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Abstract—With the increasing complexity of communication
networks and the resulting threat of disruptions of mission
critical services due to manual misconfiguration, automated ver-
ification is becoming a key element in today’s network operation.
In particular, it has recently been shown that a polynomial-
time, automated verification of the policy-compliance of network
configurations is possible for the important class of MPLS
networks, even under failures. However, this approach, while
providing polynomial runtimes, is still fairly slow in practice
and only allows to detect but not fix configurations.

This paper proposes a novel approach to speed up the analysis
of network properties as well as to suggest configuration changes
in case a network property is not satisfied. More specifically, our
solution, DeepMPLS, allows to predict if a network property is
satisfiable, and if not, aims to present a counter example. We
also show that DeepMPLS may be used to propose new prefix-
rewriting rules in the MPLS configuration in order to make it
satisfiable. DeepMPLS can hence be used for fast predictions,
before more rigorous analyses are performed.

DeepMPLS is based on a new extension of graph-based neu-
ral networks. Our prototype implementation, using Tensorflow,
achieves low execution times and high accuracies in real-world
network topologies.

I. INTRODUCTION

As communication networks are increasingly used for crit-
ical services such as health monitoring, power grid manage-
ment, or disaster response [1], their uninterrupted availability
is more important than ever before. However, the increasing
dependability requirements stand in stark contrast to today’s
manual approach to operate networks with often very complex
configurations.

Automated approaches can greatly improve the trustwor-
thiness of networks and hence reliability, by allowing to
test a large number of network configuration for their pol-
icy compliance. Yet, many network verification tools still
require a super-polynomial runtime to test basic connectivity
properties [2, 3, 4]. Testing whether network configurations
are policy compliant even under failures, introduces another
combinatorial complexity.

It was recently shown that for the widely deployed MPLS
networks, a polynomial-time “what-if analysis” is possible [5]:
an automata-theoretic approach, leveraging a connection to
prefix rewriting systems, can be used to test important prop-
erties such as connectivity (can two endpoints reach each
other?), loop-freedom (may packets be forwarded in circles?)
or waypoint enforcement (is traffic always going through the

firewall?), even under failures. While this is promising, the
runtime in practice is still relatively high (in the order of
an hour even for relatively small yet complex networks):
essentially, the approach in [5] requires the construction of
a large pushdown automaton (PDA), based on the network
configuration, the routing tables, as well as the query; the PDA
is then solved using reachability analysis. While PDA is still
polynomial in size, it can quickly grow to millions of nodes
and transitions in realistic networks, for which reachability
has to be solved for each query. Furthermore, the approach
can only be used to verify properties, but not to repair
configurations, e.g., to re-establish invariants.

This paper is motivated by the question whether it is
possible to build upon these recent results while exploiting
opportunities for speeding up verification as well as to support
an automated fixing of configurations. This is challenging also
because unlike other networks, MPLS supports arbitrary (and
in principle unbounded) header sizes: additional labels are for
example pushed to route around railed links. Our work is also
motivated by a novel approach which seems to fit the specific
problem particularly well: Graph Neural Networks [6, 7] have
already been applied successfully in many contexts, including
molecule analysis [8, 9] or jet physics [10], but despite being
a natural choice for our problem, its potential is largely
unexplored.

A. Our Contributions

This paper presents a novel approach to speed up veri-
fication and synthesis of the policy-compliance of network
configurations. At the heart of our our tool, DeepMPLS, lies
a new extension of graph-based neural networks: leveraging
deep learning, DeepMPLS allows to predict counter examples
(i.e., “proofs” or witness traces) to specific network properties
(or queries), which can be verified fast. In fact, in this
paper we show that DeepMPLS’s probabilistic approach may
even be used for synthesis: it has the potential to predict
which MPLS rules should be added, in order to re-establish
certain properties. The tool may hence overcome the need to
perform more rigorous and time-consuming analyses in many
scenarios.

Our experiments, using our TensorFlow prototype imple-
mentation, show promising results: on real network topologies,
DeepMPLS can achieve a high degree of accuracy with fast
execution time.ISBN 978-3-903176-08-9 ©2019 IFIP
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As a contribution to the research community and in order to
ease future research, our dataset and experimental data used
in this paper is also available online.

