
Scalable, Self-Healing, and
Self-Optimizing Routing Overlays

Olivier Brun, Hassan Hassan and Josselin Vallet
LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

email: {brun, hhassan, jvallet}@laas.fr

Abstract—After Internet routing was shown in a number of

classic measurement papers to result in paths that are sub-

optimal with respect to a number of metrics, routing overlays

were proposed as a method for improving performance, without

the need to re-engineer the underlying network. In this paper,

we present SMART, a self-healing, self-optimizing and highly

scalable routing overlay, which has a number of advantages with

respect to existing solutions. First, SMART can run with off-the-

shelf applications and does not require any kernel modification.

In addition, SMART can be widely deployed over a sizable popu-

lation of routers, because it can quickly learn and efficiently track

the optimal path with a limited monitoring effort. We describe

the design objectives, the architecture and the implementation of

SMART, as well as the online decision methods used for learning

the optimal routes. Experimental results demonstrate significant

improvements over native IP routing, both in terms of latency

and throughput.

I. INTRODUCTION

Current Internet routing protocols may work reasonably
well when only ”best effort” delivery is required, but the
requirements of modern distributed services are typically far
more stringent, demanding greater performance and availabil-
ity of end-to-end routes than these protocols can natively
deliver. These services often require continuous operation
over time, always maintaining the response time below an
acceptable threshold, and even small degradations in their
performance can have a considerable business impact, in terms
of slowed-down service adoption, lost revenue or even damage
to brand reputation.

A number of classic measurement studies (see, e.g., [1],
[2]) have revealed that the performance of flows could be
significantly improved by choosing alternate paths to the
ones proposed by IP (Internet Protocol) routing protocols. In
addition, it was also shown that path outages are routine events
in the Internet, and that the inter-domain routing protocol BGP
(Border Gateway Protocol) reacts and recovers slowly from
link/node failures [3], [4], [5], causing path outages that can
last for several tens of minutes [6], [2], [7].

The ideal solution would be a complete rethink of the
Internet routing infrastructure, doing away with the existing
architecture and redesigning it with the benefit of hind-sight
about its deficiencies. Unfortunately, the so-called ossification

of the Internet prevents even changes that are unanimously
recognized as necessary to take place.

Routing overlays have been proposed as an alternative
solution that can potentially provide the desirable flexibility
and control over the routing infrastructure, without the need to
re-engineer the Internet [8], [9], [10], [11]. A routing overlay
is formed of end hosts, which are deployed in different spots
over the Internet. These nodes monitor the quality of the IP
routes between themselves and use this information to decide
whether to route packets directly over the IP route or by way
of other overlay nodes. A routing overlay therefore enables
controlling the path of data through the network without
modifying the underlying IP mechanism for computing routes,
but just by adding intermediate routing hops into the path
taken by packets. In a routing overlay, the endpoints of the
information exchange are unchanged from what they would
have been in the absence of the overlay, but the route through
the network that the data traverse may be quite different.

There are several advantages to the use of routing over-
lays. Firstly, they can be used to quickly recover from path
outages. Indeed, they can exploit the inherent redundancy
of the Internet to find an alternate path when an IP route
becomes unavailable, even if Internet routing protocols cannot.
In addition, routing overlays can also be used to improve
the quality of service of data flows by overriding the routes
determined by Internet protocols and routing traffic based on
metrics directly related to application performances.

In this paper, we present SMART1, a self-healing, self-
optimizing and highly scalable routing overlay that we de-
veloped. SMART is self-healing because it is able to quickly
detect and recover from path outages. It is self-optimizing
because it can discover the optimal routes within the over-
lay network for service-specific routing metrics. It is highly
scalable because it was designed to learn the optimal routes
in large overlays with a minimum monitoring effort. Last but
not least, SMART was designed to control the path of data of
an application through the overlay without the application even
being aware that its data flows are routed over the overlay, so
that it can work with off-the-shelf applications.

In the following, we describe the design objectives, the

1Self-MAnaging Routing overlayISBN 978-3-901882-83-8 c� 2016 IFIP

64ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

2

architecture and the implementation of SMART. Since one of
our essential design goals was to build a routing overlay that
can be widely deployed over a sizable population of routers,
we elaborate on the methods implemented in SMART for
discovering optimal routes in large overlay networks with a
minimum probing effort. Finally, we also present experimental
results obtained with real-world experiments over the Internet.
These results demonstrate that it is possible to significantly
improve over native IP routing with a modest monitoring
effort. Due to the lack of space, we do not present the methods
used for assessing the quality of overlay links, but interested
readers may refer to [12].

The rest of this paper is organized as follows. In Section
II, we discuss the similarities and differences of our routing
overlay with existing solutions. Section III is devoted to the
description of the architecture and components of our system.
In Section IV, we describe the technical mechanisms used
for forwarding a packet from its source to its destination.
Section V presents the methods used for discovering optimal
routes in the overlay with a minimum monitoring effort,
whereas experimental results are presented in Section VI.
Finally we conclude in Section VII with a brief summary and
a description of future work.

