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Abstract

The growth of bandwidth in computer networks fuels the
constant adoption of measurement equipment and method-
ologies. Networking equipment offers processing capacity
in the Terabit/s range nowadays. However, test equipment
in academia lags behind. We propose FLOWer, a novel and
cost effective approach capable of testing such high-speed
devices. FLOWer combines an inexpensive software packet
generator with an OpenFlow-enabled switch to amplify the
bandwidth while sustaining the flexibility of the software
solution. By utilizing OpenFlow, FLOWer is able to provide
the required bandwidths the software solution cannot gener-
ate on its own. We demonstrate a proof-of-concept with ex-
ample measurements at bandwidths of multiple 100 Gbit/s.

1. Introduction

With data centers deploying 10 GbE as standard equip-
ment and with the increasing availability of succeeding stan-
dards like 40 GbE and 100 GbE the demand for bandwidth
in network devices is rising. At the same time, technologies
like OpenFlow and network function virtualization introduce
new possibilities to configure these devices. However, this
increased flexibility comes with a price, as there is a tradeoff
between performance and flexibility. This situation creates
the need for new benchmarking and testing methodologies
to enable an accurate assessment of these devices.

We propose a new way to efficiently test devices with
bandwidths in the Terabit/s range with little effort. To
achieve this FLOWer uses a combination of a packet gener-
ator with an OpenFlow switch. This combined system offers
the flexibility of a software packet generator and at the same
time the performance of a hardware solution through the
OpenFlow-enabled switch. The software-generated packets
are fed into an OpenFlow-enabled switch which can multi-
ply them manifold via OpenFlow and generate high band-
widths in a simple and elegant way. OpenFlow capabilities
also allow modification or the measurement of the traffic.

Our evaluation is based on modern 10 Gbit/s OpenFlow
hardware. Relevant features and limitations of these devices
are discussed further in Section 3. The most basic test
setup uses the capabilities of FLOWer to perform self-tests
on OpenFlow-enabled devices by connecting the FLOWer

switch with itself. We show this setup with example mea-
surements in Section 4. More complex test setups can be
achieved by connecting the FLOWer switch to other devices.
A sample setup is discussed in Section 5. All results and
code used for the experiments presented here are publicly
available [5], cf. Section 6.

2. Related Work

Packet generators face a trade-off between flexibility and
performance. Software packet generators are typically slow
and unreliable [2]. Hardware packet generators offer high
precision, speed, and number of ports [21]. However, they
lack the flexibility of modern software packet generators
that can be configured with scripts [7]. Specialized hardware
is always expensive compared to the commodity hardware
required for software tools (cf. Section 3.3). The software
packet generator MoonGen [7] solves this problem to some
extent by using hardware features found on commodity
server network interface cards (NICs) to provide high pre-
cision. However, the speed and number of ports still lags
behind commercial hardware offerings as it is restricted to
server hardware.

Professional hardware packet generators offer a large
number of ports and even multiple 100 GbE ports [22].
The need for higher speeds is apparent in the literature.
E.g., Rotsos et al. present OFLOPS, a framework to test
OpenFlow switches with a NetFPGA [20]. Their original
framework was limited to 100 Mbit/s on GbE ports and
later extended to 20 Gbit/s [19] with the OSNT packet gen-
erator [1]. However, the devices they are testing offer speeds
beyond 100 Gbit/s. FLOWer is not an alternative to existing
packet generators, but an addition: it can be combined with
a framework like OFLOPS to solve this discrepancy.

A technique similar to FLOWer was used by Mahadevan
et al. in 2009 [11]. They wired a switch in a way that all
ports were connected back to the switch itself. Broadcast
traffic sent over this configuration loads the switch without
requiring a high performance traffic generator. We use a
similar wiring approach for self testing the FLOWer switch
(cf. Section 4) However, our approach is more precise as
it uses OpenFlow features to shape unicast traffic to our
specific requirements and to measure throughput.
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Kuźniar et al. discuss characteristics of OpenFlow flow
table implementations on different switches [10]. The results
like the flow table size and costs of modification operations
are important for us to select a suitable OpenFlow switch.

