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Abstract—Many proposals for information-centric networking
(ICN) share the idea of in-network caching. This idea has four
issues: (1) Memory capacity can be wasted through caching
redundant copies and unpopular content. (2) Memory latency
is high because the caches must be large. (3) Traffic filtering
can result in high miss rates in the core and load imbalance.
(4) Performance coupling among caches makes modeling their
behavior intractable.
CCndnS is a caching strategy for Named Data Networking

that segments each file and spreads them among the caches, thus
addressing the above issues: (1) It reduces redundant copies and
cache pollution by unpopular content. (2) It reduces the number
of futile checks on caches, thus reducing the delay from memory
accesses. (3) It increases hit rates in the core without reducing hit
rates at the edge (thus improving overall hit rates) and balances
the load among caches. (4) It decouples the caches, so there is a
simple analytical performance model for the network of caches.
The efficacy of CCndnS and the accuracy of the model are

validated with simulations using an Abilene-like topology.

I. INTRODUCTION
Named Data Networking (NDN1) aims to make a paradigm

shift in the Internet architecture, from the current location-
based addressing scheme to one that is content-based. Specif-
ically, a content file (email message, software binary, mobile
TV, etc.) is divided into Data chunks that are individually
addressable by name.
A client retrieves a chunk by sending an Interest packet that

specifies the name of the Data. The routing scheme forwards
the Interest towards the source, where the chunk can be found.
Along the way, the Interest may find its Data cached at a router;
the chunk then follows the reverse path taken by the Interest
to reach the client.
A router along the reverse path may decide to cache a copy

of the Data. This is why Data can be found in the routers, away
from its source. The routers thus become a network of caches,
so there is in-network caching. There are several issues with
this idea:
(I1) A chunk may be cached at multiple routers, and routers

may cache unpopular chunks that are rarely hit. Both are
a waste of caching capacity.

(I2) The number of content files in the Internet is huge, and
many are large (e.g. video). To hold a significant fraction
of these files, the caches will also have to be large, and
therefore use cheaper and slower technology (e.g. DRAM

1http://www.named-data.net/

instead of SRAM) [20]. The need to access this memory
(to check if a chunk is there, or insert a chunk) thus slows
down the router. This delay can increase exponentially if
traffic is heavy and queues build up.

(I3) A router that caches some popular Data will filter
out Interests for this Data, and only forward Interests
for unpopular Data to downstream routers. If content
popularity has a long tail, then chances are slim that the
filtered Interests will find their Data at some intermediate
router before the source [9]. Routers in the core of the
network thus cache unpopular content (I1). The resulting
imbalance in workload degrades performance (e.g. longer
memory queues at the edge).

(I4) Filtering (I3) causes a cache to affect its downstream
caches. This coupling makes it difficult to construct
a mathematical model for analyzing how cache sizes,
Interest rates, etc. affect caching performance.

This paper presents CCndnS, a content caching strategy for
NDN that is a modification of CCndn [24]. CCndnS divides a
file into segments, each larger than a chunk and smaller than a
file. (This subdivision is consistent with segmentation in HTTP
streaming.) The chunks in a segment are cached together in the
same router, but different segments may be cached at different
routers. A file is thus spread across multiple routers. CCndnS
addresses the above issues in the following ways:
(I ′1) The caching strategy reduces the number of redundant

copies of a chunk. This frees up space in the core for
caching more chunks for popular files, thus squeezing
unpopular files out of caches in the core (see Fig. 1).

(I ′2) CCndnS allows an Interest to skip a cache, i.e. pass
through a router without checking if its Data is there.
This reduces cache misses and shortens memory queues,
thus reducing router latency.

(I ′3) CCndnS raises hit rates for caches in the core, so they are
better utilized. This increases the chance that an Interest
can find its Data before reaching the source, and balances
the workload among caches in the core and at the edge.

