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Abstract—Infrastructure-as-a-Service providers need to provi-
sion and isolate their tenants’s virtual networks. Current network
isolation solutions either suffer from limited scalability, incur
encapsulation overheads, or require advanced (e.g., OpenFlow)
hardware switches. We propose LANES, a system that provides
isolation between billions of virtual machines using commod-
ity Ethernet switches without encapsulation overheads. LANES
virtualizes each tenant’s network address space and configures
rules on each server to translate (tenant) virtual addresses to
(infrastructure) physical addresses. Virtual address spaces give
tenants flexibility when configuring their virtual networks, and
physical addresses reduce demand on infrastructure switches.
We implement LANES in OpenStack, leveraging OpenStack’s
network description functionalities and using OpenFlow to con-
figure Open vSwitch on infrastructure servers. Our evaluation
shows LANES ensures network isolation with acceptable rule
configuration latency.

I. INTRODUCTION

Infrastructure as a Service (IaaS) providers have a growing
demand for solutions to allocate and manage the resources
offered to their customers (usually called tenants) [1]. Each
tenant requires network resources to interconnect a set of
virtual machines (VMs) in an arbitrary topology. Ideally,
except for specific interconnection agreements, traffic from one
tenant’s VMs should never be visible to other tenants’s VMs;
conversely, only that tenant’s traffic should be able to reach
his VMs. IaaS providers must provision network resources to
guarantee isolation between customer networks.

Simple solutions to provision and isolate tenant networks,
like Ethernet VLANs, do not scale to large datacenters [2].
Researchers, standards bodies, and industry have proposed
several scalable alternatives over the last few years. One
common approach is to virtualize the networking infrastructure
using tunneling [3], [4], which incurs encapsulation overhead,
or to use advanced (e.g., OpenFlow) hardware switches, which
results in additional costs.

Our goal is to provide efficient traffic isolation between
tenants in a datacenter environment on commodity Ethernet
switches. Since each tenant is oblivious to other tenants, ten-
ants’s VMs might use incompatible and overlapping network
configurations (e.g., using the same IP address). It is the
responsibility of the isolation solution to handle this situation
and properly deliver packets to the correct VMs.

To achieve this goal we present LANES, a platform to
provision virtual networks and ensure traffic isolation on
multi-tenant datacenters based on the paradigm of Software

Defined Networks (SDN) [5]. LANES provides flexibility and
extensibility through standard APIs.

LANES allows IaaS tenants to specify their (layer-2) net-
work topology using OpenStack’s network description lan-
guage [6]. The LANES SDN controller then uses OpenFlow [7]
to configure an Open vSwitch instance on each infrastructure
server to provision and isolate tenant networks. LANES was
designed to be compatible with existing datacenter infrastruc-
tures. LANES requires no modification to physical switches; in
particular, LANES runs Open vSwitch on infrastructure servers
but does not require OpenFlow-enabled network switches.

LANES virtualizes network address spaces and isolates
virtual networks using packet rewriting, and does not incur
encapsulation overhead. LANES uses a pair of OpenFlow rules
at each server’s Open vSwitch instance for each virtual link
between communicating virtual machines terminating at that
server. LANES’s address virtualization uses only the physical
servers’ MAC addresses in the physical network, which avoids
scalability issues associated with large layer-2 address domains
that arise when virtual machine MAC addresses traverse the
physical switches [8]. LANES provides flexibility to IaaS
customers and scales to large datacenters while incurring
minimum additional costs.

We evaluate our prototype and show that LANES induces
negligible additional latency when translating packets to vir-
tualize addresses, and that Open vSwitch rule configuration,
which happens only once for each VM pair, takes less than
200ms. We also show that VM traffic under LANES continues
responsive and can achieve full bandwidth utilization even
when under DoS attacks.

The remainder of this paper is organized as follows.
Sec. II presents the idea behind LANES and describes the
packet rewriting technique used, while Sec. III discusses the
implementation details of our prototype using OpenStack.
Sec. IV evaluates the performance of our LANES prototype.
Finally, Sec. V discusses related work and Sec. VI presents
final remarks and discusses possible future work.