II. SIMILARITIES AND DIFFERENCES WITH RESPECT TO
EXISTING SOLUTIONS

Researchers have successfully used overlay networks to
solve problems in various areas. To name but a few of the
applications, overlays have been used for self-organization
in peer-to-peer networks [13], [14], [15], to implement
application-layer multicast [16], [17], [18], [19], and even to
provide countermeasures to DDoS attacks [20], [21]. Overlay
network technologies are also used by Akamai Inc. for dy-
namic content delivery [22], [23], [24], [25], [26]. Comprising
more than 61,000 servers located over 1,000 networks in 70
countries, the Akamai platform delivers 15-20% of all Web
traffic worldwide.

More recently, several frameworks have been proposed for
overlaying virtualized Layer-2 networks over Layer-3 net-
works, such as Virtual Extensible LAN (VXLAN) [27] and
Distributed Overlay Virtual Ethernet (DOVE) [28]. The main
difference between SMART and these technologies is that
they rely on the routes provided by Internet routing protocols,
without seeking to control how data flows are routed between
end hosts.

In that respect, our system is much more closer to the
solutions developed by the Detour and RON (Resilient Over-
lay Network) projects, which have clearly demonstrated the
benefits of moving some of the control over routing into the
hands of end-systems. The Detour framework [29] is an in-
kernel packet encapsulation and routing architecture designed
to support alternate-hop routing, with an emphasis on high
performance packet classification and routing. In contrast, the

developers of RON have opted for a tighter integration of the
application and the overlay network since RON is a software
library that programs link against [30]. This approach permits
”pure application” overlays with no kernel modifications, and
allows the use of application-defined routing metrics. Although
the objectives of SMART are similar to those of Detour and
RON, SMART has the advantage that it can work with off-the-
shelf applications an on standard operating systems. Another
major difference is that Detour and RON do not scale very
well: as the number of overlay nodes n increases, their costly
O(n2

) probing overhead becomes a limiting factor. In practice,
a reasonable RON overlay can support only about 50 routers
before the probing overhead becomes overwhelming [30].

The latter design objective is shared with a self-aware
routing protocol known as the Cognitive Packet Network
(CPN) [31], [32]. CPN provides QoS-driven routing, and
performs self-improvement in a distributed manner by learning
from the experience of special packets, which gather on-
line QoS measurements and discover new routes. The routing
decisions are made at each node of the network, and they are
based on adaptive learning techniques using random neural
networks. The application of CPN techniques to peer-to-peer
overlay networks has been considered in [33]. More recently,
the use of CPN-inspired learning techniques in SMART was
investigated in [34]. In the present paper, we describe in
much more details the architecture and implementation of
SMART, and investigate the relevance of a different approach
for learning the optimal overlay routes. In addition, whereas
only results related to the round trip delay were reported in
[34], we present here some experimental results on bandwidth
optimization.

III. ARCHITECTURE OF THE ROUTING OVERLAY

The overlay network is formed of software routers scattered
over the Internet. In our experiment, these routers were exe-
cuted in Virtual Machines (VM) running in cloud computing
platforms, but they can be ran on physical hosts as well.

Fig. 1. Architecture of the Autonomic Communication Overlay.

65ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

3

Two types of agents are used. Transmission (TA) and
Reception (RA) agents are local agents that are executed on
each VM running a task of the distributed application. They
represent the entry and exit points of the overlay network,
respectively. Each site also runs a single software router called
a Proxy. The Proxy is in charge of monitoring the quality of
the overlay paths towards certain destinations, selecting the
best paths and forwarding the packets of the application over
them. As shown in Figure 1, this enables to avoid congested
or failed parts of the Internet when a Proxy detects that the
IP route is subject to anomalies.

A. Transmission and reception agents

Let us recall that one of our design objectives is to control
the path of data of an application through the network, without
the application even being aware that its data flows are routed
over the overlay. To this end, we use packet interception and
encapsulation mechanisms operating in a transparent way for
the application. These mechanisms are implemented by two
software agents, which are activated automatically at start-up
of their respective VM:

• Transmission agent: the role of the Transmission Agent
(TA) is to intercept the packets sent by the application
running in the same VM and to forward them to the local
Proxy using IP-in-IP encapsulation.

• Reception agent: the role of the Reception Agent (RA)
is to receive the packets sent by the local Proxy and
to deliver the original packets to the local application
running in the same VM.

B. Proxy

An agent, called a Proxy, is executed in each site and acts
as an intermediary for communications with other sites. The
Proxy is in fact an entity constituted of three different software
agents:

• Monitoring agent: it monitors the quality of the Internet
paths between the local site and the other sites in terms of
latency, bandwidth, and loss rate. The monitoring agent
can be queried by the routing agent in order to discover
the quality of a given path according to a certain metric.

• Routing agent: it is configured to optimize a service-
specific routing metric towards certain destinations. To
this end, it drives the monitoring agent so as to discover
an optimal path (e.g., low-latency, high-throughput, etc.)
with a minimum monitoring effort (cf. Section V). For
each destination, the optimal path towards that destination
discovered by the routing agent is written in the routing
table of the forwarding agent.

