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Abstract—Recent studies show that an increasing number of
over-the-top live streams is delivered over the Internet. For the
delivery of those streams, the dynamically changing and poten-
tially large number of users imposes a major challenge. Flash
crowds, where the number of users multiplies or significantly
drops in a very small time frame, can cause serious degradations
in the streaming performance. Due to the missing support for
global network-layer multicast, overlay-based approaches have
been broadly studied, showing that, with relaxed time constraints,
they can scale well with the number of users. Yet, to support
flash crowds, scaling has to happen quickly to keep up also
with rapidly changing populations. Only a few approaches exist
that focus on this aspect by influencing the streaming topology
and, so far, it is not clear if and how these mechanisms can be
applied to state-of-the-art hybrid streaming systems. Therefore,
in this paper, TOPT is proposed, integrating new as well as
existing mechanisms in a common framework. The evaluation
shows that the streaming topology, indeed, plays a major role
during flash crowds. The lightweight and decentralized tree-
forming and topology optimization mechanisms of TOPT, com-
bined with tracker extensions to attach new peers in batches,
greatly help improving the streaming performance in terms of
reduced playback interruptions by more than 60% and slight
reduction in communication overhead at an acceptable increase
in average startup delays by 24%.

I. INTRODUCTION

Recent studies [6], [10], [23] show that video continues to
be the dominating traffic class on the Internet. They also show
that the delivery of live streams [7] becomes a natural part
of this class, where people start shifting their so called linear
broadcast consume to Internet-enabled devices. In addition,
also a growing number of special events are delivered in a
live manner over the Internet, such as product announcements
or sports events. Many of these events are delivered in an over-
the-top manner, where the network providers and, in particular,
the Internet Service Providers (ISP) are not explicitly involved
in the delivery process but are only used as transport networks.
This, the missing support for global network-layer multicast,
and the resulting tremendous bandwidth requirements for the
unicast delivery of high-quality video streams to potentially
millions of users across the world, make the delivery of live
streams very challenging. Content Delivery Networks (CDNs)
with more than 100k servers deployed all over the world are
used today to mitigate this problem [18]. Yet, CDNs still face
problems when the number of users and, thereby the streams
to be delivered, exceeds their capacity. For this reason CDNs
started to incorporate the upload resources of clients [33] into
the delivery process and, thereby, to extend their overlay to the

edge of the network. Such Peer-to-Peer (P2P) approaches have
been broadly studied for live stream delivery [32], showing that
they have desirable features and, in particular, can scale well
with the number of users in case of relaxed time constraints.

The challenge of a P2P-based streaming approach to scale
well with the number of connected users, on an abstract level,
can be reduced to the problem of successfully integrating
upload resources of new clients into the active delivery process.
This process is mainly limited by the amount of surplus upload
capacity of already active peers. Using this capacity, a new
client first mostly consumes resources until it is able to serve
others at a constant rate. This can quickly become a problem
in face of highly dynamic and large audiences, as the time
a new client requires to serve others in a stable manner and,
thus, adds to the overall system capacity, heavily constrains
the system’s scaling behavior [4]. The results can be serious
degradations in the streaming performance in terms of long
startup delays for new clients and playback interruptions for
already connected clients. For this reason, flash crowds, where
the number of users multiplies or significantly drops in a very
small time frame, are important to be considered as they are
common and an integral part of live streaming use cases [11],
[26]. To support flash crowds, scaling has to work under heavy
time constraints and keep up with rapidly changing client
populations. Only a few approaches exist that focus on this
aspect by optimizing aspects of the streaming topology and,
so far, it is not clear if and how the proposed mechanisms
can be adapted for state-of-the-art hybrid streaming systems,
relying both on mesh and multi-tree delivery structures.

Therefore, in this paper, the streaming system TOPT is
proposed. It builds upon the state-of-the-art hybrid streaming
approach called TRANSIT [28] and integrates newly proposed
as well as existing mechanisms to support flash crowds in
a common framework. Using this framework, the goal is to
investigate the importance of the streaming topology for the
level of achievable streaming performance during flash crowds.
Therefore, a set of topology optimizations are studied to
understand the effect on TOPT’s multi-tree streaming topology
and tracker extensions are investigated that could to stabilize
the attachment process of new clients during flash crowds.

The remainder of the paper is structured as follows: Sec-
tion II provides an overview on the TRANSIT streaming ap-
proach, which builds the basis for TOPT. Section III discusses
existing works in the area of flash crowd support in P2P
live streaming, followed by the system design of TOPT in
Section IV. Subsequently, the evaluation of the approach is
presented in Section V. Section VI concludes the paper.ISBN 978-3-901882-68-5 c© 2015 IFIP



II. BACKGROUND: TRANSIT DESIGN

In a recent work [28], the authors presented a hybrid
streaming system called TRANSIT. As the mechanisms pro-
posed in this paper extend TRANSIT, relevant core concepts
of this system are briefly presented in the following. For a more
detailed discussion of these concepts, the interested reader is
referred to an extended version of this paper [22] and the
detailed presentation of the original TRANSIT design [21].