3. Test Hardware and Software

In the following the hard- and software is presented
which we used for our proof of concept. However, FLOWer
does not depend on these specific devices. It is rather a
methodology and can be transferred to other OpenFlow-
enabled hardware and other packet generators.

3.1. OpenFlow Switches

OpenFlow specifies programmable switches: they can
be configured to match packet headers based on flows.
These flows are also referred to as rules in this paper. The
packets matching against these flows can be modified via
modification actions and can then be sent out on one or more
ports. Traffic can be accounted through statistics associated
with flows. [13]

We use an Edge-Core Networks AS5712-54X 10 GbE
switch which is based on Broadcom BCM56854 Trident II
switch ASICs with 48 10 GbE ports and 6 40 GbE ports [4]
for our proof of concept. This switch is a design approved
by the Open Compute Project, several switches with similar
designs are available on the market [12]1. The standardized
design allows for multiple choices of operating systems
while keeping the hardware costs low. We selected the Pic-
OS operating system as it features a mature implementation
of OpenFlow 1.4 [18].

This hard- and software allows for benchmarking speeds
of up to 720 Gbit/s. However, we did not have 40 GbE cables
in stock, so we were restricted to 480 Gbit/s here. Even this
speed and port density is beyond the capabilities of packet
generators that are usually available in the academic field.

3.2. MoonGen Packet Generator

We use our packet generator MoonGen [6], as it is a
highly flexible software packet generator: it crafts all packets
in real-time with user-provided Lua scripts. It also features
latency measurements with sub-microsecond precision by
using timestamping features on commodity NICs. [7]

High-speed packet generation is not required for
FLOWer, but it simplifies some test setups if the packet
generator can keep up with the fastest port on the switch.
We use MoonGen with two 10 GbE interfaces, which it is
able to saturate on a low-end Xeon E3-1230 v2 with a dual
port Intel X520-T2 NIC. MoonGen is capable of generating
bandwidth of up to 180 Mpps at 120 Gbit/s on commodity
hardware, so it is scalable to 100 GbE switches. Readers
interested in more details about MoonGen are referred to
our full evaluation. [7]

1. This switch is listed as “Accton AS5712-54X” in the specification;
Edge-Core Networks is a subsidiary of Accton.
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Figure 1. Self-flooding test setup

3.3. Cost Effectiveness

The total cost of the test setup (without the device under
test (DuT)) to benchmark devices at 710 Gbit/s with this
switch was less than e 10 000. A test setups for several
Tbit/s using newer 100 GbE switches can be built for less
than e 30 000.

These prices are based on quotes from 2015 and are
expected to drop even further below prices for hardware
packet generators2 as OpenFlow switches and 40/100 GbE
networks become more commonplace.

4. Self-testing SDN Devices

OpenFlow can be used for self-tests of devices. This
allows testing an OpenFlow-enabled switch at maximum
rate, without requiring any additional hardware beside the
device under test, in this case the switch itself, and a
software packet generator running on commodity hardware.

We present possible configurations and example mea-
surements here. A switch can be wired and programmed
such that it sends traffic to itself. We connected port 47 and
48 to our packet generator and port 1 with port 2, port 3
with port 4, etc.

4.1. Evaluating Quality of Service Features

Switches can define multiple queues per port with dif-
ferent priorities to implement quality of service (QoS). Such
hardware features on switches enable modern implementa-
tions of QoS in data centers, e.g. by using IEEE 802.1Q [9]
service classes mapped to queues on a switch [8]. FLOWer
allows us to test hardware features like this under extreme
circumstances as this example measurement demonstrates.

4.1.1. Test Setup. We generate two network flows of
minimum-sized UDP packets with different destination UDP
ports at our packet generator. Figure 1 merely illustrates

2. A search on eBay suggests that a second-hand Spirent TestCenter
packet generator, without any software licenses, with a comparable number
of ports and speeds costs far more than e 100 000.
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wiring and traffic flow not the actual setup. This sketch has
a reduced number of ports and does not represent the full
duplex transmission.