(I ′4) Skipping decouples the dependency among caches. This
makes it possible to model aggregate behavior of the
network with some simple equations. Our model is a key
contribution for this paper, as the analysis of the filtering
effect is known to be intractable [14].

Sec. II begins by describing how CCndn spreads a file.
Sec. III then describes how Interests can skip router checks
under CCndnS. The model for CCndnS is derived in Sec. IV.
Along the way, we present simulation results to examine the
caching strategy and validate the model. Sec. V reviews related
work before Sec. VI concludes with a summary.ISBN 978-3-901882-68-5 c© 2015 IFIP
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(c) With CCndnS, we can cache chunks from 4 popular
files in the network.

Fig. 1: CCndnS can reduce redundancy and increase the
number of distinct chunks in the network between client C
and source S. (a) shows redundant caching of 1 popular file,
while (c) shows nonredundant caching of 4 popular files.

Nchunk
F number of chunks in a file F

Nchunk
seg number of chunks in a segment

S number of segments in a file

H CCndnS bound on hop count for spreading a file

mF �S/(H − 1)� for file F
Phit

router hit probability at a router

Phit
net probability that Data is found in a router, not at the source

Ncopies number of copies of a chunk among the routers

Nhops number of hops made by Interest before finding Data

TABLE I: Summary of Notation

II. CCNDN: SPREADING CONTENT
We first describe CCndn in Sec. II-A. Sec. II-B then presents

results from experiments on CCndn behavior.

A. CCndn: Description
In NDN, clients request content by sending an Interest that

explicitly addresses a Data chunk of a content file. The content
may be an email, a voice call, etc., but, for convenience, we
refer to them as files.
Each NDN router has a content store (CS) for caching Data

chunks. CCndn is a caching policy that specifies which router
should cache a chunk and how chunks should be replaced.
By default, NDN caches a chunk at every router that the

chunk visits [11]. This redundancy wastes caching capacity.
Moreover, hits at edge routers filter out their Interests, so
copies in the core get few hits [9].
A possible improvement is to selectively cache popular

content at the edge, and unpopular ones in the core. Doing so
with file popularity is impractical, since that requires ranking
a large number of files on the fly, as new files are added and
popularity shifts. Moreover, the popular files can be large, and
so squeeze out other files at the edge. Instead, CCndn spreads a
file over multiple routers along the discovered path from client

to source, with the head nearer the client and the tail nearer
the source. We have three reasons for doing so:
(i) Previous measurements have shown that users tend to abort
downloads [29], [34]. so chunks at the head of a file are
more popular than those at the tail. CCndn is thus consis-
tent with the well-known observation that popular content
eventually saturates the edge in a network of caches [8], [9],
[12]. Such saturation happens even with LRU (least recently
used) replacement; however, LRU allows an unpopular
chunk to displace a popular chunk at the edge.

(ii) Cache space that is close to clients is precious. By caching
only the head at the edge, this valuable resource can be
shared by more files.

(iii) For content like video, user-perceived latency depends on
how soon the application can have enough chunks to get
started. Retrieval delay for other chunks can be hidden by
the time it takes for the application to consume the head;
there is a similar idea in file layout for solid state disks [10].
To spread a file, CCndn divides a file into segments. The

chunks for a segment are cached at the same router.
How should a file be segmented? We could use a hop count

h to divide a file into h − 1 segments, and cache segment i
at router i along the path from client to source. However, if
two clients with different hop counts request the same file,
they would thus use different segment sizes and cannot share
segments. Instead, CCndn fixes the number of segments S, so
each file F has S segments, with size

N chunk
seg = �N chunk

F /S�, (1)

where N chunk
seg is the number of chunks per segment and

N chunk
F is the number of chunks per file. (Table I is a summary

of our notation.)
CCndn uses another parameter H that does not exceed

the smallest hop count between client and source. Suppose
an Interest I from client C takes a path through routers
R1, . . . ,RH−1, . . . to reach the source, where Ri is i hops
from C. Let mF = �S/(H − 1)�. Then R1 caches segments
1, 2, . . . ,mF ; R2 caches segments mF + 1, . . . , 2mF , etc.
H is a bound on the number of routers for spreading the S

segments. If S ≤ H − 1, then only the first S routers cache 1
segment each. Although H can be as large as the hop count
from client to source, a smaller H will keep file F ’s tail away
from the edge at the source, so that premium space can be
used by clients there. Sec. II-B3 will examine tuning for S
and H .
How does a router know which segments it should cache?