TRANSIT is a P2P live streaming system, designed for
the efficient distribution of layered video streams, using video
codecs such as H.264/SVC [24] or H.265/SHVC [31]. The
use of a layered video codec enables a natural division of the
video stream into substreams for the delivery process. As each
substream belongs to a specific video quality layer, this allows
TRANSIT to support heterogeneous scenarios in which clients
stream only the video quality that fits their device and network
properties. However, similar to other state-of-the-art systems,
TRANSIT can also be used with single-layer video codecs. In
this case, a mechanism is required to split the video stream
into a number of substreams.

Regarding the system structure, TRANSIT is a fully decen-
tralized P2P approach with peers acting autonomously. The
video stream is provided by a dedicated streaming source,
which can consist of a single server or several servers run
by a content provider. A logically centralized tracker is used
for initial peer discovery, acting as node registry service. In
addition, peers exchange information about available neighbors
when establishing new connections. This way, peers maintain
an up-to-date set of potential neighbors.

Fig. 1. Conceptual layers of TRANSIT, including the new Flow Optimization
Layer added by TOPT and introduced in Section IV.

For a clear separation of concerns, TRANSIT is orga-
nized into three conceptual layers, as depicted in Figure 1.
The individual streaming peers run all three layers, while
the streaming source and the tracker only operate on one
layer each. Maintaining a stable set of connected neighbors,
thus, discovering new neighbors, establishing new connections,
monitoring established connections, and replacing unreliable
ones, is the task of the Neighborhood Layer. The tracker
provides peers with initial contacts to other peers, thereby
belonging to mechanisms in the Neighborhood Layer. At the
peers, this layer provides the other layers with a set of active
connections through its service interface.

The Scheduling Layer uses the connections provided by the
Neighborhood Layer for distributing individual video blocks
of a stream. Due to the hybrid nature of TRANSIT, this

layer includes different mechanisms for scheduling video block
transmissions. By default, data is transferred following a pull-
based approach, where peers request individual blocks from
their connected neighbors. For this purpose, peers periodically
exchange buffermaps, indicating available video blocks. Based
on their neighbors’ buffermaps, peers can request locally
missing blocks. Such a Request can ask for a single block or
a set of blocks at once to keep the communication overhead
low. For a healthy and efficient P2P-based delivery process
of live streams, it is essential that especially new blocks are
disseminated quickly to allow all peers to contribute in the dis-
tribution. Magharei and Rejaie [17], [20] propose a two-phase
delivery process for this purpose, where in a diffusion phase
video blocks are aggressively spread to a subset of the peers,
followed by a swarming phase in which these well replicated
blocks are disseminated to the remaining peers. Motivated by
these observations, TRANSIT was designed to ensure a fast dif-
fusion of new blocks. It goes beyond the approach of Magharei
and Rejaie by adopting mechanisms from hybrid streaming
systems, such as MTREEBONE [27], where for the diffusion of
blocks stable distribution trees are established. This constitutes
the second scheduling mechanisms of TRANSIT, the so called
Flows, complementing the above mentioned Requests. Flows
can be negotiated between peers to establish stable data paths
to constantly deliver substreams of blocks in a push-based
manner, avoiding undesired delays in the diffusion process.
A single flow in TRANSIT can include multiple substreams,
reducing the communication overhead for flow management.
For more details on the Neighborhood and Scheduling Layer,
the interested reader is referred to [21].

III. RELATED WORK

In [14], [16], the authors show that scaling with the number
of users during flash crowds is hard to achieve. As observed
by Cheng et al. [4], a key aspect to achieve such scalability is
to quickly include new clients in the active delivery process to
assure that the growth in upload capacity overall outweighs the
capacity consumption by these clients. Liu et al. [16] denote
this fundamental requirement as the scale-time constraint of
a streaming system. Especially at the beginning of a flash
crowd period, new clients can easily outnumber currently
active clients, leading to a situation where new peers heavily
compete for the small amount of available upload capacity.
However, addressing this problem is challenging due to the
decentralized nature of P2P streaming systems. Peers, per
definition, only have a local view on the system and, thus,
the discovery and selection of the neighbors with sufficient
capacity is not trivial. Current productive streaming systems,
such as COOLSTREAMING or PPLIVE, rely on a large number
of dedicated servers or the use of CDNs to support flash
crowds [16], [29]. While this can be a valid solution in some
scenarios, it contradicts the motivation of using a P2P approach
in the first place. A number of different approaches have been
proposed that preserve the decentralized nature, while actively
supporting the system during flash crowds.