The first network flow, the real-time (RT) flow, is to
be prioritized and sent with a constant rate of 1 Gbit/s. This
flow is matched by a rule on switch port 48 and sent directly
back to the packet generator on switch port 47 via a high-
priority queue (cf. the solid line in Figure 1).

The rate of the second network flow, the background

(BG) flow, is varied in this experiment. The switch is con-
figured to send it out on ports 1 to 46, as depicted with
dotted lines in Figure 1. From there it flows back to these
ports via the external cabling (cf. the slash dotted line in
Figure 1). This amplifies the traffic 46-fold. All incoming
traffic from these ports is sent back to the packet generator
via a low-priority queue. This tests the behavior of a pri-
oritized network flow under increasing load of unimportant
background traffic.

The packet generator then measures the latency of both
network flows. Note that the packet generator receives up to
46 copies for each packet it sends in the background which
is a potential challenge for timestamping. MoonGen uses
sequence numbers for timestamping and defines the latency
as the time until the first copy of a packet arrives back
at the packet generator. Subsequent packets with the same
sequence number are ignored, this is therefore the best-case
latency of the background traffic.

Our repository [5] contains the script selftest/

qos.sh which was used to install the OpenFlow flows on
the DuT.

4.1.2. Test Results. Figure 2 shows the latencies of the two
network flows with the QoS queue enabled and disabled. It
demonstrates that the QoS features work with hundreds of
Gbit/s BG traffic.

The deviation of about 700 ns between background and
real-time traffic for low rates in both tests is a result of
the test setup: the background traffic flows through an
additional hop during the amplification step while the real-
time traffic is forwarded directly back to the packet generator
(cf. Figure 1).

Another result of this test is that the RT traffic is affected
by the presence of BG traffic even with QoS enabled.
Inspecting the histograms of the RT traffic’s latency reveals
that it follows a bimodal distribution. Figure 3 shows the
latency under a background load of 8 Gbit/s with two clearly
visible peaks. As the switch operates in cut through mode,
the left peak represents the immediate transfer of a packet.
The right peak shows delayed transfer due to ongoing BG
traffic transmission, resulting in this bimodal distribution.

Figure 4 on the next page shows the latency distributions
for other ratios of RT to BG traffic as cumulative distribution
functions (CDFs). The amount of packets that must be
queued increases with the BG traffic, i.e., the ratio of the
peaks in the distribution changes with the ratio of the traffic.
All packets must be queued once the link is saturated, so the
QoS features works best when the link is not overloaded.
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Figure 2. Forwarding latencies with and without QoS

4.2. Forwarding Performance and Latency

Another self-test scenario is forwarding packets in a
loop (Figure 5). The packet generator sends on both ports
to generate a total bidirectional load of 480 Gbit/s on the
switch. All internal connections are realized with OpenFlow
flows.

4.2.1. Forwarding Performance. We added OpenFlow
rules that match addresses from layer 1 (switch ports) to
layer 4 (UDP ports) with modifications of all supported
header fields from layer 2 to 4 for all packets to maximize
the system load.

The switch achieved line rate in all tested configurations.
Some OpenFlow switches perform a fallback to a software
implementation for operations not supported in hardware
at the expense of performance [20]. PicOS only accepts
OpenFlow flows supported in hardware in line rate [18].

4.2.2. Forwarding Latency. This setup can also be used
to measure the forwarding latency of the switch under full
bidirectional load of up to 480 Gbit/s. Load on the switch
due to processing can influence the observed latency. For
example, RFC 2544 requires measuring the latency of the
DuT under full load [3]. The following test loads all 10 GbE
ports of our switch to quantify this effect on our switch.
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Figure 3. Latency distribution of 1 Gbit/s RT traffic with 8 Gbit/s BG
traffic, QoS enabled

The total forwarding latency l consists of the delay
introduced by the connection from the packet generator to
the switch lgen, the forwarding latency lswitch of the switch,
and the number of hops n:

l = 2 · lgen + n · lswitch

We measured the forwarding latency through the switch with
various loop lengths from n = 0 (sending the traffic back
directly) to n = 23. Figure 6 shows the CDFs of different
loop lengths up to n = 15 to improve the readability of
the graph as the remaining CDFs look similar. We can
calculate the following median latencies from these results:
lgen = 480ns and lswitch = 729ns. These values include
propagation delay due to varying cable lengths, we used
copper cables with various lengths between 0.5 and 3 meter.
This introduces an additional error of 12 ns (assuming a
propagation speed of 0.7c [7]) in addition to the granularity
of 12.8 ns of the packet generator [7].