B. Scope and State-of-the-Art

We are concerned with the correct, i.e., policy-compliant
configuration of widely deployed MPLS networks. In par-
ticular, we are interested in predicting and fixing properties
of MPLS networks which are described as a regular query
language, as it is also used in the state-of-the-art P-Rex tool [4]
motivating our paper. To this end, a formal model for MPLS
networks is required. Before we sketch the model (see [4] for
more details), we briefly review some basic concepts of MPLS
networks.

In a nutshell, MPLS networks operate between Layer 2
and Layer 3 and rely on tunnels across a transport medium.
Forwarding decisions are based on the top-of-stack label: an
MPLS node (i.e., a.k.a. label switch router a.k.a. transit router)
uses the top label of the label stack included in the packet
header, to determine the next hop on a Label Switched Path
(LSP). On this occasion, the old label can be replaced with
a new label before the packet is routed forward. An MPLS
node serving as label edge router acts as the entry and exit
point for the network: a label edge router pushes an MPLS
label onto an incoming packet resp. pops it from an outgoing
packet.

More specifically, upon receiving a packet and depending
on the content of the top of the stack label, an MPLS node
performs a swap, push or pop operation on the packet label
stack: In a swap operation the label is swapped with a new
label, and the packet is forwarded along the path associated
with the new label; in a push operation a new label is pushed
on top of the existing label, encapsulating the packet in another
layer of MPLS and introducing hierarchical routing; and in a
pop operation the label is removed from the packet. If the
popped label was the last on the stack, the packet leaves the
MPLS tunnel.

In order to deal with failures, MPLS includes a local
protection mechanism allowing to protect a label switched path
by a backup path. This mechanism is based on the recursive
pushing of labels, i.e., tunnels, around a failed link.

Our work is motivated by the goal to predict and fix
properties according to a natural regular query language [4]. A
(reachability) query is of the form < a > b < c > k where
the regular expression a describes the (potentially infinite) set
of allowed initial label-stack headers, the regular expression
b describes the set of allowed routing traces through the
network, and the regular expression c describes the set of label-
stack headers at the end of the trace. Finally, k is a number
specifying the maximum allowed number of failed links.

This query needs to be answered for a given MPLS
network whose configuration can be described as a tuple
N = (V, I, L,E, τ): V is the set of routers, I the set of
all interfaces in the network connected by links E, L the
set of label stack symbols and τ the routing table (including
conditional failover rules).

P-Rex allows to answer the following question in polyno-
mial time: is there a set of failed links F with |F | ≤ k
for a given network configuration N = (V, I, L,E, τ) such
that there results a route (i.e., trace) satisfying the regular
expression?

Towards this goal, P-Rex automatically collects the current
routing tables, and given them as well as the network and
the query, constructs a pushdown automaton (PDA) on which
reachability analysis is performed using the Moped tool. More
specifically, the initial header and final header regular expres-
sions of the query are first converted to a Nondeterministic
Finite Automaton (NFA) and then to a Pushdown Automaton
(PDA). The path query is converted to an NFA, which is
used to augment the PDA constructed based on the network
model. The three PDAs are combined into a single PDA which
simulates the automata running in lockstep and can then be
queried.

P-Rex then not only provides a yes or no answer, but
also a witness, if it exists. Furthermore, P-Rex additional
optimizations such as “top of stack reduction”, reducing the
number of transitions in the PDA.

Thus, the challenge considered in this paper is to not only
reduce the runtime further (which keeping the support for
arbitrary header sizes and multiple link failures), using a novel
methodology, but also to again “synthesize” a witness for each
query. In particular, we would like to improve the runtime for
“hard queries”: to this end, we propose a methodology which
considers the size of the PDA as a measure of complexity

C. Organization

The remainder of this paper is organized as follows. In
Section II, we present our approach and solution in detail.
Section III describes the dataset used for training and evaluat-
ing our approach, and Section IV reports on our experimental
results. After reviewing related work in Section V, we con-
clude our work in Section VI and discuss future work.