There is no addressing scheme for locating a router in NDN.
However, since the path taken by a chunk exactly reverses the
path taken by its Interest, we can use hop count to identify a
router, as follows:
An Interest I from a client C searches the CS in every router

along its path to the source. I keeps track of the hop count
from C in its search. I may hit its Data along the way and
thus not reach the source Z . If I reaches Z , Z knows the hop
count h from C. It then chooses an appropriate H value and
calculates mF . Z then puts h and i in each chunk’s header.
As the chunk passes through a router on the reverse path to C,
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Fig. 2: Abilene topology and its clients set-up.

h is decremented. This value becomes i at router R i, so Ri

knows it has to cache that chunk; other routers do not cache
that chunk as it passes through (this is also true if Data is
retrieved from an intermediate router).
When a cache is full, CCndn uses LRU for chunk (not file)

replacement. This policy is close to optimal in practice [27],
but we will later suggest a modification.
Most of CCndn’s processing overhead (e.g. router assign-

ment) is at the source. The routers just need to increment and
compare hop count, possibly using separate hardware.

B. CCndn: Experiments
We now present experiments for tuning CCndn and com-

paring it to other caching policies.
1) Performance metrics: One obvious performance metric

for a content caching strategy is the probability P hit
router of

hitting a router cache, i.e. an Interest finds its Data in that
CS. We also use the following metrics to measure a strategy’s
performance over the entire network of caches:
network hit probability P hit

net: the probability that an Interest
finds its Data at some intermediate router, instead of the
source; a strategy with a higher P hit

net is more effective in
using the caches to relieve load on the source.

redundancy Ncopies: the average number of copies per Data
chunk among the routers; a strategy with a smallerNcopies

reduces memory wastage and can cache a bigger variety
of chunks in the network.

hop count Nhops: the average number of hops before an
Interest finds its Data; a strategy with a smaller Nhops

has a smaller latency for retrieving Data, and reduces
bandwidth and power consumption.

2) Simulation set-up: Many experiments in the literature on
network of caches use a tree topology [12], [15], [19], [22].
Such networks do not test a caching strategy’s effectiveness
for multipaths and cross traffic. Others use large random
graphs [4], [25], but these make it difficult to control the
experiments and analyze their results. Instead, we choose a
realistic, Abilene-like topology2, as shown in Fig. 2.
We use a purpose-built simulator and attach clients only at

R1, R2, R10 andR11, so these are edge routers; the other 7 are
core routers. Each edge router has 500 clients, NDN aims to
support user-generated — instead of server-based — content,

2http://nic.onenet.net/technical/category5/core topology.htm

so we have each client generate a file that has a geometrically-
distributed size of average 500 chunks. The catalog of all files
thus has about 4× 500× 500 = 1 million chunks.
We do not model download abortion (Sec. II-A), as we ex-

pect it will improve CCndn performance — abortion shortens
a file’s tail and frees up cache space near the source.
Unless otherwise stated, routers have the same CS size,

which we vary from 1K to 25K chunks. This is 0.1% to 2.5%
of the catalog size, comparable to the 5% used by Fayazbakhsh
et al. [8]. We also follow these authors in using a request-level
simulator that does not model details like router queues and
TCP congestion control.
A client sends Interests for a file at a constant rate. The time