II. LANES

LANES provisions and isolates layer-2 virtual networks
in multi-tenant datacenters. A virtual network interconnects
virtual machines (VM) that run on multiple hosts. LANES
runs a virtual switch on all datacenter servers to intercept
packets before they are forwarded. Interception allows LANES
to rewrite packets to virtualize network addresses and isolate
virtual networks (Sec. II-A). We also present the algorithms

100ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP



LANES uses to configure packet rewriting and packet forward-
ing (Sec. II-B). LANES requires no modification to hosted
VMs, and puts no restrictions on what IP addresses VMs can
use. LANES also works on unmodified commodity learning
Ethernet switches and scales to datacenters with millions of
VMs and hundreds of thousands of servers. We describe
how we implement LANES’s address virtualization and packet
forwarding in OpenStack on top of existing standards using
Open vSwitch, POX, OpenFlow, and Neutron in Sec. III.

A. Network address virtualization using packet rewriting

Current Ethernet switches have tens of thousands of entries
in their MAC forwarding tables.1 A few hundred servers can
host tens of thousands of VMs and put significant pressure on
switch forwarding tables, causing severe network performance
degradation. In an unmanaged Ethernet segment, VMs can
spoof Ethernet MAC addresses to perform DoS attacks on
switch forwarding tables or sniff traffic.

LANES assigns a unique MAC address to each server
and VM in the infrastructure. We denote the MAC address
of a server (or VM) x as M

x

. When VM u in server s

sends a packet to VM w in server r, the virtual switch at
server s rewrites the original packet changing M

u

to M

s

and M

w

to M

r

. This rewriting allows packets to traverse
(from source to destination servers) a physical network made
of commodity learning Ethernet switches requiring a single
forwarding table entry per server in the infrastructure. No
VM MAC ever reaches the network infrastructure, preventing
VMs from spoofing MAC addresses. LANES requires a few
KB of memory at each server to store mappings from VMs
(attached to virtual networks that span that server) to servers
and mappings from servers to MAC addresses.

VMs may use multiple and arbitrary IP addresses. If a
server hosts VMs with identical (conflicting) IP addresses,
the virtual switch needs additional information to forward the
packet to the correct destination VM.

LANES associates one flow identifier F

uw

to the traffic
between each pair (u,w) of communicating IPs. Flow IDs
are generated on demand when VMs start communicating and
need be unique only between pairs of servers (different pairs
of servers may use the same flow IDs). As Ethernet switches
forward packets based on MAC addresses alone, LANES uses
the source and destination IP addresses to store flow identifiers.
Although the number of possible flows is up to 264, servers
need to store only one flow ID per pair of communicating IPs.
We note LANES creates one flow identifier for all connections
between a pair of communicating IP addresses. This reduces
the cases where a new identifier has to be created to when a
pair of IP addresses exchange their first packet.

As an example of LANES’s address virtualization, consider
the deployment scenario in Fig. 1 with two virtual networks,
two servers, and six VMs. We consider that servers are
configured with address mappings shown in Tab. I (we explain
how LANES generates mappings in Sec. II-B) and that VM i

uses a single IP address denoted by A

i

.

When VM u transmits a packet to VM w, server s’s virtual
switch intercepts a packet P = [M

u

M

w

| A
u

A

w

]. As this is an

1A Cisco Catalyst 4500-X switch has 55K MAC forwarding table entries.
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Fig. 1: LANES perspective of an example deployment in a
multi-tenant datacenter.

TABLE I: An example flow identifier table for servers in Fig. 1.

OUTBOUND KEY INBOUND KEY
SRC MAC DST MAC SRC IP DST IP FLOW SRC MAC DST MAC

M

u

M

w

A

u

A

w

F

uw

M

s

M

r

M

w

M
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w

A

u

F

wu
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M

s

M

x

M
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x

A
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F
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M

s

M

r

M

y

M

x

A

y

A

x

F

yx

M

r

M

s

outbound packet,2 LANES looks up the MAC address of VM
w’s server (this table is not shown), matches packet P ’s header
against line 1 in Tab. I, and rewrites P into P

0 = [M
s

M

r

|
F

uw

]. When the packet enters the physical network, switches
learn which port to use to reach M

s

and switches that do not
yet have a entry for M

r

in their forwarding tables broadcast
the packet. When server r receives packet P 0, it identifies this
as an inbound packet and looks up F

uw

in Tab. I to rewrite
P

0 back into P and forward the original packet to VM w.

B. Packet forwarding

LANES intercepts all packets that VMs send to perform
address virtualization. If a packet matches an entry in the
flow identifier table, LANES forwards as indicated by its flow
identifier. We now describe how LANES creates flow identifiers
for packets with no matches.

LANES requires information about the infrastructure and
hosted virtual networks to identify which VMs can com-
municate and configure flow identifiers accordingly. LANES
requires a mapping of VMs to their virtual networks and
a mapping of VMs to the infrastructure server where they
run. These mappings can be pregenerated according to virtual
network configurations or generated on demand as VMs are
instantiated, shutdown, or migrated (e.g., when scaling to
variable workloads).