Chung et al. [5] propose a batch join tracker extension for
alleviating flash crowd effects, where large groups (batches)
of join requests are processed together during flash crowds.
The tracker introduces the peers inside a batch to each other
in a way to pre-build a tree topology, based on the upload
bandwidth and waiting time of the individual peers. Once the



tree is formed, the root is connected to the active topology,
enabling stream delivery for the whole batch. This greatly
reduces the effects of peers competing for upload resources
and allows them to quickly contribute to the delivery process.

Liu et al. [16] propose a population control mechanism to
limit the arrival rate of peers during flash crowds. They show
that the relative ability of a streaming system to scale can
be modeled as a function of the relative average peer surplus
capacity, the number of initial neighbors, and the relative
peer arrival rate. This function has a maximum, the so-called
resiliency threshold, after which the ability of the system to
scale significantly drops due to the competition for resources.
The authors propose to use this threshold as a control point
and partially delay the joining of new peers at the tracker if
this threshold is exceeded. They show that, while the approach
increases the startup delay for some peers, it greatly improves
the overall system scalability under flash crowds. Cheng et al.
in [3] present similar mechanisms and support these findings.

Furthermore, different works focus on the role of streaming
topologies in different aspects, which are considered to be
closely related to a system’s ability to support flash crowds.
Wang et al. [27] propose MTREEBONE, a single-tree extension
to a mesh-based system, where decentralized topology opti-
mizations are used to reduce the depth of the tree structure
and, thereby, the average delivery delay. A positive side effect
of such topology optimizations is that undesired structures in
the delivery trees are removed. This avoids that the topology
becomes fragile and thus could lead to even worse resource
competitions if during a flash crowd important peers, e.g. such
with many children, leave the system. In this context, the area
of resilient topologies can be considered closely related, which
is further discussed in the extended version of this paper [22].

IV. TOPT: TOPOLOGIES FOR FLASH CROWDS

Based on the initial design of TRANSIT (cf. Section II),
in this work, TOPOLOGY-OPTIMIZED TRANSIT (TOPT) is
proposed, including a set of extensions to address undesired
effects imposed by flash crowds. As state-of-the-art hybrid
streaming system, TRANSIT is a suitable candidate to study
these effects and design adequate countermeasures that could
be adopted by other hybrid streaming systems as well.

The most prominent extension proposed to the initial
TRANSIT design is the introduction of a third conceptual layer,
the so called Flow Optimization Layer (cf. Figure 1). This layer
uses the active flows exposed through the service interface of
the Scheduling Layer to monitor and analyze the active flows
of a peer. Based on local knowledge, this component can then
plan and execute modifications to the flow topology. These
modifications are carried out in a fully decentralized manner
to maintain the scalability of the streaming approach.

A common goal when modifying stable parts of live
streaming topologies is to optimize overall structural proper-
ties, e.g. shortening overlay paths for reduced delivery delays.
Since decentralized modifications of streaming topologies in-
evitably impose control overhead for signaling between peers
involved in a modification, the extensions proposed in this
work focus on the dominating flow part of TRANSIT, leaving
the concept of requests unaltered. Results from [28] show that
flows build the backbone for the overall streaming process,

where peers typically retrieve 80% or more of the video
blocks using flows, even during highly dynamic workload
scenarios. Therefore, optimizations of the flow topologies, even
if imposing additional communication overhead, are expected
to quickly pay off. The main reason is that, this way, optimiza-
tions have an impact on the performance of the rather long-
termed flow delivery structures, in contrast to rather short-lived
request structures. Figure 2 shows the individual components
of TOPT, which are introduced individually in the following.

A. Topology Optimization Framework

The original concept of connections in TRANSIT was
extended to support required primitives for generic topology
modifications. By design, connections are unidirectional and
a peer can only retrieve blocks via an incoming connection.
Thus, one primitive type of modification is the ability to reverse
the direction of connections. Coordinated with the individual
nodes’ Flow Managers, this allows flows, and thereby active
data paths, to be reversed. This primitive is important to
enable peers switching roles in the topology. A second required
primitive is the ability to hand over flows to other peers. For
this purpose, a number of new message types were introduced
to the system’s protocol. They can be used to query promising
alternative peers for their ability to take part in a handover or
switch of flows. To respect their autonomy, peers can always
deny a request for optimization actions, e.g. if insufficient
upload capacities for the required modification are available.
To allow for seamless handovers, while avoiding the loss of
video blocks, TOPT introduces the ability to establish duplicate
flows for a short period of time. On receiving the first duplicate
video block from one of the two flows, the old flow is
immediately canceled, ending the handover with only a single
duplicate block delivered. Using the two primitives described,
the Flow Optimization Manager can greatly influence the role
and position of a peer in the flow topologies and, thus, allows
defining complex distributed topology optimizations.