• Forwarding agent: it is in charge of forwarding each
incoming packet to its destination on the path it was
instructed to use by the routing agent.

IV. PACKET INTERCEPTION, ENCAPSULATION AND
FORWARDING

The forwarding of a packet from its source to its destination
proceeds as shown in Figure 2.

Fig. 2. Forwarding process.

When a packet is sent by a source task to a destination task
located in a different site, it is first intercepted and forwarded
to the TA. The TA uses IP-in-IP encapsulation to forward an
altered packet to the local Proxy. The payload of the altered
packet, referred to as the SMART packet in the following,
is that of the original packet along with an additional header.
Upon reception of the SMART packet, the forwarding agent of
the Proxy looks-up its routing table in order to determine the
path to the destination. The choice of source routing is dictated
by scalability considerations (see Section V). The sequence
of intermediate Proxies is written in the SMART header, and
then the SMART packet is forwarded to the first one of these
Proxies. Each intermediate Proxy then forwards the packet to
the next hop on the path, until the final Proxy is reached.
When this occurs, the packet is forwarded to the RA of the
destination VM. The RA decapsulates the SMART packet and
forwards the original IP packet to the destination task using a
raw socket. We present below the technical details of each of
these operations.

A. Packet interception

The TA intercepts the packets sent by the application
running in the same VM and forwards them to the local Proxy.
We emphasize that the TA does not intercept all packets, but
only packets towards specific destinations located in a different
site. The list of destination IP addresses for which packet
interception has to be done is controlled dynamically by the
routing agent.

As shown in Figure 3, packet interception is realized using a
filtering mechanism known as NetFilter NFQUEUE. Netfilter
represents a set of hooks inside the Linux kernel [35]. It allows
specific kernel modules to register functions that are called
back for every packet that traverses the respective hook within
the network stack. NFQUEUE is an iptables target, which
delegates the decision on packets to user-space software (the
TA in our case).

66ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

4

Fig. 3. Forwarding process.

B. Packet encapsulation

Upon receipt of the packet sent by the local application, the
TA takes the entire content of the packet received and encapsu-
lates it into its own message format, adding a SMART header
that contains control information. It contains in particular the
IP address of the destination Proxy (which differs from that of
the local Proxy, in the outer IP header) as well as the complete
path to reach it, that is, the list of intermediate Proxies. The TA
leaves the latter field blank, since the path to the destination
Proxy will be determined by the forwarding agent of the source
Proxy. Once the header added, the SMART packet is sent to
the local proxy using UDP.

C. Processing by the forwarding agent

Upon receipt of a SMART packet, the forwarding agent
inspects its header to determine its precise role. There are
three cases:

1) The packet is at the source Proxy: this is the case if
the Proxy is not the final destination and if the field
describing the end-to-end path is blank. In that case, the
forwarding agent looks up for the path to the destination
Proxy in its routing table, writes this path in the header
of the SMART packet, and then forwards it to the next
hop on the path.

2) The packet is at an intermediate Proxy: the forwarding
agent then just forwards the incoming packet to the next
hop on the path, after having updated its destination IP
address.

3) The packet has reached the destination Proxy: the for-
warding agent then forwards the packet to the RA on
the destination VM.

D. Decapsulation and transmission to the destination

The RA decapsulates the Panacea packet and forwards
the original data packet to the destination task using a raw
socket, that is, an internet socket that allows the direct sending

and receiving of IP packets without any protocol-specific
transport layer formatting. The packet is directly delivered to
the recipient application because the destination IP address is
that of the destination VM. We note that there is an additional
difficulty when the public IP address of the destination VM is
different from its private IP address. In that case, the automatic
remapping of public IP addresses into private IP addresses
by the Network Address Translation (NAT) mechanism is
only possible for the SMART packet, and not for the inner
original packet. To overcome this difficulty, the RA uses a
configuration file containing translation table entries to convert
the public IP address of the packet into a private address. In
addition, IP header checksum and any higher-level checksums
that include the IP address are also changed by the RA.

E. Packet forwarding overhead

In order to evaluate the time overhead introduced by
SMART with respect to native IP routing in a controlled
environment, we have used the Common Open Research
Emulator (CORE). CORE is an open-source network emulator
developed by Boeings Research and Technology division and
supported, in part, by the US Naval Research Laboratory [36].
It consists of a GUI for drawing topologies of lightweight
virtual machines, emulating end hosts or networking devices
(e.g. routers, switches, etc.) running Internet protocols. We
have used CORE to emulate linear topologies of different sizes
n = 2, . . . , 5 as shown in Figure 4.

IP route

PROXY 1 PROXY 2 PROXY nSRC DST

SMART route

Fig. 4. Experiment to evaluate SMART forwarding overhead.

For each size, we have measured the end-to-end RTT with
and without SMART. When SMART is activated, it routes
all packets through all available proxies before reaching the
destination. We observed an additional end-to-end latency of
about 3ms with respect to native IP routing, regardless of the
size n of the topology (indicating that most of the overhead
is due to the processing done by the TA and RA).