LANES also requires a database of which IP addresses are
configured in each VM. This database can be pregenerated
according to virtual network configurations, or inferred on de-
mand sending ARP packets to all VMs in the tenants’s virtual
network. Remember that LANES creates one flow identifier
for each pair of IPs communicating. To avoid VMs creating
arbitrary flow identifiers, the infrastructure provider can limit
the number of IPs that a VM can use, or charge for each IP
associated with a VM.

In cases where there are no mappings for a packet, LANES
determines the packet type, source, and destination. LANES

2Inbound and outbound packets can be identified by their input ports, or by
checking if the destination MAC address is the server’s MAC address.
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confirms that source addresses (layers 2 and 3) belong to the
sending VM. LANES also checks if source and destination
are attached to the same virtual network or if the destination
is in an external network (e.g., the Internet). If any of the
checks fail, e.g., when VMs are sending packets to non-
existing destinations, LANES maps the packet to a special F

drop

flow identifier. LANES discards all packets that match to F

drop

.
If the packet is to be forwarded, LANES creates a mapping
according to the packet’s type, source, and destination, as we
describe next.

Traffic within a physical server. Authorized traffic between
VMs located on the same server is forwarded without modi-
fication and no packet rewriting is performed. When the first
packet of a flow between a pair of IPs belonging to local VMs
is intercepted at a server, LANES installs a mapping to a special
flow identifier F

local

.

Traffic between physical servers. When LANES identifies that
a packet’s destination VM runs on a different server, LANES
allocates any unused flow identifier F

uw

(between the pair
of communicating servers) to the pair of communicating IPs.
Packets mapping to this flow identifier are rewritten (Sec. II-A)
and forwarded to the physical network. LANES also configures
F

uw

at the destination server’s virtual switch. Later, when
packets reach the destination server, they are rewritten back
to their original form and forwarded to the destination VM.

ARP queries. Tenants may use identical, conflicting IP ad-
dresses in their VMs. Left unchecked, an ARP query could
get multiple answers. LANES not only contains ARP packets
to their VM’s virtual networks, it answers ARP requests on
behalf of VMs to reduce the number of broadcast packets.

IP broadcast traffic. Broadcasts are expensive in large dat-
acenters and can have significant negative performance im-
pact. IP broadcast packets must also be contained to their
virtual networks. Consider VM u running on server s sends
a broadcast packet P = [M

u

M

?

| A

u

A

?

], where M

?

and
A

?

denote broadcast MAC and IP addresses (A
?

has multiple
possible values in virtual networks with multiple IP subnets).
LANES forwards packet P , unmodified, to any other VM in
u’s virtual network that is running on server s (as for unicast
traffic within a physical server), then uses two mechanisms to
transmit broadcast packets between servers.

If the datacenter Ethernet network supports layer-2 multi-
cast, LANES can be configured to create multicast groups for
each virtual network. LANES generates a flow identifier F

u?

for
packet P as described for unicast packets in Sec. II-A, except
LANES (i) looks up the multicast group of u’s virtual network,
denoted M

0
u

, instead of the destination server’s MAC address,
and (ii) installs mappings for F

u?

on all servers that run VMs
attached to v’s virtual network. As an example, LANES rewrites
P into P

0 = [M
s

M

0
u

| F
u?

]. This solution requires one entry
in switch MAC forwarding tables for each virtual network’s
multicast group.

If the datacenter does not support multicast or if Ethernet
switch MAC forwarding tables cannot handle both server MAC
addresses and multicast addresses simultaneously, LANES emu-
lates broadcast using unicast packets. Again, LANES generates
a flow identifier F

u?

for packet P as described for unicast
packets in Sec. II-A, except LANES (i) looks up the MAC
addresses of all servers running VMs attached to u’s virtual

TABLE II: An example flow identifier table for broadcast and
external packets for servers in Fig. 1.

OUTBOUND KEY INBOUND KEY
SRC MAC DST MAC SRC IP DST IP FLOW ID SRC MAC DST MAC
Broadcast from VM u:

M

u

M

?

A

u

A

?

F

u?

M

s

M

0
s

External connections from VM u:
M

u

M

�

A

u

—- F

u�

M

s

M

�

M

�

M

u

—- A

u

F

�u

M

�

M

s

network, and (ii) installs mappings for F

u?

on all these
servers. LANES then configures servers to transmit multiple
unicast packets for each broadcast packet. Emulating broadcast
requires no additional entries in switch MAC forwarding tables
and avoids the overhead of configuring multicast groups; this
solution is preferable to multicast for virtual networks that span
a small number of servers.