To actually allow peers to decide on executing topology op-
timizations, they require basic knowledge on their current role
and neighborhood in the topology. Therefore, a mechanism
of TRANSIT is used that allows piggybacking information,
such as current buffermaps, to periodically exchange control
messages. This way, no additional messages are sent, greatly
limiting the overhead for disseminating the local topology
view. The exchanged information includes the current relative
depth of a peer (as hop count from the source), the number
of actively served children, its currently available upload slots,
and the contact of the peer’s parent in each of the active flow
trees. This limited information is sufficient to allow a peer to
identify potential optimizations based on its neighbors’ states
and plan their execution, as explained in the following.

To allow for a generic and extensible approach, where peers
can evaluate potential optimizations based on the expected
influence on the topology and select the one with the highest
expected gain, a dedicated mechanism was designed for this
purpose. Peers can locally define a set of optimization types
that they consider for execution. While peers are not required
to agree on the optimization types, optimizations have to be
composed of the primitive modifications introduced above.
Each of the locally available optimization types is evaluated
for its applicability on the peer’s individual active flows. Their



Fig. 2. Extended design, including the core components of the streaming node and tracker as well as their relations.

expected gains are calculated based on a scoring function
included in the definition of the optimization types, allowing
the peer to select the optimization instances with the highest
score within an optimization type and apply it. Thereby, the
approach goes beyond the mechanisms proposed by other
state-of-the-art systems, such as MTREEBONE [27], where the
first found optimization is executed and, in addition, is only
defined for a single tree, instead of a more complex multi-tree
topology exposed by the flows within TRANSIT and TOPT.

B. Optimizing Streaming Topologies

To understand the potential for topology optimizations in
TRANSIT and in particular for helping the system to cope with
flash crowds, its typical flow structures were analyzed. Figure 3
shows a simple example with a small number of peers and two
flow trees. Despite its simplicity, several undesired topology
properties can be observed that are characteristic also for larger
scenarios. First of all, the topology appears rather sparse with
most peers only serving a small number of other peers. In
some cases peers only serve a single child, leading to undesired
chains in the topology. Second, some of the peers deeper in the
topology serve many children, although they themselves are
only connected to the flows by chain-like structures. Third,
individual subtrees of the same flow are highly unbalanced.
Finally, different flows often use the same path, indicating
combined flows that the system tends to build.

Fig. 3. Example topology for two flows as established by TRANSIT.

Most of the observations can be explained by design
choices taken during the design of TRANSIT (cf. Section II).
The chain-like and children dependencies are clearly a result of
(1) the initial neighbors provided by the tracker, where newer
peers are preferred due to the high probability of having free

capacity, and (2) the fact, that established flows are kept active
as long as possible. Both decisions showed to allow the system
to quickly react on changing environmental conditions, such as
smaller flash crowds [28]. Yet, these dependencies seem to also
limit the ability to cope with more severe flash crowds. Due
to the increasing length of chains and the unbalanced trees, it
becomes harder with every new peer to achieve homogeneous
and bounded streaming delays. Yet, they are important as they
have a high impact on the user satisfaction [8], [9]. In addition,
the topology becomes fragile when large fractions of peers
suddenly leave the system, e.g. at the end of a flash crowd. This
problem is further amplified in cases where a peer leaves that
serves combined flows to others. In this case, affected children
or even complete subtrees suddenly starve and quickly need
to find new parents, contributing to the competition for upload
resources of newly joining peers. The fact that the system
does not collapse in such situations shows the strength of the
hybrid design of TRANSIT. Yet, it imposes undesired overhead,
playback interruptions, and dynamics in the topology that
should be avoided. As shown in [2], it is important to minimize
direct and indirect dependencies between nodes in the topology
to increase its resilience against node failures. The deeper
a tree topology is, the more indirect dependencies between
nodes exist. Therefore, modifying the topology for trees with
reduced heights can both help addressing this problem and
reduce as well as homogenize streaming delays. Furthermore,
direct dependencies, where a few nodes have significantly more
children than other, can be reduced by improving the balancing
of flow trees. While such modifications help improving the
system structure in general, they are expected to specifically
improve the system performance under flash crowds In these
challenging scenarios, the system is put under extreme stress,
amplifying the impact of weaknesses in the topology.

For this reason, TOPT newly introduces the previously
presented framework for topology optimizations. As shown
in [2], to optimize a given topology for an overall minimum
streaming delay across all peers and robustness of the structure,
global knowledge would be required, which is not available
and not desired in a fully distributed environment. Inspired
by [2], [13], [27], the topology optimizations presented here
are local optimizations. For most cases, decentralization im-
plies that it cannot be guaranteed that optimizations ultimately
lead to globally optimal flow topologies. Yet, it is expected
that in most cases the optimizations can lead to near optimal
flow structures as long as peers can pick optimization partners
not only from their local flow partners but a random set of
peers within the system. Therefore, in TOPT peers can pick
optimization partners from their complete set of neighbors to
avoid ending up in local minima for the flow structures.