between the first Interests of any two files is exponentially
distributed. This means that, sometimes, a client may be
downloading multiple files concurrently. The clients at R1 and
R2 request files from clients at R10 and R11, and vice versa,
so there are 2 × 2 × 2 = 8 flows. There is cross traffic in all
routers because of Interests flow to and fro.
Interests are routed via the shortest path to the source. If

there are multiple shortest paths from a router R to the source,
R multicasts the first Interest of the file to all of them; R then
chooses the one that brings back the Data chunk first, and uses
that for the rest of the simulation [35].
As is common practice, we use a Zipf distribution with

parameter α to model the popularity of files [3].
In the plots below, each data point is the average of 5 runs

but, to avoid clutter, we omit error bars.
3) Tuning S and H: CCndn has two parameters, S (number

of segments) and H (for hop count), to be tuned to suit the
workload and topology. What should these values be for our
experimental set-up? Fig. 3 plots network hit probability P hit

net
and hop distance Nhops for H = 7.
For Zipf α = 2.5, Fig. 3(a) shows that P hit

net quickly exceeds
0.9 when CS size increases. This is because the file popularity
is heavily skewed, so the edge caches are large enough to
contain the small number of popular files. In fact, Fig. 3(b)
shows that, for α = 2.5, Nhops is minimum when S = 1, i.e.
the entire file can be cached in one router at the edge.
A caching network is of marginal interest if the popularity

is so skewed that the caches at the edge suffice to achieve
a high P hit

net. Besides, it is well-known that file sizes have a
long tail distribution. In particular, a recent study of traces
from a content delivery network shows that files (text, images,
multimedia, binaries, etc.) have sizes that fit a Zipf distribution
with α ≈ 1 (specifically: 0.99, 0.92 and 1.04) [8].
Henceforth, we focus on α = 1.
For α = 1, Fig. 3(a) shows that S = 3 and S = 5 have P hit

net
higher than S = 2, whereas S = 2 and S = 3 have smaller
Nhops than S = 5. These suggest that S = 3 is the best choice
for this topology and workload.
Note that H = 7 is about the number of hops between

requesters and sources in Fig. 2. With S = 3, each file is
spread over 3 routers, so the tails avoid contending for cache
space with the heads. In fact, H = 4 will work just as well.
Our experimental set-up is relatively symmetrical (same

number of clients per edge router, same popularity distribution,
etc.), so H = 3 is intuitively right. In general, where there is
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Fig. 3: CCndn performance for H = 7, Zipf α = 1 and α =
2.5. All routers have the same CS size.

more asymmetry, the best value for H will depend on the
traffic and topological imbalance.
Since each router caches mF = �S/(H − 1)� segments,

why not just set S = H− 1, so mF = 1? Recall that different
clients may have different hop counts to the source, so they
have different best values for H . On the other hand, segment
size S must be fixed, so clients with different hop counts can
share segments.
S and H should therefore be set independently. We will

revisit S and H tuning after introducing CCndnS.
4) Comparison with other strategies: There are several pro-

posals for how a network of caches can cooperate to improve
performance [18], [31] that one can use to compare with
CCndn. However, cooperative caching requires information
exchange that would significantly slow down NDN packet
traffic [4]. We therefore consider three simpler strategies (the
names follow terminology for hierarchical caches [14]):
LCE (Leave Copy Everywhere): A copy of the Data is cached

at every router along the path traced by its Interest; this
is the default strategy for NDN [11].

LCD (Leave Copy Down): If an Interest finds its Data after i
hops, a copy of the Data is cached at hop i− 1.

MCD (Move Copy Down): If an Interest finds its Data after i
hops, a copy of the Data is cached at hop i− 1, and the
chunk is deleted from hop i, unless that is the source.

WAVE [6] is a newer scheme that is similar to LCD and MCD
in performance.
Fig. 4 compares the P hit

router of CCndn, LCE, LCD and MCD
for S = 3. Fig. 4(a) shows that, for an edge router (R1), P hit

router
is higher for LCE and LCD than for CCndn. This is because
they cache the most popular files in their entirety at the router,
whereas CCndn only caches the heads.
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Fig. 4: Comparing the strategies’ P hit
router for edge and core

routers (S = 3).