Servers that receive broadcast packets from VMs in other
servers use the mappings for F

u?

to rewrite P

0 into P , then
forward P to all local VMs attached to u’s virtual network.
We show an example flow identifier mapping for broadcast
packets in Tab. II.

If LANES can map VMs to their IP subnets, then LANES
can reduce network load by creating multicast groups for each
IP subnet (at the cost of additional switch MAC forwarding
table entries) or send unicast packets only to servers running
VMs in that IP subnet. IP subnets could be specified in virtual
network configurations or inferred from DHCP messages in
virtual networks configured using DHCP.

Traffic to external networks. LANES allows VMs to commu-
nicate with the Internet or with VMs in other virtual networks
by placing layer-3 routers at virtual network boundaries. These
border routers serve as gateways. Packets to and from external
networks are identified by having the border router’s MAC
address, denoted M

�

.

Consider VM u in server s sends packet P = [M
u

M

�

|
A

u

A

�

] to an external host A
�

. LANES generates an external
flow identifier F

u�

for packets between VM u and A

�

. To
avoid generating one flow identifier whenever a VM connects
to a different external IP address, we note that LANES needs
to virtualize the VM’s MAC and IP addresses, but not the
gateway’s MAC address or the destination’s IP address. LANES
builds external flow identifiers F

u�

with 32 bits to virtualize
VM addresses. External flow identifiers overwrite the source IP
address of outbound packets and the destination IP address of
inbound packets. LANES keeps the external IP address A

�

un-
touched when rewriting inbound and outbound packets. As an
example, LANES rewrites packet P as P 0 = [M

s

M

�

| F
u�

A

�

].
Tab. II shows example external flow mappings.

LANES allows tenants with multiple virtual networks to
attach VMs to more than one virtual network and route packets
between their own virtual networks. As would be expected
in any network, unless a VM’s source IP address A

u

is
globally-reachable and routed to the infrastructure provider’s
datacenter, the tenant must provide the means for an address
to be translated (using NAT) or for the packet to be tunnelled
(e.g., in a VPN). In such cases, the NAT/VPN server would be
part of the tenant’s network and would be reachable through
LANES.
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Fig. 2: Applications that compose LANES and interaction forms between them and the IaaS platform.

III. IMPLEMENTATION

We implemented a LANES prototype on top of OpenStack,
using the POX SDN controller. OpenStack is one of the
most well known open IaaS platforms; it provides applications
and APIs that virtualize datacenter infrastructures, covering
tasks such as server allocation, network definition, access
control, firewalls, and high availability. OpenStack’s Neutron
acts as a network abstraction layer, providing APIs for tenants
to express their virtual network topologies, which can then
become accessible to other components.

We implemented LANES in three major modules as shown
in Fig. 2. LANES’s OpenStack driver implements the functions
necessary to connect to Neutron and obtain virtual network
topologies. LANES’s network controller executes on top of
the POX SDN controller and uses OpenFlow to control Open
vSwitch instances running on each server in the infrastructure.
LANES’s persistence module keeps all topology information in
a distributed database for efficient access and robustness.

Network changes such as VM instantiation or migration
are sent to Neutron. Neutron, in turn, propagates changes
to LANES, which can reconfigure Open vSwitch instances
as necessary to guarantee correct packet delivery. When a
virtualization server first boots, its Open vSwitch instance
contacts the LANES controller, which configures that instance
and adds it to its database. Open vSwitch instances inform the
LANES network controller of any changes to its ports (e.g.,
link up and link down events). This allows LANES to obtain
all information it needs to build flow identifiers: map VMs to
virtual networks, map VMs to servers, and map servers to their
MAC addresses.

IV. SYSTEM EVALUATION

This section describes the environment built to evaluate
LANES’s capabilities and performance. We show that LANES
achieves forwarding performance equivalent to existing tools
with negligible memory overhead while providing isolation
and reducing MAC address table pressure on switches.

A. Testing environment

A physical infrastructure corresponding to part of the
infrastructure of an IaaS provider was built to validate LANES’s
operation. Figure 3 presents the testing environment topology.
It shows three virtualization servers connected to two switches.
One switch is used for OpenStack control communications,
to access the datacenter network, to communicate with the
POX controller, and to exchange traffic with the Internet. The
second switch is exclusively used for traffic between virtual

Fig. 3: Physical topology of the testing environment.

machines, corresponding to the most probable configuration
of an IaaS provider. IaaS providers commonly have very big
infrastructures, where servers and controllers are spread across
the network. It is important to note that both switches are
commodity learning Ethernet switches, without any special
configuration.