II. DEEPMPLS BASED ON GRAPH NEURAL NETWORK

This section presents our approach, DeepMPLS, supporting
the fast testing and synthesis of MPLS network configura-
tions. The main idea behind DeepMPLS is to map network
topologies to graphs, which can then be processed using neural
networks. Our graph representation has nodes representing
routers, physical interfaces of routers and additional nodes
used for describing MPLS configurations and queries. Edges
between the nodes represent physical links in the topology,
as well as the interactions between a MPLS configuration
and elements of the network topology. Those graphs are then
used as input for a neural network architecture able to process
general graphs.

Compared to other representations used in machine learning
which require to summarize properties of a topology in a
vector of fixed size, our approach is not limited by the size of
the topology or its configuration. This means that an accurate
description of the complete topology and its configuration can
be passed to the neural network.
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A. Leveraging Graph Neural Networks

The neural network architecture used by DeepMPLS is
based on an extension of Graph Neural Networks [6, 7]. In the
following, let G = (V, E) be an undirected graph with nodes
v ∈ V and edges e ∈ E . Let iv and ov represent respectively
the input features and target values of node v.

Graph Neural Networks rely on a message passing concept:

h(t)
v = f

({
h(t−1)
u

∣∣∣ u ∈ NBR(v)
})

(1)

ov = g
(
h(t→∞)
v

)
(2)

h(t=0)
v = init (iv) (3)

with h
(t)
v corresponding to the hidden representation of node

v at time t, f(·) a function which aggregates the hidden
representations, NBR(v) the set of neighboring nodes of v,
g(·) a function transforming the final hidden representation to
the target values, and init(·) an initialization function for the
hidden representations.

The concrete formulations of the aggr and out functions
are feed-forward neural networks (FFNN), with the addition
that aggr is the sum of per-edge terms [7], such that:

h(t)
v = aggr

({
h
(t−1)
NBR(v)

})
=

∑
u∈NBR(v)

f
(
h(t−1)
u

)
(4)

with f a FFNN. init is modeled as a one-layer FFNN which
produces a vector respecting the dimensions of the hidden
representations.

Gated Graph Neural Networks (GGNN) [11] were recently
proposed as an extension of GNNs to improve their training.
This extension implements f using a memory unit called
Gated Recurrent Unit (GRU) [12] and unrolls Equation (1) for
a fixed number of iterations. This simple transformation allows
for commonly found architectures and training algorithms for
standard FFNNs as applied in computer vision or natural
language processing.

Formally, the propagation of the hidden representations
among neighboring nodes for one time-step is formulated as:

x(t) = H(t−1)A + ba (5)

z(t) = σ
(
Wzx

(t) + UzH
(t−1) + bz

)
(6)

r(t) = σ
(
Wrx

(t) + UrH
(t−1) + br

)
(7)

H̃(t) = tanh
(
Wx(t) + U

(
r(t) �H(t−1)

)
+ b

)
(8)

H(t) =
(

1− z(t)
)
�H(t−1) + z(t)v � H̃(t) (9)

where σ(x) = 1/(1+e−x) is the logistic sigmoid function and
� is the element-wise matrix multiplication. Wz,Wr,W and
Uz,Ur,U are trainable weight matrices, and ba,br,bz,b are
trainable bias vectors. A ∈ R|V|×|V| is the graph adjacency
matrix, determining the edges in the graph G.

Equation (5) corresponds to one time-step of the propa-
gation of the hidden representation of neighboring nodes to
node v, as formulated previously for GNNs in Equations (1)
and (4). Equations (6) to (9) correspond to the mathematical

formulation of a GRU cell [12], with Equation (6) representing
the GRU reset gate vector, Equation (7) the GRU update gate
vector, and Equation (9) the GRU output.

B. Application to MPLS Network Analysis

In order to tailor the above concepts to MPLS network
verification and synthesis, we need a transformation of net-
work topology and MPLS configuration to a graph. The
transformation process we propose in this paper is illustrated in
Figures 1 to 4, where the MPLS network depicted in Figure 1
is transformed into a graph.

v1 v2

v3 v4

50 51

60|51

61|51

51

52

Figure 1: Example MPLS network. In case the link between
v1 and v2 fails, a backup tunnel (v1, v3, v4) has is used around
the failed link.

Each router v ∈ V in the network is represented as a node
in the graph G. Each network interface i ∈ Iinv ∪ Ioutv is also
represented as a node, connected via an edge to its router.
Links in the topology E are represented as edges connecting
the two corresponding network interfaces.