Note also that there is a 28-Byte per-packet overhead for
adding the SMART header (20 Bytes) and sending the altered
packet with UDP (8 Bytes).

V. DISCOVERING THE OPTIMAL ROUTES

In this section, we assume for simplicity that there is a
single origin/destination (OD) pair and describe the algorithm
implemented by the source Proxy for learning an optimal route
to the destination Proxy. This algorithm is implemented by
the Routing Agent of the source Proxy. We assume that at

67ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

5

discrete time steps (say, every minute) the routing algorithm
measures the quality of some links and uses this information to
decide how to route packets between the source and destination
nodes. We define the monitoring effort of the routing algorithm
as the number of probed links per time slot. As mentioned
in Section II, existing routing overlays use all-pairs probing,
which has the advantage that it is guaranteed that an optimal
path is discovered; but the downside is that this approach does
not scale very well due to its costly O(n2

) monitoring effort
in an overlay of n nodes. Since we wish to build a routing
overlay that can be widely deployed over a sizable population
of routers, instead of requiring an optimal path to be found at
each time step, we look for an online decision algorithm that
uses a limited monitoring effort but achieves asymptotically
the same average (per round) end-to-end performance as the
best path. The idea is to design an algorithm that exploits past
observations so as to quickly learn and efficiently track the
optimal path.

We formulate this problem as a multi-armed bandit problem
[37] in which decisions correspond to paths between the source
and the destination, and consider it in the adversarial setting
where path costs can change arbitrarily from one time step to
the other. In this setting, no probabilistic assumption is made
regarding the costs of overlay paths, and in particular there
is no independence assumption made on these costs. To solve
this adversarial bandit problem, we use an algorithm directly
inspired from the well-known EXP3 algorithm [38]. At each
successive time slot, it chooses a subset of paths to probe,
and measures the quality of these paths (e.g., by summing
the edge delays if the metric to be optimized is the latency).
The algorithm then sends its packet over the minimum-cost
path among those it has probed. In other words, probing
does not cover all possible paths but only a few paths which
have been observed in previous probing steps to provide the
best performance. However, we have to widen our probing
at random over other paths, so that we do not miss out on
paths whose quality has substantially improved over recent
history. We first give some background information below on
the adversarial multi-armed bandit problem, and then present
the routing algorithm implemented in SMART.

A. Adversarial Multi-armed Bandit Problem

We represent the overlay network by a complete graph G
of n nodes, and we let s and d be the source and destination
nodes, respectively. A decision algorithm A for the multi-
armed bandit problem is given as input N paths in G from
s to d, indexed from 1 to N . For example, these paths may
correspond to the paths of at most two hops between s and
d (that is, the direct link and all paths with exactly one
intermediate node), in which case N = n � 1. The cost of
a path i (e.g., its latency, or the inverse of its throughput)
may vary arbitrarily over time, but it is assumed to be upper
bounded by some constant � > 0. At round t = 1, 2, . . .,
a cost `i(t) 2 [0,�] is assigned to each path i, but it is

not revealed to the algorithm. Then, the algorithm chooses a
path i(t) 2 {1, 2, . . . , N}, sends a message over this path and
observes its cost `i(t)(t). The cumulative cost of the algorithm
over T rounds is defined as

LT (A) =

TX

t=1

`i(t)(t), (1)

whereas the cumulative cost of path i over the T rounds is
LT (i) =

PT
t=1 `i(t). The normalized regret of the algorithm

A with respect to the best path is then

RT (A) =

1

T

✓
LT (A)� min

i=1,...,N
LT (i)

◆
. (2)

The goal is then to design an algorithm A that perform
asymptotically as well as the best path, i.e., such that RT (A)

converges to 0 as T grows to infinity, uniformly over all
outcomes sequences.

In [38], Auer et al. gave a randomized algorithm to solve
the adversarial multi-armed bandit problem. This algorithm is
known as EXP3 and it is based on exponential weighting with
a biased estimate of the gains (defined, in our case, as gi(t) =
� � `i(t) for path i), combined with uniform exploration.
The regret of this algorithm can be upper-bounded, for any
0 < � < 1, and a fixed time horizon T , with probability at
least 1� �, by

RT (EXP3) 11�

2

r
N log(N/�)

T
+

K log(N)

2T
. (3)

Note that the regret of this algorithm decreases in time
according to 1/

p
T . We have implemented in the routing agent

a slightly modified version of the EXP3 algorithm, which
is inspired from the ”power of two choices” technique in
randomized load-balancing [39]. In this version, precisely de-
scribed in Algorithm 1, the routing algorithm chooses a subset
I(t) = {i1(t), . . . , iK(t)} of paths to probe at each round. The
path i1(t) is the IP route from s to d, and the other paths are
chosen randomly according to a probability distribution p(t)
that depends on the weights w1(t), . . . , wN (t) of the paths.
This distribution is a mixture of the uniform distribution and
a distribution which assigns to each path a probability mass
exponential in the estimated cumulative gain for that path.
Once the paths probed by the Monitoring Agent, the algorithm
selects the path i⇤(t) with the best performance among those
in I(t), and informs the Forwarding Agent that it has to use
this path if i⇤(t) 6= i⇤(t � 1). Finally, the algorithm updates
the weights of the paths.