For the core router R6, however, Fig. 4(b) shows that
CCndn has higher P hit

router than all three alternatives. In fact, a
comparison of Fig. 4(a) and Fig. 4(b) shows that P hit

router for
CCndn at the core R6 is even higher than at the edge R1. This
is because R6 gets hits from clients at both R1 and R2 for
the same files, whereas R1 only gets hits from its own clients.
Fig. 5 shows how router hits translate into aggregated

network performance: While CCndn, LCD and MCD have
similar P hit

net, CCndn has smallerNcopies than LCD and smaller
Nhops than MCD.
Chai et al. noted that hop reduction does not imply higher

net hit probability [4]; indeed, Fig. 5 shows that, although
CCndn has a significantly smaller average hop distance than
LCE and MCD, its P hit

net value is much higher than that for
LCE but similar to that for MCD.
In Fig. 5, LCD has an advantage over CCndn in that the

edge caches are occupied by popular content for LCD, but are
polluted with unpopular content for CCndn. One simple im-
provement for CCndn is to adopt the SLRU policy previously
proposed for disk systems [13]. (SLRU stands for segmented
LRU, but “segment” in SLRU has a different meaning.)
In our SLRU implementation, a newly arriving chunk c that

is to be inserted into the cache does not occupy the head of the
LRU list. Instead, if this list has � positions, then c is inserted
at position 0.9× �, near the tail. Later insertions then push c
down this LRU list. If c is not hit, it gets pushed out of the
list (i.e. replaced from the cache) sooner than other chunks; if
c is hit, then it goes to the top of the list, like vanilla LRU.
In this way, unpopular chunks stay in the cache for a shorter
time than popular chunks.
Fig. 6 shows that LCD has similar performance if it uses

SLRU instead of LRU. For CCndn, however, using SLRU
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Fig. 5: Comparing CCndn (S=3) with alternatives.

makes a significant (up to 60%) difference, resulting in a clear
performance improvement over LCD.

III. CCNDNS: DECOUPLING CACHES
CCndn uses a segment as the granularity for caching content.

It follows that if an Interest finds chunk k of a file in router
Rx, then the Interest for chunk k+1 should skip other routers
and go directly to Rx. This is the key idea in CCndnS.
As before, Sec. III-A below describes CCndnS and

Sec. III-B presents experiments for analyzing its behavior.

A. CCndnS: Description
In CCndn, an Interest searches every CS in its path for its

Data. With CCndnS, an Interest can use hop count to skip this
search for some routers, as follows:
(S1) The first Interest of a file checks every CS along its path

to the Data source.
(S2) An Interest keeps track of hop count in its search. If it

finds its Data at some intermediate router Rx, the Data
copies the hop count from the Interest and carries it back
to the client. The Interest for the next chunk of the file
uses this hop count to skip CS checks, until it reaches
Rx. It checks CS at Rx and if the chunk is not there, it
checks every CS along the rest of the path to the source.

(S3) Suppose an Interest does not find its Data at intermediate
routers and retrieves the chunk from the source Z . Z
puts in the header of this chunk the file size N chunk

F , the
segment size N chunk

seg , and the value i for the router Ri

that should cache this Data. When the client receives this
chunk, it learns hop count i and puts that in the Interest it
sends out for the next chunk so, like in (S2), CS checking
can be skipped for R1, . . . , Ri−1. If the Interest does
not find its Data at Ri, it skips subsequent routers and
retrieves from Z .

(S4) There is an exception to (S3): When a client learns the
segment size, it can determine if the next interest I is for
the first chunk in a segment; if so, I returns to (S1) and
checks every CS. This is because the next segment of a
file may be cached at an earlier router, possibly because
some other client has retrieved it.