As presented in Figures 2 and 3, the MPLS configuration of
each router is also encoded as nodes and edges in the graph.
Each MPLS label l ∈ L is represented as a node. The routing
table of each router τv : Iv×L→ (2Iv×Op∗

)
∗

is represented as
a set of rules. Each rule is represented as a node in the graph,
connected the nodes representing its input interface i ∈ I as
well as its input label l ∈ L. The actions o ∈ Op associated
to a rule are also represented as nodes, connected via edges
in case multiple actions are to be performed for a given rule
as illustrated in Figure 3. MPLS actions with label parameters
such as swap or push are connected to their respective label
node. The last action associated to a rule is connected to its
output interface.

Queries are also encoded as nodes in the graph as illustrated
in Figure 4. In this paper, we will assume the same notation
as [4] for specifying queries, namely the regular expressions
which are defined over an alphabet Σ and use the abstract
syntax

a ::= s | . | [ˆs1, . . . , sn] | a1 + a2 | a1a2 | a∗

where
s is a symbol from Σ,
. is a wildcard for any symbol from Σ,

[ˆs1, ..., sn] stands for any symbol s ∈ Σ r {s1, . . . , sn},
a1 + a2 is the choice between a1 and a2,
a1a2 is the concatenation of a1 and a2, and
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v1 v2

v3 v4

Rule Swap50 51
Input label Label for SwapAction

Input
interface

Output
interface

Figure 2: Encoding of network topology and a MPLS rule for
v1 as graph.

v1 v2
Rule

Swap

Push

50

51

60

Input label

Label for Swap

Label for Push

Figure 3: Encoding of network topology and a second MPLS
rule for v1 as graph.

a∗ is the concatenation of 0 or more occurrences
of a.

The set of all regular expressions over Σ is denoted by
Reg(Σ) and we assume a standard definition of the language
Lang(a) ⊆ Σ∗ that is described by a regular expression a.

We follow an approach inspired by the McNaughton-
Yamada-Thompson algorithm [13] which transforms a regular
expression into an equivalent nondeterministic finite automa-
ton. The different symbols of the regular expression of a
query are represented as nodes, with edges representing their
relationships. In case a symbol corresponds to a MPLS label or
a router in the network, we reuse the node which was already
defined in the graph. Wildcard symbols are represented as
special nodes in the graph as illustrated in Figure 4.

v1 v2

50 52�ery .*
<50> v1 .* <52>

Initial label Final label

Figure 4: Encoding of network and query as graph.

Relationship between symbols such as combinations (a1 +
a2) are represented using edges in the query representation, as
illustrated in Figure 5.

�ery

50

51

v1 . v2 .

<50+51> v1 . v2 <.>

Initial labels Final label

Figure 5: Encoding of more complex query as graph.

Each node in the graph may have input features describing
characteristics of the node. In our case, nodes are mainly
represented by their type, encoded as categorical value. We
define the 12 following types for the nodes:
• Elements of the network topology: Router, Interface;
• Elements of the MPLS configuration: Rule, Label, Push

Action, Swap Action, Pop Action;
• Elements of the query and the regular expression: Query,

Label Wildcard, Label Dot, Router Dot, Router Wildcard.
Additionally to the type, the node representing a query has

an additional input feature corresponding to the k parameter.
Edges in the graph have no input features and represent only
the relationship between nodes.

For training of the graph neural network, we use different
output features depending on the prediction which is required.
We define the three following prediction tasks:
Satisfiability Heuristic for verifying if a query is satisfiable.
Routing trace Heuristic for generating a trace of routers

which match a satisfiable query.
Partial synthesis Synthesis of an MPLS configuration in or-

der to satisfy a query.
Example queries for those three tasks are detailed later in
Section III.

For the Satisfiability task, a classification task is defined
where the query node is classified in two categories (true or
false) in case the query is satisfiable or not. The training is
done using a softmax cross entropy loss on the query node.

Similarly, for the Routing trace task, router nodes are
classified in two classes, namely if the router is part of the trace
or not. Since we are interested in the per-topology prediction,
namely correctly classifying the router nodes in the graph, the
training is done using a graph-wide sigmoid cross entropy loss.