It is easy to show that when K > 1 this algorithms performs
at least as well as EXP3, so that its regret decreases at least as
fast as 1/

p
t. In practice, with K = 3, we often obtain negative

values of the regret, indicating that the algorithm performs

68ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

6

Algorithm 1 Learning optimal paths with the EXP3 algorithm.
1: Parameters: integer K � 1; real � 2 (0, 1].
2: Initialization: wi(1) = 1, i = 1, . . . , N .
3: for t = 1, 2, . . . do

4: Compute the probability of each path:

pi(t) = (1� �)
wi(t)PN
j=1 wj(t)

+

�

N

5: Set i1(t) to the IP route and choose randomly paths
i2(t), . . . , iK(t) according to p(t).

6: Probe the paths i 2 I(t) = {i1(t), i2(t), . . . , iK(t)}.
7: Compute the gains gi(t) = �� `i(t) for i 2 I(t).
8: Select the best path i⇤(t) = argmaxi2I(t) gi(t).
9: Update the weights:

wi(t+ 1) =

(
wi(t) exp

⇣
� gi(t)

Npi(t)

⌘
i 2 I(t),

wi(t) otherwise.

10: end for

even better than the best fixed path. If we restrict ourselves to
the N = n�1 paths of at most two hops, then the monitoring
effort of the algorithm is 2K � 1, independently of the size
of the overlay network. More generally, with m OD pairs the
monitoring effort is m(2K � 1), which is less than in the
all-pairs probing approach as long as m < n(n�1)

2K�1 .

VI. EXPERIMENTAL RESULTS

A. Latency minimization

We now describe the results that were obtained with the
proposed algorithm during an Internet-scale experiment done
in spring 2014, where we used 19 nodes of the NLNog
ring2 shown in Figure 5. Note that these overlay nodes are
interconnected by literally hundreds of Internet nodes which
are unknown to us or the overlay, and which support the
overlay itself.

We first measured the latency between all pairs of nodes
every two minutes, communicating through the Internet, for a
period of one week using the ICMP-based ping utility. Fur-
thermore, when five consecutive packets were lost between a
specific pair of nodes, we considered that the particular source
was disconnected from that destination. We thus collected
some 1.7⇥ 10

6 measurement data over the week, from which
we can compute the weighted adjacency matrix of the overlay
graph at each measurement epoch, and hence compare the
round trip delay of the IP route with that of the optimal overlay
route.

The analysis of collected data confirmed the deficiencies
of Internet routing observed in previous studies. There was
an outage of the IP route at least once in the week for 65%

2The NLNog ring is a network of 293 nodes scattered over 46 countries
(see https://ring.nlnog.net).

Fig. 5. Geographical location of the 20 nodes selected in the NLNog ring.

of OD pairs, and 21% of these outages lasted more than 4

minutes (and more than 14 minutes for 11% of them). This
analysis also revealed that, as shown in Figure 6, in 50% of
the cases it is possible to improve over the latency of the IP
route by adding one or more intermediate overlay nodes to the
path. Surprisingly enough, in 30% of the cases, the minimum
latency path is a path with only one intermediate overlay node,
that is, a two-hop path. This shows that a limited deviation
from IP actually produces much better QoS than IP itself.
Interestingly, even though in 20% of the cases the optimal
path is a 3 or 4 overlay-hop path, there is on the average
no significant gain (only 5.4%) in considering overlay paths
of more than two hops. This suggests that we can restrict
ourselves to paths with at most one intermediate overlay node
(this is true only on average, since, for instance, the RTT
between Narita/Paris can be more than halved if we use two
intermediate nodes instead of at most one).

!"

!#

!$"

!$#

!%"

!%#

!&"

!&#

!'"

!'#

!#"

!##

$ % & ' #

!"
#$
#"
%&#
'(
#)
(#
$%
&*
+,
("#
-%
./
(01

2

()*+,-!./!0.12

Fig. 6. Percentage of instances when the optimal path includes 1, 2, 3 or 4
hops.

As we will now show, SMART allows a significant de-
crease in round-trip delay, with a very modest monitoring and
computational effort. We consider a fixed OD pair, the other
overlay nodes serving just as relays. We restrict ourselves to
the N = 18 overlay paths of at most two hops and assume
that the routing algorithm probes K = 3 paths (including the
direct IP route) at each time slot, that is, every two minutes.

69ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

7

TABLE I
PERFORMANCE OF NATIVE IP AND SMART ROUTINGS ON THE WHOLE
SET OF NLNOG TRACES COMPARED TO OPTIMAL TWO-HOP ROUTING.

IP route SMART
Non optimal instants (%) 44.5 3.8

Gap to optimal latency(%) 14.4 0.39

TABLE II
AVERAGE RTT (MS) FOR SOME PATHOLOGICAL OD PAIRS.