Note that these results are crucial for FLOWer: The
latency of the switch is important for further tests using
the switch to amplify traffic for a separate DuT. In such
a setup, the switch is part of the measurement equipment,
and its accuracy therefore limits the total accuracy of the
experiment.

These results show that forwarding latency does not
depend on the switch ports. This indicates the high accuracy
of the packet generator and that latency is independent from
the used switch port. We did not test all combinations of
ports, one should repeat this test with the appropriate set of
ports to verify this before relying on a switch to run latency-
critical experiments. There may be differences in the latency
between ports on a switch due to the internal architecture
of the switch.

The difference between the minimum and maximum
observed forwarding latency was only 217.6 ns (cf. the
steep CDFs in Figure 6, each based on 48 000 timestamped
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Figure 4. Latency distributions of 1 Gbit/s RT traffic with varying BG
traffic, QoS enabled
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Figure 5. Loop forwarding test setup
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Figure 6. Latency distributions traffic forwarded through the switch n times

packets over 48 seconds3). This is important when the switch
is used to amplify traffic while also measuring latency, the
inaccuracy of the switch affects the measurement. OpenFlow
switches with a far lower jitter exist [23] and can be used
if a better precision is required.

5. Amplifying Traffic

After evaluating the suitability of an OpenFlow Switch
for our testing purposes in Section 4 we apply the FLOWer

3. MoonGen cannot timestamp all packets, only random samples.
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Figure 7. Testing arbitrary devices

approach to testing arbitrary networking devices. Therefore,
we extend the original two-device-setup by another switch
as shown in Figure 7. Both MoonGen and the DuT are
connected to the switch which amplifies MoonGen’s traffic
and measures the throughput of the DuT. Standard tests
like MoonGen’s RFC 2544 [3], [24] implementation can be
performed with only small modifications while increasing
the bandwidth by more than an order of magnitude.

5.1. Generating Different Flows

OpenFlow flows amplify the traffic by sending incoming
packets to multiple ports. Additionally, the switch can mod-
ify header fields to generate different traffic which would not
be possible with traditional switches. This allows for more
realistic test cases (different traffic on each port) with a mul-
titude of network flows on different ports despite the limited
output bandwidth of the packet generator. OpenFlow defines
modification actions for header fields of all commonly used
protocols [13] and PicOS supports most of them [18].

OpenFlow applies actions to packets, one of these ac-
tions is processing the packet via a group as depicted in
Figure 8. Packets arrive on a port to the left, are matched
via a rule and assigned to a group. Groups are meant to
implement multicast and load-balancing efficiently. A group
consists of multiple buckets, each defines a set of actions to
be executed for packets sent to this bucket. These actions are
the same that can be applied by regular rules, i.e., a group
essentially clones a packet and applies different rules to each
clone. Packets forwarded to the group can then be configured
to be sent to either one (via hashing) or all buckets [13].
We can define a group with one bucket for each switch
port and thus define modification actions that are specific to
that switch port. For example, the following group table
definition (in Open vSwitch syntax) shows a group that
changes the IP address for each switch port, loading the
DuT with completely different IP flows.

Group

Flow Modifications

Figure 8. OpenFlow group with buckets sending to multiple output ports

group_id=1,type=all,

bucket=mod_nw_dst:10.0.0.1,output:1,

bucket=mod_nw_dst:10.0.0.2,output:2, ...