We chose two switches to facilitate the understanding
and verification of the correct isolation behavior between
the physical and virtualized environment. The virtualization
servers are three Intel Xeon E5440. The POX controller runs
on an Intel Xeon E3-1240. All machines have 1 Gbps network
interfaces and are connected to 1 Gbps switches. The virtual
machines used in all the tests were configured with 1 processor,
1 Gbyte of RAM, 30 Gbytes of storage, and Ubuntu Linux
13.10.

On top of the physical structure, we deployed multiple
virtual networks, from different tenants. Each virtual network
contains multiple VMs and may span multiple servers. We
considered three different software stacks for the network
configuration:

1) LANES with POX module;
2) L2 switch from POX, which is offered as a reference,

indicated as POX+L2;
3) OvS switch. It only forwards packets in Ethernet. It

had no configured controller nor isolation between
virtual networks.

In the following we evaluate isolation properties, flow
establishment latency, forwarding bandwidth (in packets per
second), and load overhead.
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Fig. 4: Network topology during isolation tests.

TABLE III: Network isolation tests with LANES for the con-
figuration in Fig. 4: only VMs in the same network reply to
echo requests.

Received by
VM1 VM2 VM3 VM4 VM5 VM6

Se
nt

by

VM1 –
p p p

VM2
p

–
p p

VM3
p p

–
p

VM4
p p p

–
VM5 –

p

VM6
p

–

B. Isolation between virtual networks

The test for validating the isolation between virtual net-
works was carried out by sending ICMP packets from multiple
virtual machines of different tenants using the same IP address
block (10.0.0.0/24). The topology presented in Fig. 4 shows the
evaluation environment, which contains a six virtual machines
distributed between two tenant virtual networks. Since the
networks are independent, it is expected that even using the
same IP, a tenant’s packet does not reach VMs in the other
tenant’s network.

The test consists of each VM issuing ICMP ping (echo)
requests to the network broadcast address. In each column of
Tab. III, we mark the virtual machines that replied to the ICMP
echo request packet sent by the VM in each row. As we can
see, LANES allowed the requests to reach only the machines
that belong to the tenant’s virtual network.

While LANES provides isolation between tenant virtual
networks, POX+L2 and OvS do not. Tab. IV shows results for
the same test under POX+L2 and OvS network stacks. Both
mechanisms do not provide isolation and behave similarly,
with all VMs from both networks receiving and replying to
all ICMP echo requests.

To demonstrate the importance of isolation, we performed
a throughput test. We configured a TCP flow between VM

1

and VM
3

, and configured VM
6

to flood its own network
with broadcast packets. That might be the behavior of a
misconfigured application in its own network, or might even
be an intentional malicious DoS attach on the other tenant’s
network. Tab. V presents the observed throughput for the tested
tenant’s TCP flow under each configuration. Since LANES
limits the flood to that tenant’s network, within one server
in the infrastructure, LANES can provide better performance
to the other tenant than the other two configurations.

C. Latency

The objective of latency tests is to measure the time before
the start of communication between two virtual machines

TABLE IV: Network isolation tests with both POX+L2 and
OsS stacks for the configuration in Fig. 4: all VMs in the both
network reply to echo requests.

Received by
VM1 VM2 VM3 VM4 VM5 VM6

Se
nt

by

VM1 –
p p p p p

VM2
p

–
p p p p

VM3
p p

–
p p p

VM4
p p p

–
p p

VM5
p p p p

–
p

VM6
p p p p p

–

Fig. 5: Virtual network topologies used to evaluate MAC
address resolution. All logical networks were implemented
over the physical network in Fig. 3.

inside the infrastructure. During this phase many actions occur,
like MAC address discovery, installation of flow rules into
the OvS switches, packet rewriting (if necessary), and packet
forwarding.

All stages prior to the beginning of communication were
evaluated separately to provide a better understanding of the
system’s behavior. We measured the time required for MAC
resolution by the ARP protocol, the time required for installing
the flow rules and the time required for forwarding the packets
after the flow was established. We also measured the forward-
ing latency of broadcast packets over unicast packets, since this
type of transmission requires software processing by LANES.