IP route SMART OPT 2-hops
Melbourne/Gibraltar 390 274.7 273.5

Narita/Santiago 406.7 254.5 253.0
Moscow/Dublin 179.9 81.9 80.8

Honk Kong/Calgary 267.1 131.8 130.0
Singapore/Paris 322.3 154.9 153.2

Tokyo/Haifa 322.6 180.8 180.1

The algorithm therefore measures 5 links per measurement and
decision round (to be compared to the 342 links monitored in
the all-pairs probing approach). Our results are summarized
in Table I, which shows the average relative gap to the
minimum latency that can be achieved with two-hop routing
(the averaging is over time and over the 342 OD pairs). Note
that this minimum latency corresponds to what would be
obtained with a routing overlay using the all-pairs probing
approach. These results demonstrate that SMART uses the
optimal two-hop route in 96% of the cases, and that it provides
near-optimal latencies, with a clear improvement over native
IP routing (13.8% on average). However, these average values
do not truly measure the gains obtained in the pathological
routing situations we seek to improve. In Table II, we present
the results for some OD pairs, for which our system allows a
huge decrease in round-trip delay.

On the other hand, Figure 7 shows the RTT between Narita
(Japan) and Santiago (Chile) over 5 successive days. The RTT
of the direct IP route is about 400 ms, whereas the RTT of
the minimum latency path is about 250 ms. As can be seen,
SMART learns quickly which is the minimum latency path and
tracks this path until the end of the 5 days. Figure 8 shows the
same results over the first 3 hours. We notice that it takes only
25 measurement epochs (50 minutes) for SMART to learn the
optimal route.

B. Throughput maximization

We now describe the results obtained in an experiment
involving 9 AWS (Amazon Web Services) data centres located
as shown in Figure 9. In summer 2015, we measured the
available throughput between all pairs of data centres every
five minutes, communicating through the Internet, for a period
of four days. We thus collected some 8.3⇥ 10

4 measurement
data over the 4 days period. Assuming that the available
throughput over a path is the minimum of the throughputs
of its constituent links, the analysis of these data revealed that
the IP route is the maximum throughput route only in 23% of
the cases, and that most of the time, the maximum throughput

!"#$

!%$$

!%#$

!&$$

!&#$

!$!' !" !% !& !#

!
""
#$%

&'

()*+!,-./01

2345-!67)8!6)*+0!9.7)(.:;.5().<3

=8()*.>!734(+
? !734(+

=!+7>./!734(+

Fig. 7. RTT (ms) measured for the Narita(Japan)-Santiago(Chile) connection
in an experiment lasting 5 consecutive days.

!"#$

!%$$

!%#$

!&$$

!&#$

!$!"$!&$!'$!($!)$$!)"$!)&$!)'$!)($

!
""
#$%

&'

+,-!.,+/0-12

340/5!67+8!6+,-1!9:7+*:;<:/*+:=4!.>44,2

?8*+,: !740*-
!"!740*-

?#-7 :$!740*-

Fig. 8. RTT ms for the Narita(Japan)-Santiago(Chile) connection over the
first 3 hours of the experiment reported in Figure 7.

overlay route passes through 1 or 2 intermediate nodes (see
Figure 10).

Fig. 9. Geographical location of the 9 AWS data centres.

As in Section VI-A, we consider only the N = 8 overlay
paths of at most two hops and take K = 3. The monitoring
effort is therefore limited to 5 links, whereas the all-pair
probing measures the throughput of 72 links at each mea-
surement epoch. Our results are summarized in Table III. As

70ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

8

!"

!#

!$"

!$#

!%"

!%#

!&"

!&#

$ % & ' #

!"
#$
#"
%&#
'(
#)
(#
$%
&*
+,
("#
-%
./
(01

2

()*+,-!./!0.12

Fig. 10. Percentage of instances when the optimal path includes 1, 2, 3, 4
or 5 hops.

TABLE III
PERFORMANCE OF NATIVE IP AND SMART ROUTINGS ON THE WHOLE

SET OF AWS TRACES COMPARED TO OPTIMAL TWO-HOP ROUTING.

IP route SMART
Non optimal instants (%) 73.9 30.1

Gap to optimal latency(%) 31.3 6.6

for the RTT, we observe a clear improvement over native IP
routing, and the performance degradation with respect to a
routing overlay using the all-pairs probing approach is quite
limited (only 6.6%). Here again, we present in Table IV the
results obtained for some pathological OD pairs, for which the
available throughput is at least doubled.

On the other hand, Figure 11 shows the available throughput
between Sydney (Australia) and Virginia (USA) over the 4

successive days. The average throughput of the direct IP route
is 8.5 Mbps, whereas the average throughput of the optimal
path is 55.3 Mbps. Figure 12 shows the same results over
the first 3 hours. We notice that SMART discover an optimal
routes almost immediately, but that it is less effective at
tracking it than it was the case for the RTT.

VII. CONCLUSION

Internet routing works reasonably well most of the times.
Yet, our experimental results show that a routing overlay
that make measurement-based online routing decisions can
yield spectacular improvements over native IP routing in some

TABLE IV
AVERAGE THROUGHPUTS (MBPS) FOR SOME PATHOLOGICAL OD PAIRS.