The topology optimization types adopted are inspired by
MTREEBONE [27], where a single tree topology is built to
improve the stream delivery between stable peers only. Non-
stable peers are only connected to the tree structure as outskirts
and, thus do not belong to the tree topology. While in TRANSIT
the definition of tree structures and flows follows a different
philosophy, the decentralized topology optimizations proposed
by the authors of MTREEBONE seemed promising to be
adapted for TOPT and used with the topology optimization
framework. Other optimizations can be easily added using
the proposed framework. Yet, it is important to note that the
framework itself does not guarantee the convergence to an
optimal topology. This solely depends on the optimizations
themselves and their combinations.

The two applied optimizations from MTREEBONE are
named low-delay-jump (LDJ) and high-degree-preemption
(HDP). LDJ uses the locally available information on its
neighborhood to jump to a node higher up in the tree (closer
to the source), given this node has a free upload slot to accept
the node as new child. This results in free slots closer to the
source gradually being filled, reducing the overall height of the
delivery trees. HDP checks if the local node currently serves
more children than any other node in its neighborhood that is
closer to the source. If this is the case, the node tries to issue
a switch of positions with this neighbor. This way, nodes with
more children gradually move closer to the source, leading
to a denser and overall more balanced structure. These two
rather simple optimizations can be easily realized using the
described primitive topology modifications provided by TOPT.
Even more, using the presented seamless handover mechanism,
they can be used without degradations in the stream delivery
process, which is an important requirement that was not
considered by the authors of MTREEBONE. The optimizations
were adopted and extended to be used on the multi-tree flow
topology of TOPT by allowing independent optimizations of
the flow trees. Optimizations of individual flows can coexist,
avoiding that optimizations degrade other active flows. A side
effect of this approach is that it automatically introduces a
diversification of the individual flow structures, as they are
optimized independently from each other.

Using the topology optimization framework, peers can
freely choose optimization types to be applied and even enable
or disable individual types, depending on the current situation,
goal, and preferences. To compare possible optimization in-
stances of the same type, the concept of gain is introduced.
For the LDJ optimization, which aims at allowing a node A
to jump to another node B closer to the source (assuming free
capacity), the gain is defined in the following manner:

gain(LDJA,B) = d(A)− d(B), (1)

where d(N) denotes the distance in hops of node N to the
source in the respective flow tree. Intuitively, the gain is higher
if the jump towards the source is larger. Neighbors without
free upload capacity are not considered for a jump. Jumps to
neighbors with higher depths than the local node would result
in a negative gain and, consequently, are also not considered.

Analogously, the gain for the HDP optimization is defined
as follows. In this optimization, node A chooses to preempt the
position of a node B. This is only done if B has fewer children
than A and B is closer to the source than A. Otherwise, B

is not considered for optimization. Both factors are taken into
account for calculating the gain for this optimization:

gain(HDPA,B) = α(d(A)− d(B)) + β(c(A)− c(B)), (2)

where d(N) denotes the depth of node N in the tree, c(N)
denotes its number of children, and α, β ∈ R+ represent stress
factors. These factors may be varied in order to influence the
impact of node depths compared to the number of children. By
default, both factors are considered to be equally important (α,
β = 1). In future work, it is planned to extend this approach
for more complex topology optimizations and gain definitions.

C. The Role of the Tracker

A newly joining peer first requests a list of initial neighbors
from the tracker. The peer then contacts some or all of these
initially provided neighbors in order to open incoming connec-
tions, establish flows, or issue requests for individual missing
blocks. In addition to the above presented modifications at
peer side, the tracker of TOPT includes extensions to improve
the selection of adequate initial peers, take special peer roles
into account, and to employ a set of special join mechanisms
for improved flash crowd support. For this purpose three new
components were introduced to the tracker as depicted in
Figure 2: the Head Node Manager, the Batch Join Manager,
and the Flash Crowd Detector.

The Head Node Manager manages only the nodes that
are directly connected to the streaming source. As mentioned
in [2], they are highly important as they form the first delivery
hop for the diffusion process. These so called head nodes,
short heads, can impose severe content bottlenecks to the
delivery process if, for example, they themselves are not able
to serve a sufficiently large number of other peers. Keeping
track of head nodes showed to be promising to ensure a stable
streaming process. To enable a fast diffusion of new blocks,
the upload capacity of the heads should be fully utilized. This
includes avoiding cases where a head does not forward any
flow at all, as observed in the initial TRANSIT topologies.
To this end, a mechanism was designed where head nodes
periodically inform the tracker (i.e. the Head Node Manager)
about available upload capacities and their flow forwarding
status. If heads with free capacities or a low number of
forwarded flows exist, newly joining peers are provided with
an initial neighbor list that exclusively includes a set of these
head nodes to enforce new peers to connect to them with a high
probability. In the unlikely case that the peer cannot connect
to any of those heads, it will still receive a list of the heads’
neighbors during the connection setup phase, enabling it to
immediately connect to other peers.