MAC address resolution. Because LANES intercepts and
answers all ARP packets without contacting the destination
VM, this communication stage was measured separately. We
measured the time interval between a VM sending an ARP
Request and receiving an ARP Reply. All measurements were
done capturing traffic at the VM’s (virtual) network interface.
The following MAC resolution tests were done using the
topology presented in Fig. 5:

1) Normal operation: VM
1

requests the MAC address
of VM

2

on the same virtual network;
2) Attack on the local network: VM

1

requests the MAC
address of VM

2

while VM
3

is flooding the same local
network NET

1

;
3) Attack on remote network: VM

1

requests MAC ad-
dress of VM

2

while VM
5

is flooding network NET
3

;

TABLE V: TCP throughput between VM
1

and VM
3

in Fig. 4
while VM

6

floods its virtual network with broadcast packets.

Average Std.
Configuration Throughput Dev.
LANES 825 Mbps 2.1
POX+Switch L2 170 Mbps 5.3
OvS 295 Mbps 3.2
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Fig. 6: ARP resolution latency.

4) Attack on isolated network: VM
1

requests MAC
address of VM

2

while VM
4

is flooding network
NET

2

. The difference between tests 3 and 4 is that in
test 4 the attack does not generate inter-server traffic.

Figure 6 shows the results of ARP resolution using LANES,
POX+L2, and OvS. Each figure contains four lines presenting
results for each test.

As expected and confirmed by Fig. 6, LANES had similar
response times in every type of test. This happens because
LANES intercepts the ARP traffic, generates the responses
internally, and prevents performance degradation due to the
flooding attacks. Compared to other scenarios, response times
are higher in the normal case, since the controller has to
participate in all ARP processing.

In the situation where the POX controller is used with
the L2 switch application, the system performance degrades

Fig. 7: Topology used to evaluate flow configuration time,
packet forwarding latency, and broadcast latency.

TABLE VI: Packet forwarding latency for established flows
between VM

1

and the other VMs in Fig. 7 (in ms).

Dest. Conf. Avg. Max Min Std.
VM2 LANES 0.35 1.19 0.26 0.078
VM2 POX+L2 0.36 0.99 0.25 0.079
VM2 OvS 0.37 0.95 0.27 0.080
VM3 LANES 0.32 0.89 0.21 0.070
VM3 POX+L2 0.32 0.74 0.21 0.063
VM3 OvS 0.31 0.70 0.21 0.064

significantly under flood attacks, because all traffic is reaching
all ports, and that must be processed by the L2 switch module.
For that reason, results in Fig. 6 show that POX+L2 has the
worst performance for the attacks tested.

Open vSwitch has the best results in all cases. That
is possible mainly because it executes within the operating
system kernel and also because no type of validation is done.
On the other hand, all switches and network connections
are overloaded during the attacks, because it unconditionally
forwards every packet that is generated during the flood.

Flow configuration latency. We also evaluate the time it takes
LANES to compute flow IDs and configure flow forwading
rules. As LANES rewriting rules require some computation
by the controller and are installed in both the source and
destination virtual switches, we expect some performance loss
relative to POX+L2. We evaluate flow configuration latency
on the topology shown in Fig. 7.

Figure 8 shows the results. In all situations, the use of
a controller that installs forwarding rules reactively causes
a longer delay when compared to an OvS switch without
a controller. Figure 8(b) shows that configuring rules for
inter-server communication has higher latency, as it requires
installing rules in two OvS instances. LANES has performance
similar to that of POX+L2 and we note that the latency
overhead is reasonable, since flow configuration is incurred
only once for each pair of communicating IP addresses (during
the VMs initialization process).

Packet forwarding latency. We evaluate packet forwarding
latency for established flows using the topology in Fig. 7. We
measure the latency between VM

1

and VM
2

as well as VM
3

.

Tab. VI shows average, maximum, minimum, and the
standard deviation of packet forwarding latency for all flows
and different configurations. We observe LANES forwarding
overhead is minimal compared to other networking stacks, with
the benefit of isolation between networks. This is relevant as
forwarding overhead is incurred on each packet, while ARP
resolution and flow configuration happen only once for each
pair of communicating IP addresses.
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Fig. 8: Latency for installing OpenFlow rules on switches

Broadcast latency. We also evaluate LANES’s performance for
broadcast traffic emulated using unicast packets in the network
topology in Fig. 7. The latency evaluation was performed
sending broadcast ping packets from VM

1

.