Finally for the Partial synthesis task, missing rule and action
nodes are added in the graph with the goal of connecting them
via edges to the appropriate router, label and interfaces in
order to satisfy a query. This case is an edge prediction task.
Predicted edges in the graph are then used for reconstructing
the MPLS prefix-rewriting rules. A similar loss function than
for the Routing trace task is used here.

C. Complexity Analysis
In order to understand the scalability of the model presented

in Section II-A, we evaluate the complexity of the algorithm.
According to the mathematical operations illustrated earlier,
the runtime of one loop unrolling of the GNN corresponds to
the sum of the following terms:
• Per-node operations, namely Equations (6) to (9), which

scales linearly in execution time with the number of
nodes, namely O(|V|);
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• The propagation of hidden node representations defined
in Equations (1) and (5), which scales linearly with the
number of edges, namely O(|E|) if sparse operations are
used (i.e. using the graph’s adjacency list), or quadrat-
ically to the number of nodes if the graph’s adjacency
matrix is used instead O(|V|2).

In order to achieve good accuracy, the recursion from Equa-
tion (1) is unrolled for a fixed number of iterations according
to D, the diameter of the analyzed graph. In total, the runtime
complexity is summarized as: O (D(|E|+ |V|)).

III. METHODOLOGY AND DATASET GENERATION

In order to train our neural network architecture, we used the
Topology Zoo [14] – a collection of over 250 networks used
in real-file – as a basis for generating network topologies.
Each network topology was either taken as is or randomly
modified, either by removing a router, or by adding a router
and connecting it to a set of randomly chosen routers.

Based on those network topologies, MPLS configurations
were generated for each network topology. With a given
probability, MPLS tunnels were constructed between randomly
selected pairs of routers in the network using dedicated MPLS
labels. Additionally to the tunnel corresponding to the shortest
path in the topology, a random number of additional backup
tunnels were also generated following different paths in the
network when possible. MPLS label stacking was used in
for those backup tunnels, following common practice for
automatic fail-over.

For generating queries, we randomly generate regular ex-
pressions as follows, with li representing the input label, lo to
output label, ri the input router, ro the output router, and k
the maximum allowed number of failed links:
• < li > ri < lo > k is satisfied if a packet with label li,

crosses router ri, and exists with label lo;
• < li > ri .

∗ ro < lo > k is satisfied if a packet with label
li entering at router ri, traverses an unknown number of
other routers, and exists from router ro with label lo;

• < li > . .∗ ro < lo > k is satisfied if a packet with label
li enters the network, traverses at least one router, and
exists from router ro with label lo;

• < .∗ > ri .
∗ ro < lo > k is satisfied if there is a path

from router ri to ro where the output label is lo;
• < li > ri .

∗ ro < .∗ > k is satisfied if a packet with label
li entering at router ri, traverses the network, reaches
router ro with label lo.

Those queries, inspired by the ones presented in [4], mainly
focusing on reachability.

Routers and labels are either select randomly in the set of
available routers V and labels L – resulting in most cases
in non-satisfiable queries – or they are selected such that
the query is satisfiable. In order to generate those satisfiable
queries, we construct a so-called MPLS traversal graph for
each network topology. In such a directed tree, each node
is a tuple of the form (input label , router , output label(s))
corresponding to the result of the MPLS routing table of each

router in the topology. Based on those MPLS traversal graphs,
satisfiable queries can be generated by randomly selecting a
node in the graph and traversing it randomly. Finally the k
parameter of the query is generated randomly following a
discrete uniform distribution.

The satisfiability of each generated query is tested using
P-Rex [4], which relies on the construction of a push-down
automaton based on the query as well as the network. Con-
cretely, P-Rex generates one big pushdown automaton (PDA)
based on the regular expressions of the initial header and final
header defined by the query (which are first converted to non-
deterministic finite automata) as well as the nondeterministic
finite automata describing the path query.

Typically, the larger the PDA, the higher is the runtime
of reachability analysis, and accordingly, in our methodology
in the following, we will interpret the size of the PDA as
a measure of complexity. Accordingly, for each evaluation
of P-Rex, the size of the generated push-down automaton
is recorded and will serve as a numerical measure of the
complexity of the query in Section IV.