The Batch Join Manager can influence and delay the actual
attachment of peers to the active overlay in case of a flash
crowd. This is done to allow for batch joins [5], [30] as
introduced in Section III, where multiple peers are attached
to the topology as a group. For this purpose, peers within a
batch are provided with an initial neighborhood defined by the
Batch Join Manager. This way, the topology of a batch can
be influenced to some extend through the subset of neighbors
provided to peers in the batch. By providing peers with a pre-
selected set of neighbors within the batch, a balanced tree
with high-capacity inner nodes and low-capacity leafs can be
formed as proposed in [5]. As long as none of the peers knows



any active peer of the streaming system, no video blocks are
available within the batch. As soon as the Batch Join Manager
decides that a batch is complete, it provides at least one of the
batch peers with an active contact with free capacities. The
peer then contacts this active peer, establishes an incoming
connection, and starts requesting video data. In best case, a
set of flows is quickly established among the peers of the
batch, allowing the whole batch to be served smoothly. In
the simplest case, only one active peer within the overlay is
involved in the attachment of the complete batch, reducing
the competition between new peers for upload resources and
allowing new peers to immediately contribute their upload
bandwidth to the system. In its basic form, this batch joining
process was proposed by Chung et al. [5] and recently extended
by Wu et al. [30] to form multi-tree batches. In this work,
the approach was adapted and extended for the specifics of
the hybrid nature of TRANSIT and its connection handling.
Thereby, a single capacity-based tree is constructed by default
and the root node is connected to the active topology once the
batch completes. Two variants are studied, one where the Batch
Join Manager waits for a certain number of peers to complete
a batch and another where the batch is attached after a fixed
period of time. The first is expected to allow forming better
batch topologies, while the second helps assuring an upper
bound for the startup delays of the involved peers. The general
concept is considered highly promising to also study other
topology variants to be used within batches that could have
desired properties for flash crowds. Therefore it is planned to
further investigate this direction in future work.

The Flash Crowd Detector, the third newly introduced
tracker component, monitors the peer arrival rate and activates
the Batch Join Manager once a certain threshold is exceeded.
It could also use other sources of information, such as expert
knowledge or information about scheduled events that are
expected to cause flash crowds.

V. EVALUATION

The goal of the evaluation was, first, to study the impact
of the individual presented mechanisms and extensions under
flash crowds when applied to a hybrid streaming system.
Second, the combination of all mechanisms in form of the new
integrated streaming system TOPT is compared to the state-
of-the-art systems TRANSIT [28] and MTREEBONE [27]. Due
to space constraints, only the second part is presented here.
For the first part as well as additional evaluation results, the
interested reader is referred to [22].

A. Methodology and Scenarios

Due to the necessity for large number of clients and
controlling the course of the experiments to achieve the desired
flash crowd characteristics, simulations showed to be the best
and most feasible method for the evaluation of the proposed
mechanisms. For this reason, the original implementation of
TRANSIT was extended and used with the discrete event-based
simulation framework PeerfactSim.KOM [25]. All simulations
were executed with a total number of 5000 available clients,
divided into three resource classes based on the node band-
width distribution from [19] (cf. Table I).

The upload bandwidth of the class Medium was increased
to 6, 150 Kbps to allow for a fair comparison of TOPT to

TABLE I. USED PEER BANDWIDTH DISTRIBUTION BASED ON [19].

Class Number Share Upload bandwidth Download bandwidth
of peers (Kbps) (Kbps)

Low 2, 800 56% 2, 253 15, 326

Medium 1, 500 30% 6, 150 (3, 150) 53, 665

High 700 14% 52, 665 96, 421

TRANSIT [28] and MTREEBONE [27]. Simulations showed
that MTREEBONE is highly unstable with the original setting.
A closer investigation revealed that nodes forming the stable
backbone of the overlay, the so called treebone nodes, require
higher bandwidths to establish a stable tree topology. Overall,
the scenario is intentionally relaxed from the upload bandwidth
perspective as this work focuses on the challenge of timely in-
tegration of upload resources of arriving peers, not particularly
on the efficient resource utilization of the system in more stable
environments. Here, the available resources to serve new peers
is limited by the streaming mechanism itself [16], justifying
the choice for more realistic resource configurations.

Concerning the comparison to MTREEBONE, it is important
to note that the system was proposed for single-layer video
streaming, while TRANSIT and TOPT support heterogeneous
scenarios by allowing peers to stream lower-quality substreams
dependent on the available resources. Again, to allow for a
fair comparison, peers were configured to stream the layered
H.264/SVC [24] stream in its full quality, i.e. all of its quality
layers, achieving a single-layer streaming behavior with the
same bandwidth requirements as MTREEBONE. This way,
the quality-adaptive behavior of the two other systems is
intentionally disabled to purely focus on the mechanisms under
study and avoid undesired cross effects. Peers are configured
to temporarily pause playback (referred to as stalling) when
video blocks required for playback were not delivered in
time. The delivered video stream consists of four SVC layers
with an accumulated maximum bitrate of 900 Kbps. For each
layer, TRANSIT and TOPT strive to build up a maximum of
four distinct flows. A single source node was used with an
upload bandwidth of 12 Mbps, allowing the server to serve
a maximum of 13 peers with the complete video stream.
All simulations were repeated six times and 95% confidence
intervals are shown for all average values. The core TRANSIT
and TOPT system parameters are similar to the ones used
in [28] and are not listed here due to space constraints.
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Fig. 4. Evolution of online peers and arrival rates for FC1 and FC2.