There are no restrictions for the output ports in a Open-
Flow group or flow [13]. This means that a group or flow can
send out a packet to a single switch port more than once
by using it multiple times. This trick allows for different
ratios of network flows created by the packet generator on
different switch ports.

The packet generator only needs to send archetypes
for various network flows which are then amplified and
modified by the switch. For instance, a packet generator
like MoonGen can be configured to send 5 Gbit/s TCP and
5 Gbit/s UDP traffic.

The switch can modify additional header fields to gen-
erate different traffic on different switch ports. It can even
change the composition from 50:50 TCP/UDP to another
ratio on some ports. For example, there can be two buckets
in a group for UDP packets and none for TCP packets.

5.2. Measuring Throughput

OpenFlow counts the number of packets and bytes
processed by each rule. This can be used to measure the
throughput of the DuT by installing OpenFlow flows that
match the traffic sent from the DuT and periodically polling
their statistics. The traffic coming back from the DuT can
be dropped explicitly to only count the throughput.

Statistics can be counted for multiple traffic flows by
creating multiple OpenFlow flows that match on the required
header fields analogous to how the switch can be used to
amplify traffic flows. For example, if the switch is config-
ured to modify the destination IP addresses for each switch
port, analogous OpenFlow flows can be installed for the
incoming traffic. One OpenFlow flow for each destination
IP address can be installed to measure the throughput of the
DuT.

Another way to measure throughput is by using Open-
Flow meters. Meters are used to implement rate limiting and
they also measure traffic directed to them [13]. However, a
OpenFlow flow is required to send traffic to the meter and
the traffic could as well be measured by the OpenFlow flow
statistics. There is one scenario where this can be useful:
Multiple OpenFlow flows can map to a single meter to
aggregate network flows in hardware. Reading statistics can
be slow, especially on switches with older CPUs [20], so
this aggregation step can improve performance.
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Figure 9. Latency incurred by an OpenFlow meter

Traffic can also be forwarded back to the packet gen-
erator to count it there. However, the link back is usually
comparatively small here. OpenFlow meters can be used
to give each network flow a fair share of the available
bandwidth. This is useful to sample packets, e.g. to see if
all traffic flows (e.g. wildly varying UDP ports that cannot
all be installed in the hardware) get forwarded.

5.3. Measuring Latency

Latency can be measured by forwarding the packets back
to the packet generator. In Section 4.2.2 we showed that
the switch we used here introduces additional jitter, limiting
the precision of the timestamping to ±217 ns while other
switches can achieve a jitter of below 100 ns [23].

It is important to ensure no queuing happens on the
amplification switch to keep the jitter at this level. The
critical path is the path from the DuT back to the packet
generator. Naı̈vely forwarding all incoming traffic to the
packet generator causes queuing delay in the millisecond-
range (cf. Section 4.1). The simplest solution is to filter
out the timestamped packets (only a subset of the packets
is timestamped) on the amplification switch and send only
them back to the packet generator. A critical property of
latency measurement via sampling is that the DuT cannot
distinguish timestamped packets from other packets. E.g.,
MoonGen uses a single byte in the payload to identify times-
tamped packets. OpenFlow cannot match on this. However,
the DuT often does not look at all header fields like the IP
TTL, ECN or DSCP flags. For example, we implemented a
MoonGen script4 that marks timestamped packets by setting
their TTL to 63 instead of 64. OpenFlow supports matching
TTL and its exact value is usually not relevant to the DuT.
Unfortunately, the switch we used does not support matching
the TTL field [18], so we could not evaluate this. The actual
field to hide the flag in depends on the DuT, the test case,
and the capabilities of the amplification switch.

If this is not possible, e.g. due to lack of hardware
support, then the only solution is using an OpenFlow meter
to limit the traffic sent back to the packet generator to
avoid queuing delays. Sending the traffic through a meter
adds latency. Figure 9 shows the latency added by sending

4. Available in our repository at [5]

traffic through an OpenFlow meter which was loaded with
460 Gbit/s traffic. The difference between the minimum and
maximum latency is 2.8µs, so meters do add queuing delay,
but not as much as overloading the port (cf. Section 4.1).
This limits the precision of the timestamping to the µs-
range.