P-Rex can directly be used for defining the required outputs
of the Satisfiability and Trace tasks. For the Partial synthesis
task, we first randomly generate a satisfiable query and ran-
domly remove a maximum of two MPLS prefix-rewriting rules
such that the query is not satisfiable anymore. The rules which
trigger the loss of satisfiability are the rules that DeepMPLS
has to predict.

In total, more than 90.000 topologies and queries were
generated. Table I summarizes different statistics about the
generated dataset. The dataset is available online1 to reproduce
the results.

Parameter Min Max Mean Median

# of routers 3 30 10.6 10
# MPLS labels 8 689 225.3 174
# MPLS rules 8 795 319.5 248
Size of push-down automaton 17 37006 5441.2 2692
# of nodes in analyzed graph 36 2333 914.4 713
# of edges in analyzed graph 48 4000 1615.4 1261

Table I: Statistics about the generated dataset.

IV. EVALUATION

We evaluate in this section DeepMPLS on the three pre-
diction tasks described in Section II-B against our dataset
of topologies and queries. Following current best practices
for machine learning, the dataset was randomly split in two
parts: training (80 % of the topologies) and test (20 % of the
topologies). The neural network was trained on the training
dataset, while the evaluation and metric figures reported later
in this section were computed using the test dataset. Due to
the lack of availability of other topologies and their MPLS
configuration, no validation dataset was used.

Via a numerical evaluation, we illustrate the accuracy
and execution time of DeepMPLS and highlight its usability

1https://github.com/fabgeyer/dataset-networking2019
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for practical use-cases. The performances are also compared
against a simpler heuristic based on a random walk in the
MPLS network, and random prediction of MPLS rules to add
to the configuration.

A. Technical Implementation

We implemented DeepMPLS using TensorFlow. For the
purpose of computational efficiency, sparse operations are
used for passing of hidden representation between neighboring
nodes. Table II illustrates the size of the different layers of the
neural network used for the numerical evaluation.

The recursion from Equation (1) was unrolled for a fixed
number of iteration according to the diameter of the analyzed
graphs. A detailed evaluation of the importance of this number
of iterations will be performed in Section IV-F.

Layer NN Type Size

init FFNN (14, 80)w + (80)b
Memory unit GRU cell (160, 160)w + (160, 80)w + (240)b
Edge attention FFNN (160, 1)w + (1)b
out hidden layers FFNN 2× {(80, 80)w + (80)b}
out final FFNN (80, 2)w + (2)b

Total: 53 124 parameters

Table II: Size of the different layers used in the GGNN.
Indexes represent respectively the weights (w) and biases (b)
matrices.

B. Random Walk Baseline

In order to have a baseline for evaluating the accuracy of
the predictions of the neural network for the Satisfiability and
Trace tasks, we introduce here a simple heuristic based on
random walks in the MPLS network.

This heuristic selects a starting router and label in the
topology according to the first elements of the query, and
traverses the network according to the MPLS prefix-rewriting
rules until the destination specified by the query is reached.
In case multiple rules apply to a given input label, a random
rule is selected and its prefix-rewriting actions are applied. If
the random walk was not successful, another random walk is
performed until a maximum number of walks of 10 is reached.

Since our dataset also contains queries which do not explic-
itly specify the starting label or starting node, as explained in
Section III, a random starting point in the network is selected
which matches the explicit parts of the query in those cases.

On the generated dataset, this heuristic was able to predict
the satisfiability of a query with an accuracy of 79.2 %. As
illustrated later in Figure 8, this accuracy decreases with the
complexity of the query.

C. Neural Network Training

We first evaluate the training of DeepMPLS for the Satisfi-
ability task, namely prediction of the satisfiability of a query
given an topology and MPLS configuration. Figure 6 illustrates
the accuracy of DeepMPLS during training according to the
number of training iterations, on both the training and the

test dataset. Each training iteration corresponds to 16 ana-
lyzed topologies and queries from the training dataset, i.e.
their representations as graphs. After 2500 training iterations,
DeepMPLS reaches the accuracy of the baseline on the test
dataset, before converging after around 25 000 training itera-
tions.
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Baseline (mean)

Training iterations (×103)
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Test

Figure 6: Training of DeepMPLS for prediction of query
satisfiability and comparison against baseline.