Fig. 9 shows broadcast latency for different tests. One
may observe the delays added by including an SDN controller
by comparing the POX+L2 and OvS lines. The reader can
also observe the broadcast of LANES’s software emulation of
broadcast packets by comparing the LANES and OvS lines. Our
current implementation in LANES emulates broadcasts using
unicast packets from userspace, which achieves an average
performance of 0.563 ms, while the SDN configuration using
POX+L2 is 0.035 ms. We note LANES’s performance could
be improved by implementing the emulation of broadcast
over unicast in kernel-space or by performing broadcast using
multicast. As the OvS without controller does not check
anything, its results were significantly better than the other
two, obtaining an average response 0.0056 ms.

Although slower to emulate, the emulation of broadcast
using unicast is worth considering in large environments,
where each tenant usually has few VMs relative to the size of
the datacenter. In these scenarios, emulating broadcast using
unicast packets prevents the tenant from flooding the entire
datacenter network. We also note that there may be only a
few reasons for broadcast packets left as LANES handles ARP
separately.

TABLE VII: Available bandwidth between VM
1

and the other
VMs in Fig. 7 (in Gbps).

Dest. Conf. Avg. Max Min Std.
VM2 LANES 0.94 0.95 0.63 0.02
VM2 POX+L2 0.93 0.94 0.74 0.02
VM2 OvS 0.93 0.94 0.93 0.00
VM3 LANES 0.94 1.05 0.84 0.01
VM3 POX+L2 0.94 1.14 0.76 0.03
VM3 OvS 0.94 0.95 0.92 0.00

D. Available bandwidth

We measured the maximum achievable TCP throughput
using the same topology as in Fig. 7. We use iperf to
generate synthetic traffic and measure bandwidth between
VM

1

and the other two virtual machines, VM
2

and VM
3

. The
TCP connection was tested for 10 hours.

Tab. VII shows achieved throughput in each scenario. The
results demonstrate that the use of an SDN controller does not
influence the results and that LANES’s (negligible) packet for-
warding latency has negligible impact on throughput. Observe
that for connections between VMs in the same virtualization
server, the maximum throughput is limited only in software
by OvS. Thus, the results in these cases can reach values
higher than the maximum expected throughput for connections
(1 Gbps).

E. Scalability evaluation

The last set of tests evaluates the system capacity, in
particular, how the POX controller deals with the demand
of new flow rules. The topology was composed of four
virtual machines distributed over two virtualization servers and
connected to the same virtual network (as in NET

1

in Fig. 4).

We configure VM
4

to generate an increasing rate of TCP
connections over consecutive 120-second rounds. We show the
connection generation rate and round start times in the vertical
bars in the upper graph in Fig. 10. TCP flows are established
with any other VM at random. LANES will then configure
rules for all connections so VMs can exchange traffic. We
measure the CPU utilization of the OvS process in VM

4

as it
handles the highest workload and show measurements using
green triangles in the upper graph of Fig. 10. The middle
graph shows aggregate TCP bandwidth. The bottom graph
shows ping latency, which represents flow configuration delay.
The x-axis of all graphs are aligned and cover the experiment
duration.

The measurement results for LANES, implemented on the
POX controller, are shown in Fig. 10. They show that the
developed system begins to suffer performance degradation
when the rate of TCP connections is about 200 connections
per second. Although it is only capable of handling well a low
amount of new connections, we must remember that LANES
performs several checks before deciding which flows need to
be configured. The use of a production-grade controller, like
ONOS, would certainly improve performance in this case.

Since LANES depends on the topology implemented in
OpenStack and also needs to access the database to query it,
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TABLE VIII: Comparison of SDN-based datacenter network
virtualization solutions (‘yes’ is preferable).

PROPERTY LANES NVP NetLord Diverter
No encapsulation Yes No [12] No [3] Yes [13]
No header modification No Yes Yes No
IP virtualization Yes Yes Yes No
Non-IP traffic No Yes Yes No
On demand config Yes No Yes Yes
No fragmentation Yes Yes No Yes
External flows Yes Yes No Yes

LANES has an overhead higher than other network configura-
tion stacks to handle OpenFlow messages. As LANES has not
been implemented with high performance as its main objective,
given POX has been implemented in Python, we believe that
LANES can be improved by adjusting the used components or
rewriting the functions with higher CPU usage.