To illustrate (S4), consider the topology in Fig. 7. As-
sume Client1 downloaded file F , which has 6 segments
seg1, seg2, . . . cached in the following way:
seg1, seg2 at R1; seg3, seg4 at R2; seg5, seg6 at R3; . . .

Suppose Client2 also wants F . Since its hop count to the
source is different, the caching scheme for Client2 may be
seg1, seg2, seg3 at R2; seg4, seg5, seg6 at R3; . . .

When Client2 sends the first Interest for seg4, it may expect
to find it at R3 when, in fact, seg4 is cached at a closer router
R2. This is why CCndnS requires the first Interest of a segment
to search all CS in its path to the source.
Next, we use Fig. 7 to illustrate a separate issue in (S2)

and (S3), namely multipaths. Assume a segment segA has
4 chunks. When R3 forwards Client1’s Interests towards the
source, it may send the first two Interests to R4, then change
its routing decision and send the next two Interests to R5. The
first two chunks of segA may thus be cached at R6, say, and
the next two chunks are cached at R7.
Suppose Client2 now sends Interests for segA, and R3

forwards them via R5. It is possible that the Interests for the
chunks at R7 skip that router. This situation happens because
caching for segA is disrupted by a change in routing decision
at R3. We assume such incidents are rare.
As for the chunks of segA cached at R6, Client2’s Interests

may miss them because R3 forwards them via R5. Such a
miss can happen even if there is no skipping.
Should the Interest routing policy be changed to suit CC-

ndnS? This is an issue that is outside the scope of this paper,
but under consideration in our current work.

B. CCndnS: Experiments
By targeting a specific router that is likely to cache a

desired chunk, CCndnS should reduce the probability of a
miss. Indeed, Fig. 8 shows a big reduction in misses for both
edge router R1 and core router R6.
1) Hits: However, Fig. 9 shows that the network hit

probability P hit
net is unaffected. This may seem unintuitive:

How is it possible to drastically reduce router miss probability
without affecting network hit probability? With a little
derivation, this becomes clear:

Prob(check CS)+Prob(don’t check CS)=1,
i.e. Prob(check CS)+Prob(skip)=1,
so Prob(check&hit)+Prob(check&miss) +Prob(skip)=1. Using
conditional probability,
Prob(hit|check)Prob(check)+Prob(miss|check)Prob(check)

+Prob(skip)=1,

so Prob(hit|check) = (1− Prob(skip))/Prob(check)

−Prob(miss|check). (2)
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Without skipping, we have Prob(skip)= 0 and Prob(check)= 1,
and Eqn. (2) has the usual form Prob(hit) = 1−Prob(miss),
so Prob(hit) is affected by any change in Prob(miss). With
skipping, however, the increase in Prob(skip) is balanced by the
decrease in Prob(miss|check) in Eqn. (2), so Prob(hit|check)
is unaffected.
2) Skip errors: It is possible that an Interest does not check

a CS when its Data is in fact there (e.g. brought in by cross
traffic), thus committing a skip error. Fig. 10 shows that this
error is less than 0.01 when averaged over all routers in our
experiment.
However, Fig. 10 also shows that, for S = 3 and H = 4, the

maximum (over all routers) is much larger than the average,
and increases with CS size.
3) Tuning S and H: Interests from a client skip a CS for all

non-first chunks in a segment, so any skip error is amplified
by the size of a segment. One can thus decrease skip error by
reducing segment size, i.e. increasing the number of segments
S. Fig. 10 shows that, when S is increased from 3 to 18 for
H = 4, the maximum skip error is drastically reduced.
However, there is a price to pay: increasing S spreads a file

over more routers, thus increasing hop count Nhops; we can
see this from Fig. 11, where S is increased from 3 (H = 4)
to 18 (H = 7) .
To reduce maximum skip error by increasing S but without

increasingNhops, we can use H to limit the spread of the files.
Fig. 11 shows that, when H = 4, increasing S from 3 to 18
does not increase Nhops; Fig. 9 also shows no change in P hit

net.
4) Eliminating the filter effect: One fundamental issue with

the default caching strategy for NDN is the filter effect, where
only Interests that miss their Data at the edge enter the core.