Based on this first training, we retrain the same neural
network and same set of weights for the Routing trace task,
namely prediction of the routing trace of a query in case a
query is satisfiable. This technique, also known as knowledge
transfer, is often used in deep learning in order to accelerate
training.

Figure 7 illustrates the accuracy of DeepMPLS on this
second task according to the number of training iterations.
Since the neural network was already pre-trained on the first
task, this second training requires fewer iterations in order to
reach good prediction accuracy. Less than 1000 iterations are
required before convergence of the accuracy.
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Figure 7: Training of DeepMPLS for trace generation using
pre-trained weights.

The same approach of knowledge transfer was used for
training DeepMPLS against the Partial Synthesis task, result-
ing in faster training convergence, with a training curve similar
to the one illustrated in Figure 7.

D. Model Performance

We next assess the performance of DeepMPLS in the three
different tasks presented in Section II-B.
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1) Satisfiability task: We evaluate here the performance of
DeepMPLS at predicting if a query is satisfiable or not. We
use the prediction accuracy, precision and recall as metrics for
evaluating the model.

Figures 8 and 9 illustrate the accuracies, precision and recall
of DeepMPLS and the baseline. In average, DeepMPLS is able
to predict the satisfiability of a query with an accuracy of
95.4 %, a precision of 97.9 %, and a recall of 89.2 %. While
the performance of the baseline drops with the size of the
push-down automaton, DeepMPLS still performs well on those
more complex cases.
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Figure 8: Accuracy of DeepMPLS and baseline against size
of push-down automaton. Bands indicate the variance of the
accuracy according to the push-down automaton sizes.
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Figure 9: Precision and recall of DeepMPLS and baseline
against size of push-down automaton.

2) Routing trace task: We evaluate here the performance
of DeepMPLS at predicting the routing trace if a query is
satisfiable. DeepMPLS was able to classify the routers with an
overall accuracy of 92.8 % and a precision of 91.5 %. If we
redefine the accuracy as the correct prediction of all routers
in a given topology, this per-topology accuracy of DeepMPLS
is of 68.2 % in average.

Figure 10 illustrates this per-topology accuracy, with the
detail of true positives and true negative. DeepMPLS has good
performance for the true negatives with an average of 99.4 %,
while it reaches only a average of 85.6 % for the true positives.
This means that routers in the true routing trace are sometimes
missing in the prediction, but routers absent from the true
routing trace are rarely selected (i.e. low false negative rate).

3) Partial synthesis task: Finally, we evaluate here the
accuracy of for the Partial synthesis task, namely predicting
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Figure 10: Per-topology accuracy of DeepMPLS with details
on true and false positives.

which additional rules needs to be installed in a network
in order to satisfy a query. Since the baseline described in
Section IV-B cannot be applied here, we define a new one for
this task. This new baseline randomly selects the requested
number of edges in the DeepMPLS graph model following a
simple random sampling without replacement.

Figure 11 illustrates the detailed per-topology accuracy of
DeepMPLS and the baseline. In average, DeepMPLS is able
to predict the correct edges with an accuracy of 45.9 %, while
the random baseline predicts them with an average accuracy
of only 0.1 %.
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Figure 11: Per-topology accuracy of DeepMPLS and baseline.

E. Execution Time

In order to understand the practical applicability of
DeepMPLS, we evaluate in this section its execution time in
different settings. This part is a complement to the complexity
analysis presented in Section II-C. We define and measure the
execution time per network as the total time taken to process
the network and a satisfiability query, without including the
startup time or the time taken for initializing the network data
structures.

Since the neural network can be evaluated on either CPU or
GPU, we evaluated DeepMPLS on both platforms. A Nvidia
GTX 1080 Ti was used for the measurements on GPU, and
an Intel Xeon Gold 6130 CPU was used for the ones on CPU.
The same CPU was used for the execution time measurement
of P-Rex.

Figure 12 illustrates the different execution times and
compares DeepMPLS against P-Rex. For the three different
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evaluations, we note a linear relationship between size of the
push-down automaton – and hence size of the analyzed graph –
and the execution time. DeepMPLS is one order of magnitude
faster than P-Rex when running on CPU, and two order of
magnitudes faster on GPU, mainly due to the better ability
of GPUs of parallelizing the numerical operations used in
neural networks. Those figures illustrate that DeepMPLS show
promising applicability due to fast computation times.
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Figure 12: Execution time of DeepMPLS on CPU and GPU
compared against P-Rex for the Satisfiability task.