IP route SMART OPT 2-hops
Dublin/Sydney 11.5 35.5 40.5

Singapore/Sao Paulo 12.8 39.5 43.6
Sydney/Virginia 8.5 50.7 55.3

Virginia/Singapore 7.4 31.2 36.1
Virginia/Sydney 6.9 32.2 36.7
Virginia/Tokyo 10.3 37.5 43.4

!"

!#"

!$"

!%"

!&"

!'""

!" !"() !' !'() !# !#() !* !*() !$

!"
#$
%&
"'
%(
)*+

,'
-.

+,-.!/01234

56789:6;9+!<78-!=20>.2!+8!?,7:,>,1

 ;+,-1!!789+.
"#!789+.

 $.7!12!789+.

Fig. 11. Throughput (Mbps) measured from Sydney (Australia) to Virginia
(USA) over 4 consecutive days.

!"

!#"

!$"

!%"

!&"

!'"

!("

!)"

!*"

!+"

!" !$" !&" !(" !*" !#"" !#$" !#&" !#(" !#*"

!"
#$
%&
"'
%(
)*+

,'
-.

,-./!0.-12,/34

5678296:2,!;78.!<=>1/=!,8!?-79-1- !0!88.4

":,-. #!782,/
$%!782,/

"&/7# =!782,/

Fig. 12. Throughput (Mbps) measured from Sydney (Australia) to Virginia
(USA) over the first 3 hours of the experiment reported in Figure 11.

cases. The issue is that it is not possible to measure the
quality of all overlay links in large overlays, implying that a
tradeoff between the quality of the routes discovered and the
monitoring effort to discover them is required. To the extend of
our knowledge, SMART is the first routing overlay to address
this issue.

The results we have obtained have essentially considered
paths of at most two overlay hops. Although considerable
improvements over native IP routing have been demonstrated,
this may not be sufficient for some source to destination
pairs. In order to increase the number of potential overlay
paths without impairing the convergence time of the learning
algorithm, we plan to investigate a different approach based
on the so-called Online Shortest Path Problem [40]. This
approach makes use of the following crucial observation: when
the latencies of the edges of some paths are measured, then this
also provides some information about the latency of each path
sharing common edges with probed paths. As future work,

71ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

9

we intend to study experimentally the performance of this
approach, as well as to investigate its generalization to non-
additive metrics for the Online Widest Path Problem.

ACKNOWLEDGEMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under the PANACEA Project
(www.panacea-cloud.eu), grant agreement no 610764.

We wish to thank the administrators of the NLNog ring for
providing us access to this platform.

REFERENCES

[1] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, “The
end-to-end effects of internet path selection,” SIGCOMM Comput.
Commun. Rev., vol. 29, no. 4, pp. 289–299, Aug. 1999. [Online].
Available: http://doi.acm.org/10.1145/316194.316233

[2] V. Paxson, “End-to-end routing behavior in the internet,” in in Proc.
ACM SIGCOMM’96, Stanford, CA, USA, August 1996, pp. 25–38.

[3] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed
internet routing convergence,” SIGCOMM Comput. Commun. Rev.,
vol. 30, no. 4, pp. 175–187, Aug. 2000. [Online]. Available:
http://doi.acm.org/10.1145/347057.347428

[4] M. Dahlin, B. Chandra, L. Gao, and A. Nayate, “End-to-end wan service
availability,” in In Proc. 3rd USITS, 2001, pp. 97–108.

[5] J. Han and F. Jahanian, “Impact of path diversity on multi-homed and
overlay networks,” in In Proceedings of IEEE International Conference
on Dependable Systems and Networks, 2004.

[6] C. Labovitz, R. Malan, and F. Jahanian, “Internet routing instability,”
IEEE/ACM Transactions on Networking, vol. 6, no. 5, pp. 515–526,
1998.

[7] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs,
“Locating internet routing instabilities,” in Proceedings of the ACM
SIGCOMM 2004 Conference (SIGCOMM), Portland, Oregon, USA,
August 2004.

[8] L. Peterson, S. Shenker, and J. Turner, “Overcoming the internet impasse
through virtualization,” in in Proceedings of the 3rd ACM Workshop on
Hot Topics in Networks (HotNets-III), November 2004.

[9] J. Touch, Y. Wang, L. Eggert, and G. Finn, “A virtual internet architec-
ture,” ISI, Tech. Rep. ISI-TR-2003-570, March 2003.

[10] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der
Merwe, “The case for separating routing from routers,” in Proceedings
of the ACM SIGCOMM workshop on Future directions in network
architecture, A. Press, Ed., 2004.

[11] M. Beck, T. Moore, and J. Plank, “An end-to-end approach to globally
scalable programmable networking,” in in Proceedings of the ACM
SIGCOMM workshop on Future directions in network architecture,
A. Press, Ed., 2003.

[12] U. Ayesta, O. Brun, H. Hassan, and B. Prabhu, “D2.3 - autonomic
communication overlay,” Deliverable of the FP7 PANACEA project
(www.panacea-cloud.eu), Tech. Rep., 2015.

