant
overlap of 18/20 with those which in our experiments elicited
a different between operating systems, thus most adversaries

8

TABLE III
SELECTION OF ENTROPY-RAISING FINGERPRINTING PROBES, HERE FOR DIFFERENT UBUNTU LINUX AND WINDOWS VERSIONS.

Probe TCP flags Ubuntu 04.10 Ubuntu 10.04 Ubuntu 12.04 Ubuntu 16.04 Win 7 Win 95 Win XP
P3 3 Y — 18 Y — 18 N — N — Y — 20 Y — 18 Y — 18
P3 96 N — N — N — N — Y — 20 Y — 20 Y — 20
P3 202 Y — 18 Y — 82 Y — 82 Y — 82 Y — 18 Y — 18 Y — 18
P3 203 Y — 18 Y — 82 N — N — Y — 20 Y — 18 Y — 18
P3 235 Y — 18 Y — 82 N — N — Y — 20 Y — 18 Y — 18

646 in same
/16 subnet

32 in same
/16 subnet

100 in same
/16 subnet

177 in same
/16 subnet

221 in same
/16 subnet

43 in same
/16 subnet

204 in same
/16 subnet

411 in same
/16 subnet

131 in same
/16 subnet

9 in same /16
subnet

1973 IPs in same country

230 IPs of same ISP

1744 IPs of same ISP

Fig. 12. Network- and geographic relationships of 1973 IP addresses
participating in a coordinated fingerprinting activity.

appear not to blindly use TCP flags or fuzz remote hosts but
seem to be very selective in what they do. To further support
this hypothesis, direct interaction with the adversaries scanning
our systems is required, mimicing the reponses of the tested
OSes. The low activity pattern for suspicious actors however
means that a multi-year capture period is required for sufficient
data, this is currently underway and left for future work.

When we select the top 20 flag combinations and group
those IPs together which utilize a similar or identical set
of methods, sets of clusters emerge that appear to perform
directed and very informed OS fingerprinting, accounting for
about 6% of all IP addresses involved in port 0 communication.

Especially noteworthy is the largest of these clusters. Com-
promised of approximately 2000 source IP addresses, the
source IPs all send the same sets of probes, target the same
destination port and use 17 out of the 20 distinctive fingerprint
combinations. The activity of the cluster is comparatively
stealthy as it only sends 0.069% of all packets in the dataset,
which is distributed across all cluster members. Taken to-
gether these hosts however display a remarkable amount of
coordination, as out of the 9765 probes with which it targets
our telescope, 8908 probe packets are unique and together
complement each other within a systematic survey of our
systems. Figure 12 shows the location of the IP addresses from
the largest fingerprinting cluster with respect to their network
addresses. The 1973 source IP addresses logically fall into ten
/16 networks, 8 of which belong to network provider A, 2 to
a network provider B, both located in the same country.

VI. CONCLUSION

In this paper we have investigated the curious case of port 0
traffic, packets that either originate from or are sent to port 0
which under normal circumstances should never happen. The
fact that they do occur means that they are explicitly crafted

in specially designed programs to bypass the regular network
stack, an effort the program designer will only undertake
to accomplish a specific purpose. While to date almost no
systematic evaluation of port 0 traffic has been performed,
forum and blog posts associate it with OS fingerprinting based
on a post that proposed the technique in the early 2000s.

Based on a 3 year trace, we have systematically analyzed
the characteristics of port 0 traffic. We could demonstrate that
fingerprinting based on the methods proposed some 15 years
ago is entirely absent, but that the idea of eliciting corner
cases was experimentally shown to be possible. We could
empirically show that some use it in the wild efficiently.

The curious case of port 0 is however more nuanced, as
we find that port 0 traffic is also and actually predominantly
used for purposes other than OS fingerprinting. A large use
case in terms of traffic volume are DoS attacks, which occur
comparatively rarely but when they do are large in magnitude.
Nearly half the entire port 0 traffic is however due to the
activities of network scanners, all of which exist and utilize
port 0 as a source port to scan networks for connected hosts
and open ports. We find the presence of high profile scanners,
which systematically probe tens of thousands of IPs in our
network telescope and have enough resources to complete the
process in a matter of days, only to never return.

Port 0 pertains to a small percentage of network traffic, and
protection can be easily gained by dropping all traffic with
this port. Nonetheless this anomalous traffic teaches a valuable
lesson: It is important to stay aware and vigilant with respect to
assumptions that are made. Only because it shouldn’t happen
does not mean it does not do so in practice.

REFERENCES

[1] IETF, “RFC 1700 - assigned numbers,” 1994.
[2] S. Jones, “Port 0 OS fingerprinting,” Nmap mailing list, 2003.
[3] L. Constantin, “Spike in traffic with TCP source port zero has some

researchers worried,” in PCWorld, 2013.
[4] R. Havelt and W. G. Henrique, “Earth vs. the giant spider: Amazingly

true stories of real penetration tests,” DEFCON 19, 2011.
[5] G. Lyon, “Nmap security scanner.” https://nmap.org/, 2018.
[6] M. Zalewski, “p0f passive fingerprinter.”

http://lcamtuf.coredump.cx/p0f3/, 2016.
[7] O. Arkin and F. Yarochkin, “Xprobe v2.0 a “fuzzy” approach to remote

active operating system fingerprinting,” tech. rep., The Sys-Security
Group, 2002.

[8] E. Bou-Harb, N.-E. Lakhdari, H. Binsalleeh, and M. Debbabi, “Multidi-
mensional investigation of source port 0 probing,” Digital Investigation,
2014.

[9] N. Blenn, V. Ghiette, and C. Doerr, “Quantifying the spectrum of denial-
of-service attacks through internet backscatter,” in ARES, 2017.

[10] E. Wustrow, M. Karir, M. Bailey, F. Jahanian, and G. Huston, “Internet
background radiation revisited,” in SIGCOMM IMC, pp. 62–74, 2010.

[11] V. Ghiette, N. Blenn, and C. Doerr, “Remote identification of port scan
toolchains,” in IFIP NTMS, 2016.

9