F. Impact of Number of Iterations

We described in Section II-A that the GNN requires multiple
evaluations of the recurrence defined in Equation (5) in order
to propagate the hidden representations across multiple hops.
We evaluate in this section the relationship between the num-
ber of iterations and the prediction accuracy of DeepMPLS.

Numerical results are illustrated in Figure 13 for the Sat-
isfiability task. As the number of iterations increases, the
prediction accuracy also increases. Convergence is reached
after approximately 16 iterations. Since this parameter directly
influences the execution time of DeepMPLS, a proper value
has to be chosen in order to have a good trade-off between
accuracy and computational complexity.
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Figure 13: Impact of the number of iterations of Equation (5)
on the prediction accuracy of the Satisfiability task.

V. RELATED WORK

Motivated by the problems arising from the complexity
of manual network operations especially under link fail-
ures [15, 16], much progress has been made over the last
years towards more automated network operation and verifi-
cation [2, 17, 18, 19, 3, 20, 21]. Existing network verification

tools are typically fed with some model or configuration of
the control plane and/or the data plane, and some query. While
some tools are specific to a certain protocol, e.g., BGP [22],
others are generic [3]. A well-known tool is NetKAT [2] which
supports static verification of reachability, loop-freedom or
waypoint enforcement, of the network configuration. Other
well-known tools include HSA [3] (which is based on a
geometric model from the packet headers ignoring protocol-
specific meanings), VeriFlow [20] (acting as a layer between
the network and an SDN controller), or Anteater [18] (based
on a SAT solver).

In contrast to these works, we in this paper focus on
MPLS networks, which are in wide use [23]. In particular,
we are motivated by a recent line of research which showed
that MPLS networks can be verified in polynomial-time,
using a connection to prefix rewriting systems and automata
theory [5]. The resulting tool, P-Rex [4], relies on a natural
query language based on regular expressions which we also
adopt in this paper. However, while efficient in theory and
much faster than state-of-the-art tools in practice, especially
under multiple link failures, P-Rex still requires an hour or
more to test complex but relatively small networks.

We in this paper presented a first study of the feasibility
of using deep learning to support faster answers to MPLS
queries, as well as to synthesize configurations: an emerging
topic [24, 25, 15, 26, 27, 28, 29] which to the best of our
knowledge however has not yet been studied in the context of
MPLS networks so far.

While our methodology is novel in this context, Graph
Neural Networks have been around for quite some time [6, 7],
and have also been extended to Gated Graph Neural Networks
in [11], by using GRU memory units [12]. Message-passing
neural networks were introduced in [9], with the goal of
unifying various GNN and graph convolutional concepts.
Veličković et al. [30] formalized graph attention networks,
which enable to learn edge weights of a node neighborhood.
Finally, [31] introduced the graph networks (GN) framework,
a unified formalization of many concepts applied in GNNs.
While existing applications are broad, including chemistry
with molecule analysis [8, 9], jet physics and elementary
particles [10], prediction of satisfiability of SAT problems [32],
or basic logical reasoning tasks and program verification [11],
only recently, first applications in networking have emerged,
e.g., in the context of network calculus [33, 34], queuing
theory [35], protocol generation [36], or the performance
evaluation of networks with TCP flows for predicting average
flow bandwidth [37].

VI. CONCLUSION

This paper showed that deep learning can not only be used
for a faster verification of the policy-compliance of MPLS
configurations, but even has the potential to provide efficient
synthesis, automatically re-establishing certain network prop-
erties. To achieve this, DeepMPLS relies on a novel extension
of graph-based neural networks. Our prototype implementation
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shows promising results, in terms of runtime and accuracy, in
realistic scenarios.

In general, we understand our paper as a first step and
believe that our work opens several interesting directions for
future work. In particular, we believe that our approach can
be refined and optimized further, to provide an even better
performance. Furthermore, it will be interesting to investigate
the synthesis of full MPLS configurations based on reinforce-
ment learning, or to test and generalize our approach for other
configurations, e.g., based on Segment Routing.

In order to facilitate future research in this area and build
upon our work, as well as to ensure reproducibility, we made
the generated experimental data available online.
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