It is of course always possible to attach the packet
generator directly to some of the DuT ports, restricting the
flexibility of timestamped packets. For example, MoonGen
can saturate multiple 10 GbE ports, so it could load both the
amplification switch and some ports of the DuT directly.

5.4. Hardware Limits

OpenFlow switches only have a limited OpenFlow flow
table size. The switch we are using supports 2048 OpenFlow
flows [15]. FLOWer only needs a single OpenFlow flow
table entry to generate traffic and one per port to count
traffic in the simplest case. More interesting scenarios need
two OpenFlow flows per port and modification action: one to
modify and send the packet, the other to match the modified
packet and count it.

Note that the total number of different OpenFlow flows
is the product of the number of modifications on the switch
and the number of network flows generated by the packet
generator. Modern packet generators like MoonGen allow
crafting each packet in real-time through a user-controlled
script, i.e., every packet can be made unique. The switch
only needs one rule per output port to make every packet
sent to the DuT completely unique.

The switch used here is not able to count packets on a
per-flow or meter basis, only bytes. This is not a major
disadvantage of this switch as the packet size is often
constant or its distribution is known.

Reading statistics from the switch can also be an expen-
sive operation on older OpenFlow switches [20]. We did not
notice a significant performance degradation or CPU load
when polling the statistics multiple times per second as our
switch features a powerful x86 CPU.

5.5. Example: Flow Table Insertion Times

The only DuT available for this research was a second
switch of the same model. A good test case for this DuT with
this test setup is measuring the performance of flow table
modifications under load. Using a separate DuT is a better
scenario for this test than the previous self-test as the self-
test requires OpenFlow flows for both the traffic generation
and the tested OpenFlow flows to be on the same device.
This may cause undesired interferences when attributes like
insertion time or flow table size are tested. Therefore, we
use the second switch as DuT here.

PicOS uses Open vSwitch to implement OpenFlow [17],
so one has to understand its architecture in order to under-
stand why this test is of particular interest.

5.5.1. Open vSwitch Architecture. Open vSwitch pro-
cesses packets in two main modules: the switch daemon and
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the datapath. The former runs on the CPU of the switch
and manages all OpenFlow rules. The latter performs the
actual forwarding through specialized datapath rules derived
on demand from the OpenFlow rules. [14]

The datapath is implemented as a kernel module in the
software-version of Open vSwitch on commodity PC hard-
ware. PicOS replaces this datapath with a specialized version
that installs the rules directly in the switching ASIC [17].

This means that an installed OpenFlow flow is not auto-
matically and instantly available as a rule in the hardware.
A packet not matching any rule on the switching ASIC is
forwarded to the CPU where it is processed by the switching
daemon. This daemon creates a rule for the datapath (derived
from an OpenFlow flow which may contact an external
controller) to match future packets of the same network
flow. [14]

5.5.2. Test Setup. We connected the second switch with
32 cables to the amplification switch as shown in Figure 7.
The DuT was configured with OpenFlow flows matching
on all combinations of the 32 switch ports and 100 differ-
ent UDP ports or addresses in separate tests, i.e., a total
of 3200 network flows, that forwarded the packets back
to the amplification switch where they were counted via
OpenFlow flow statistics (cf. Section 5.2). MoonGen was
used to generate minimum-sized UDP packets alternating
between 100 different UDP ports/IP addresses. This traffic
was amplified 32-fold (476 Mpps at 320 Gbit/s).

We initially forwarded samples of the packets via Open-
Flow meters (cf. Section 5.3) back to MoonGen to measure
the point at which a rule became active with µs-level pre-
cision. However, we noted that such a high precision was
not necessary for this test as the insertion times were in the
order of milliseconds per OpenFlow flow. We counted the
installed OpenFlow flows with two different methods: via
reading the OpenFlow statistics on the amplification switch
to pinpoint the time at which the first packet arrived and
via reading the hardware flow table entries directly from
the switching ASIC with the ovs-appctl pica/dump-

flows command. Both methods yielded the same results
in separate experiments, eliminating potential performance
impacts of the dump-flows command and potential delays
in the OpenFlow statistics.