To show the effects of flash crowds, workloads were
defined that in particular focus on both a steep increase and a
rapid reduction of connected peers in a very small time frame



as observed for real streaming systems [11], [26]. The used
workload models show similar phases of a flash crowd as
observed in [1] for web traffic. At the beginning, peers enter
the system with a moderate arrival rate up to a maximum
number of |Pnormal| = 250 connected peers. At this point,
new peers only enter the system to replace peers for which
sessions ended. The session lengths are modeled using the
distribution derived by Vu et al. [26] (parameters: a = 1.079,
b = −0.09594) from a large-scale measurement of the PPLIVE
system. After a stabilization period, giving the overlay time
to reach a stable state, the actual flash crowd starts at time
tfc = 2 h, with the number of active peers being linearly
increased up to a threshold of mfc · |Pnormal| within a time
frame dfc. This intends to model the characteristics of a typical
broadcast channel, where a small number of users is already
watching the stream before the flash crowd occurs. To model
different intensities of flash crowds, dfc was stepwise shortened
to achieve an increased arrival rate and thereby shock level
of the flash crowd [1], while keeping the maximum number
of concurrent users fixed with mfc = 10. In the following,
results for the two steepest studied flash crowd workloads FC1
(dfc = 10 min) and FC2 (dfc = 3 min) are presented. After
reaching the peak of the flash crowd, the number of connected
peers converges back to |Pnormal| as peers that reach their end
of session are not replaced by new peers until the normal level
is reached again. The evolution of the number of peers and the
arrival rates for the two workloads are shown in Figure 4.

B. TOPT: Impact of Combining the Optimizations

To understand the impact of the different topology-related
optimizations during flash crowds, they were evaluated indi-
vidually as extensions to the TRANSIT system. Due to space
constraints, the results for these steps are not presented here but
are discussed in [22]. In the following, the most important step
of the evaluation is presented, the combination of all individual
optimizations and the study of their combined impact on
streaming performance as well as communication overhead.
This combination constitutes the newly proposed TOPT ap-
proach and includes the topology optimization framework,
both described optimization types, the head optimizations, as
well as the time-based batch join mechanism.

Fig. 5. Example topology for two flows as established by TOPT.

Figure 5 shows an example topology for two flows as
established by TOPT. The figure shows a snapshot of the

topology shortly after the start of a flash crowd for a very
small test scenario. Despite its size, its structure shows ma-
jor differences compared to the TRANSIT topology shown
earlier. The individual flow trees are less aligned and more
diverse. Besides, the individual trees are more balanced with
less chain-like dependencies in the core. In the following,
some of these observations are supported using quantitative
results for workload FC2. First, TOPT is compared to the
original TRANSIT [28]. Second, both are compared to MTREE-
BONE [27], the streaming approach that inspired the topology
optimization of TOPT. The simulation model of MTREEBONE
was implemented from scratch (cf. [15] for details), primarily
based on the descriptions in [27]. This step was necessary as
the original implementation could not be shared by the authors.
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Fig. 6. Avg. streaming performance TRANSIT vs. TOPT (workload: FC2).

For a better understanding, in the following, key results
for TOPT and TRANSIT are compared for the FC2 workload.
Figure 6 depicts the average streaming performance results.
The average stalls count per peer and minute was reduced
by 60% from 0.25 to 0.1 and the average stalls duration by
70% from 2.06 s to 0.62 s. This also results in an improved
average estimated Quality of Experience (QoE) from a value
of 4.52 to 4.76 on the MOS scale. The latter was calculated
based on the stalling metrics and using an established model
by Hoßfeld et al. [12]. As a result of the used batch join
mechanism, furthermore, the startup delay is increased by 24%
from 16.15 s to 20.09 s, which is considered acceptable given
the major improvement of the other performance metrics.
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The explanation for these major improvements in the
streaming performance can be found in the flow topology
structures of TOPT. Figure 7 exemplary shows the average
flow tree depths as one of the studied topology metrics. It
is calculated per flow and averaged over all four flows. For
the analysis also other topology metrics were used, such as



(a) Avg. and distribution of stalls count. (b) Avg. startup delay. (c) Avg. and distribution of flow ratio.