V. RELATED WORK

GRE [9], and MPLS [10] require extra header fields to
encapsulate packets and to provide traffic isolation. Moreover,
these approaches have a limited network segment space. For
instance, VLAN fields have 12 bits and allow only 4096 VLAN
tags, severely limiting scalability. Another possible isolation
solution through encapsulation is Q-in-Q [11], which also
makes use of VLAN tags, but it uses two tags instead of
one. This solution allows a much larger amount of isolated
networks to run in parallel, but may still be insufficient for
large datacenters. In addition, as with VLANs, the number of
virtual machines in the datacenter can be so great that the
switches will be unable to store all network MAC addresses
in their forwarding tables. LANES does not require additional
header fields and provides significantly better scalability.

NetLord [3] adopted a solution similar to ours to reduce
the size of routing tables in switches inside a datacenter. Net-
Lord encapsulates packets leaving virtual machines, creating
a new packet header, addressing them to the final server in
which the destination VM is located. By encapsulating the
packet during transmission by the network, NetLord prevents
the MAC addresses of virtual machines to be registered by
switches on the way. Thus, only server addresses are stored in
switch forwarding tables. Traffic encapsulation was necessary
to enable one of the main features of NetLord, which is the use

Fig. 10: Load test results for LANES.

of multiple simultaneous routes between devices. SPAIN [14]
is an application by the same group that takes advantage of
multiple paths to route traffic more efficiently and improve
bandwidth. The main differences between LANES and NetLord
is that NetLord uses encapsulation, which increases packet
sizes and may cause fragmentation, and it requires changes
to the virtualization layer. NetLord also does not allow direct
communication between different virtual networks.

Diverter [13] is an application developed by HP Labs,
which has similar objectives to LANES, such as allowing
virtual networks to share the physical infrastructure while
ensuring isolation. An important difference between Diverter
and LANES is that Diverter assigns IP addresses to VMs; this
simplifies isolation as it prevents IP address collision between
different VMs. LANES allows tenants to configure arbitrary IP
addresses on VMs.

Some of the authors of the initial works on SDN [15]
presented NVP [12], a system to virtualize datacenter net-
works. The tool uses the SDN paradigm and uses network
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topology information created by each customer to build a
traffic isolation solution between participants. Unlike LANES,
which works reactively, NVP precomputes all flow rules based
on virtual network topology configurations. The controller only
communicates with the switches when the topology changes,
which requires change to the configured rules. Flow rule
computation costs are significant, as it is necessary to cover
all possible communication possibilities, ignoring the fact that
VMs rarely establish all possible flows [16]. The authors
report that in a network with 3,000 virtualization servers and
more than 60,000 ports, flow rule computation took up to
one hour to complete. In NVP, isolation between clients on
the physical network is achieved using encapsulation. LANES
provides on-demand configuration of flow forwarding rules
and uses only packet rewriting. We summarize the trade-offs
between different SDN-based datacenter network virtualization
solutions in Tab. VIII.

Other previous works have proposed new traffic control
and resource (bandwidth) allocation solutions for datacenter
networks [17]–[20]. Those solutions allow an IaaS provider
to allocate resources to tenant virtual networks and guarantee
performance bounds. LANES is orthogonal to these solutions,
providing the network isolation they require, and it can be
combined with traffic control and resource allocation solutions
to provide a richer IaaS environment.

VI. CONCLUSIONS

In this work we presented LANES, a system designed to
provision and isolate virtual networks in datacenter environ-
ments. LANES rewrites packet headers to virtualize addresses,
providing flexibility to hosted VMs and preventing VMs from
directly impacting the physical network. LANES requires no
modification to hosted VMs, puts no restrictions on VM IP
addresses, does not incur encapsulation overhead, and scales
to millions of VMs and thousands of servers in a single
Ethernet segment. LANES also does not require advanced
features and works on top of commodity Ethernet switches.
LANES provides these benefits at the cost of memory utilization
on infrastructure servers (hundreds of KBs), increased latencies
during flow setup (hundreds of milliseconds, once per IP pair),
and compute overhead to rewrite packet headers.

We integrate LANES with OpenStack, a widely used IaaS
platform. LANES implements an SDN controller responsible
for orchestrating the use of network resources. LANES uses
Open vSwitch and standard OpenFlow rules to rewrite packets
at infrastructure servers and virtualize network addresses.

We evaluated our implementation of LANES in a physical
testbed. The results show that LANES effectively isolates
traffic between different virtual networks. We also quantified
system performance under heavy workloads. We showed that
LANES can be effective in protecting the network from DoS
attacks within the datacenter network. Finally, the results show
that LANES achieves performance similar to that of simpler
solutions after flow rules are installed.

In the future, we plan to evaluate the advantages of
proactively generating rules. Although such behavior has a
high flow computation cost, it has been advocated by SDN
creators as preferable whenever possible.
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