5.5.3. Test Results. Figure 10 shows the number of Open-
Flow flows installed in the switching ASIC after sending
the OpenFlow commands to add the flows. Adding all of
the 3200 OpenFlow flows to the flow table in the switching
daemon took only 1.5 s. The number of OpenFlow rules
that can actually be realized in hardware depends on the
fields used by the rule. The hardware we use features 2048
TCAM entries [15]. However, each flow table entry requires
two entries if all OpenFlow features are enabled. Restrict-
ing matches to layer 1 to 3 allows using 2048 OpenFlow
flows [16]. No packets were forwarded for the OpenFlow
flows not present in the switching ASIC as we inserted 3200
OpenFlow flows – more than the switching ASIC supports.
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Figure 10. Flows installed in hardware over time

The insertion time may depend on the priorities of the
inserted OpenFlow rules, inserting in decreasing priority is
the best case and increasing the worst case [10]. We could
reproduce this for rules matching on IPv4 addresses but
without a significant difference between decreasing order
and rules with the same priority. The insertion time was
not affected by the insertion order and relatively slow for
OpenFlow flows matching UDP ports. The load on the
switch had no effect: We tested rates of 3.2 Gbit/s, 32 Gbit/s,
and 320 Gbit/s.

The insertion time suddenly increases once the TCAM
is half full at 512 or 1024 entries depending on the matched
headers. Our interpretation of this result is that the hardware
uses a double-buffering algorithm to speed up the required
re-shuffling operations if enough space is available.

The worst-case insertion time we found was about 90 ms
per OpenFlow flow for flows requiring two TCAM entries
above 512 inserted flows. The best case was approximately
3 ms for IPv4 matches inserted in decreasing priority or
into a half empty TCAM (6 ms for UDP port OpenFlow
flows). These insertion times are significantly faster than
results from older switches: Rotsos et al. found a smoothly
increasing insertion time ranging from 1 s to 10 s per Open-
Flow flow at 1000 flow table entries for different 1 GbE
OpenFlow switches in 2012 [20]. Kuźniar et al. measured
33 to 83 ms on 1 GbE switches in 2015 [10], similar to our
results.

6. Conclusions and Future Work

The results of the measurements we presented only offer
incremental results over existing studies [10], [20] by using
10/40 GbE switches and vastly higher data rates. We rather
introduce FLOWer as a novel approach for testing high
performance network devices with minimal effort and high
flexibility. This allows building high performance measure-
ment platforms in a more cost efficient manner for either
evaluating existing devices or to aid in the development of
new packet processing hardware. Taking our measurement
results into account, we derive the following requirements
for a switch to be used with FLOWer.
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• Features comparable to OpenFlow modifications in-
cluding groups at line rate (some OpenFlow switches
implement layer 3 or 4 matches and modifications
in software, cf. [20])

• Large number of ports
• Low jitter, independent from the used port and in-

ternal packet path
• Low per-port costs, i.e., commodity hardware

Our methodology can be used with different packet gen-
erators. It is not necessarily in competition with expensive
hardware packet generators. A low-end hardware packet
generator can be used together with FLOWer to amplify
its bandwidth while using its extensive analysis features for
thousands of simultaneous network flows in hardware [21]
without paying for a high-end model.

We encourage you to reproduce our measurements on
your hardware. All scripts used for the experiments de-
scribed in this paper and all collected data are available on
GitHub [5].

In the future, we plan to use this methodology to evaluate
and benchmark different devices. For this paper, only a
simple SDN switch was available as DuT. More complex
devices present a more interesting challenge for our method-
ology. In particular, we are planning to test a high-end
Arbor Networks DDoS mitigation middlebox. Such DuTs
are of particular interest because they are black-box software
devices with high bandwidth capabilities that are beyond the
reach of cheap packet generators. FLOWer puts everyone in
the position to evaluate the performance of such devices
without relying on expensive test equipment or vendor’s
promises.
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