Fig. 8. Streaming performance for TRANSIT, TOPT, and MTREEBONE (workload: FC2).

minimum and maximum flow depths. They are not shown here
due to space constraints but support the effects observable for
the average depths, which was reduced by 58% from 11.34 to
4.72 with also a lower variance as visible in the distribution
of the average tree depth. While TRANSIT shows a drastic
increase of tree depths during the flash crowd to more than
16, TOPT manages to keep it below a value of 6 even under
heavy stress. In addition, it can be observed that, for all four
metrics, the confidence intervals are smaller for TOPT. This
shows that the new system is able to provide more stable
and reliable average results over the different simulation runs.
Random effects that seem to greatly influence the structure of
the topologies are reduced with the proposed extensions.

Figure 8 shows the key results of the streaming perfor-
mance comparison of all three systems. The average stall
count (0.397) and stalls duration (11.16 s, not shown here)
of MTREEBONE are significantly higher than the values for
the two other systems already presented earlier in this section.
The time plot reveals the reason for this. While the topol-
ogy of MTREEBONE very well supports the sudden increase
in the number of peers (workload shown as grey curve in
background), it performs badly when a large number of peers
leaves the system. Similar observations can be made for the
stalling duration (not shown here). Figure 8c shows the average
flow ratio, which describes the share of video blocks delivered
over flow structures. As all three systems are hybrid systems,
broken tree structures lead to the remaining blocks being
streamed using a less efficient mesh/pull mechanisms. While
the two other systems quickly rebuild broken flow structures,
MTREEBONE needs more time for this as leaving tree peers
first have to be replaced by newly promoted stable peers. For
fairness, the threshold after which a peer is promoted to be
stable was configured in a manner to allow MTREEBONE to
successfully build up a stable tree structure before the flash
crowd period starts. Yet, the system in its version described
in [27] seems not to be able to deal with the sudden leave of
peers. Besides, MTREEBONE shows an average startup delay
that is not significantly different to the one of TOPT.

Finally, Figure 9 compares the communication overhead
as imposed by the three different approaches. It is defined as
the share of traffic used for control messages in relation to
the overall streaming traffic of a peer. Here, two alternative
views are possible: one based on the number of messages
(cf. Figure 9a) and the other based on the size of messages
(cf. Figure 9b). This distinction is done to account for the

fact that control messages usually make up for only a small
fraction of the traffic volume due to the large size of the
video streams. The average relative overhead size for all
three systems is on a similar level (TRANSIT: 2.74%, TOPT:
2.59%, and MTREEBONE: 2.73%). For the average relative
overhead count, MTREEBONE (68.97%) shows a 34% higher
count than TRANSIT (45.69%), with TOPT (43.16%) again
showing an even lower overhead than both. Interesting is the
fact that TOPT in both cases actually shows a significantly
lower overhead than TRANSIT. This was not expected as TOPT
introduced additional communication for topology optimiza-
tions as described in Section IV. It seems that the more stable
topologies achieved, compensate for the additional overhead
as flows after optimization exist longer and thus overall less
control communication between peers is required.
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Fig. 9. Overhead TRANSIT, TOPT, and MTREEBONE (workload: FC2).

VI. CONCLUSION

To sum up the results of the presented study, it can be
said that in the field of flash crowd support for P2P live
streaming systems, a number of different approaches have been
proposed in the last years. Yet, the question remained if and
how these approaches can be adopted for hybrid streaming
systems. Therefore, in this paper and an extended version
of this work [22], a number of different approaches have
been studied, adapted and extended for this purpose. Their
individual adoption showed promising results that motivated
the proposal of an extended streaming approach called TOPT.

By combining the different presented optimizations, the
hope was to achieve an even higher performance improvement
as for the individual parts alone. Indeed, the combination



achieved a 60-70% improved streaming performance, trans-
lating to an average estimated QoE improvement to a value
of 4.76 (excellent) on the MOS scale. These improvements
are seen as a direct result of the significantly reduced flow
tree depths by almost 60%, compared to the original TRANSIT
system. On the downside, the startup delay increased by 24%
or about 4 s as a result of the applied batch join mechanisms.
Yet, this is considered acceptable, given the major improve-
ments of the other performance metrics. A comparison to
MTREEBONE showed that TOPT outperforms both reference
systems in all aspects, where MTREEBONE shows a rather
stable performance at the beginning of the flash crowds but
collapses when a large number of peers leave the system.
A surprising result showed to be the observations for the
communication overhead of the three systems. While for the
size all three performed at an equally low level below 2.8%
of the video traffic, for the overhead count, MTREEBONE
performed worst, while TRANSIT and TOPT are at an almost
similar level. Here, TOPT performed slightly but significantly
better than TRANSIT, which was not expected because of the
additional communication it introduces. It is assumed that the
overall more stable topologies lead to a more efficient stream-
ing process compensating the additional communication over
time. Overall, the results show great potential to further study
topology optimization mechanisms to improve the support for
flash crowd scenarios in hybrid P2P live streaming systems.
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