This can lead to traffic imbalance among the routers. Such
an imbalance can seriously degrade performance, since traffic
load has a nonlinear effect on queueing delay.
We see this imbalance in Fig. 12 where, under LCE, there is

a wide range in the number of Interests received by different
routers in the same simulation run. In contrast, except for
R2, the routers receive a similar number of Interests under
CCndnS. R2 is different because it is both an edge router
and a core router, there are more flows running through it,
it is assigned more chunks to cache, and so it receives more
Interest traffic.
More importantly, filtering reduces the effectiveness of

caches in the core. We ran an experiment where the core R5
and R6 each has a 20K cache, and all other routers have a 1K
cache. Fig. 13 shows that, when the edge router R1 has its CS
size increased to 30K, P hit

router for R5 steadily decreases for
LCE. In contrast, for CCndnS, P hit

router for R5 is unaffected by
the change in CS size at the edge.
CCndnS thus decouples the cache performance of edge and

core routers.

IV. CCNDNS: ANALYTICAL MODEL

The input to a cache in a network depends on the miss
rates in upstream caches. This makes it very difficult to
construct a mathematical model to analyze their performance.
However, the skipping in CCndnS considerably weakens this
dependency, as illustrated in Sec. III-B4. This decoupling
makes it possible to model cache behavior with some simple
equations.
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We first derive equations for P hit
router, then use it to compute

the aggregate measures P hit
net and Nhops. In each case, we

validate the model with the simulator.

A. Router Hit Probability P hit
router

Consider router r. Let Mr = size of content store CS at
router r, λr = arrival rate of Interests at router r and Tr =
average time a Data chunk stays in router r.
By Little’s Law [28],

Mr = λrTr. (3)

Under CCndnS, only a subset of the catalog is eligible for
caching at router r; let Cr be the size of this subset.
Suppose the part of file k to be cached at router r is a

fraction fk of Cr. Let pk be the probability that an arriving
Interest requests file k. Let Mrk be the size of router r’s CS
that is occupied by chunks from file k. Then the probability
of a cache hit at router r is

P hit
rk =

Mrk

Crfk
(4)

The Interest arrival rate for file k is pkλr, so Little’s Law
gives, in steady state,

Mrk =

{
(pkλr)Tr if pkλrTr < Crfk
Crfk if pkλrTr ≥ Crfk

where the second case applies if Mr is so large that router
r can accommodate all chunks of file k that is to be cached
there. By Eqn. (3), we get

Mrk =

{
Mrpk if Mrpk < Crfk
Crfk if Mrpk ≥ Crfk

(5)

The probability of a hit at router r is, by Eqn. (4),

P hit
r =

∑
k

P hit
rk pk =

∑
k

Mrk

Crfk
pk. (6)

To validate Eqn. (6), we use the Abilene topology. Clients
at R1 and R10 request each other’s files, and similarly for
R2 and R11, so cross traffic is heaviest at R2. The 500 files
at each edge router have popularity distributed as Zipf with

α = 1, so fk = 1/500, and pk = p0/k, where p0 = 1/
500∑
i=1

1
i .

Fig. 14 shows that the equation gives an excellent fit for the
simulated P hit

router at both edge and core routers.

B. Network Hit Probability P hit
net

To calculate an aggregated metric for the network, we need
to determine Prob(check), i.e. the probability that an Interest
checks a CS (see Sec. III-B1).
Consider a file F with N chunk

F chunks, and a router r. How
many of the N chunk

F Interests will check the CS at router r?
If S ≤ H − 1, then router r caches at most 1 segment,

which has N chunk
F /S chunks; if S > H − 1, then the router

caches, on average, N chunk
F /(H − 1) chunks. Router r thus

gets approximately I1 = N chunk
F /min(S,H − 1) Interests for

the chunks that it caches.
In addition, CCndnS requires the Interest for the first chunk

of a segment to probe every router; at worst, router r gets I 2 =
S Interests for this probing. We therefore estimate Prob(check)
as (I1 + I2)/N

chunk
F , i.e.