[13] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM’01, San Diego, California, USA., August 27-31 2001.

[14] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in In the Pro-
ceedings of the 18th IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware 2001), 2001.

[15] B. Y. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatow-
icz, “Tapestry: A resilient global-scale overlay for service deployment,”
IEEE Journal on Selected Areas in Communications, 2003.

[16] Y. Chu, S. Rao, and H. Zhang, “A case for end system multicast,” in
ACM SIGMETRICS 2000, ACM, Ed., Santa Clara, CA, June 2000, pp.
1–12.

[17] S. Banerjee, B. Bhattacharjee, C. Kommareddy, and G. Varghese,
“Scalable application layer multicast,” in Proc. of the ACM SIGCOMM,
New York, USA, 2002.

[18] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “Almi: An applica-
tion level multicast infrastructure,” in Proc of the 3rd USNIX Symposium
on Internet Technologies and Systems (USITS), San Francisco, CA, USA,
March 2001.

[19] J. Liebeherr and T. K. Beam, “Hypercast: A protocol for maintaining
multicast group members in a logical hypercube topology,” in Proceed-
ings of the First International COST264 Workshop on Networked Group
Communication. Springer-Verlag, 1999, pp. 72–89.

[20] R. Stone, “Centertrack: An ip overlay network for tracking dos floods,”
in in Proc. USENIX Security Symposium ’00, August 2000.

[21] J. Wang, L. Lu, and A. Chien, “Tolerating denial-of-service attacks using
overlay networks - impact of overlay network topology,” in in Proc. First
ACM Workshop on Survivable and Self-Regenerative Systems, 2003.

[22] K. Andreev, B. M. Maggs, A. Meyerson, and R. Sitaraman, “De-
signing overlay multicast networks for streaming,” in Proceedings of
the Fifteenth Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), San Diego, CA, USA, June 2003.

[23] H. Rahul, M. Kasbekar, R. Sitaraman, and A. Berger, “Towards realizing
the performance and availability benefits of a global overlay network,” in
Passive and Active Measurement Conference, Adelaide, Australia, March
2006.

[24] T. Leighton, “Improving performance on the internet,” Communications
of the ACM, vol. 52, no. 2, February 2009.

[25] E. Nygren, R. K. Sitaraman, and J. Sun., “The akamai network: A
platform for high-performance internet applications,” ACM SIGOPS
Operating Systems Review, vol. 44, no. 3, July 2010.

[26] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain, Overlay
Networks: An Akamai Perspective, ser. In Advanced Content Delivery,
Streaming, and Cloud Services, E. Pathan, Sitaraman, and Robinson,
Eds. John Wiley & Sons, 2014.

[27] J. Moy, “RFC 7348: Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks,” Tech. Rep., 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7348

[28] R. Moats, “Open dove,” https://wiki.opendaylight.org/view/Open
DOVE:Main, 2013.

[29] A. Collins, “The detour framework for packet rerouting,” Tech. Rep.,
1998.

[30] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris,
“Resilient overlay networks,” in Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, ser. SOSP ’01. New
York, NY, USA: ACM, 2001, pp. 131–145. [Online]. Available:
http://doi.acm.org/10.1145/502034.502048

[31] E. Gelenbe, R. Lent, A. Montuori, and Z. Xu, “Towards networks
with cognitive packets,” in Proc. 8th Int. Symp. Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (IEEE
MASCOTS), San Francisco, CA, USA, August 29-September 1 2000,
pp. pp 3–12.

[32] E. Gelenbe and Z. Kazhmaganbetova, “Cognitive packet network for
bilateral asymmetric connections,” IEEE Trans. Industrial Informatics,
vol. 10, no. 3, pp. 1717–1725, 2014.

[33] M. Gellman, “Qos routing for real-time traffic,” Ph.D. dissertation,
Imperial College London, 2007.

[34] O. Brun, L. Wang, and E. Gelenbe, “Big data for autonomic interconti-
nental overlays,” to appear in IEEE Jour. Selected Areas in Communi-
cations (special Issue on Emerging Technologies in Communications -
Big data), 2016.

[35] “Netfilter/iptables,” http://www.netfilter.org/, 2014.
[36] J. Ahrenholz, C. Danilov, T. Henderson, and J. Kim, “Core: A real-time

network emulator,” in In IEEE Military Communications Conference
(MILCOM 2008), November 2008, pp. 1–7.

[37] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning and Games.
Cambridge University Press, 2006.

[38] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “The non-
stochastic multi-armed bandit problem,” SIAM Journal on Computing,
vol. 32, no. 1, pp. 48–77, 2002.

[39] M. D. Mitzenmacher, “The power of two choices in randomized load
balancing,” Ph.D. dissertation, University of California at Berkeley,
1991.

[40] A. Gyorgy, T. Linder, G. Lugosi, and G. Ottucsak, “The on-line shortest
path problem under partial monitoring,” Journal of Machine Learning
Research, vol. 8, pp. 2369–2403, 2007.

72ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