Prob(check) ≈ 1

min(S,H − 1)
+

S

N chunk
F

. (7)

This approximation does not model how Prob(check) depends
on r (e.g. Interest for the first chunk of a segment checks every
CS in its path only until it gets a hit); we assume the effect is
minor.
Now suppose the route taken by Interests passes through

routers 1, 2, . . . , k before reaching the source. The network hit
probability is then

P hit
net =

k∑
r=1

Prob(check)P hit
r . (8)

Fig. 15 shows that this equation fits two very different sets of
P hit
net measurements in our experiment.

C. Average Hop Count Nhops

Similarly, the average hop count is

Nhops =
k∑

r=1

rProb(check)P hit
r + (k + 1)(1− P hit

net). (9)

Fig. 16 shows that this equation also gives a good Nhops fit
for the two sets of measurements in our experiment.
Our equations can thus accurately model both local (P hit

router)
and global (P hit

net and Nhops) performance. Our current work
is on using these equations to partition the caches, and thus
enforce Service Level Objectives for specific traffic classes.
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V. RELATED WORK

NDN grew out of Jacobson et al.’s proposal on Content-
Centric Networking [11], and is an example of information-
centric networking (ICN). Recent work [1] has confirmed
the cacheablity of current Internet traffic. However, caching
performance depends on content popularity, caching policy,
etc. [26]. In fact, there is some skepticism over whether ICN
in general, and NDN in particular, are fundamentally feasible.
For Ghodsi et al., ICN’s in-network caching is futile because

most hits will occur only at the edge, where the popular files
are cached [9]. Perino and Varvello’s calculations also show
that memory technology (e.g. size and speed) cannot match
line speed at reasonable cost for NDN [20].
In this paper, we make no effort to examine whether NDN is

feasible. Rather, the question we pose is: How can we improve
in-network caching for NDN?
In-network caching resembles cooperative web caching.

Several papers have proposed protocols for such coopera-
tion [18], [23], but Wolman et al.’s analysis shows that they
have marginal benefits for large populations [31].
However, that analysis uses traffic data from some 16 years

ago, when the Web was quite different from today. In the case
of on-demand TV, for example, Li and Simon recently show
that their cooperative caching strategy can significantly reduce
cross-domain traffic [17].
Without cooperation, caches at the edge of the network

will get most of the hits and act as a filter. This effect is
most obvious for hierarchical systems; it is known for web
caching [5], and recently observed for CCN [12], [22]: Caches
at the edge are dominated by popular files, while those in the
core are occupied by unpopular content that get few hits. This
is largely why Fayazbakhsh et al. believe that most of the
benefit of in-network caching for ICN can be obtained with
TCP/IP by putting all the caches at the edge [8].
On the other hand, Tyson et al.’s simulations with BitTorrent

traces show that, if cache sizes are sufficiently large, then there
is significant caching in Tier-2 Autonomous Systems using
CCN instead of TCP/IP [30].
In the studies above, the files are cached in their entirety.

CCndnS, however, segments the files and spreads them over
multiple routers, thus removing the filtering effect. (Our use of
equal-sized segments is consistent with segmentation in HTTP
streaming.) Fig. 4 shows that this increases hits in the core,
possibly even exceeding that at the edge if there is cross traffic.

One reason NDN’s default en-route caching strategy leaves
the core caches cold lies in the lack of cache diversity, i.e.
the core contains copies of the content at the edge. One way
to reduce this redundancy is for the caches to run some coor-
dination protocol [32], [7]. The coordination may require the
measurement of content popularity [16], [33]. Such schemes
increase traffic overheads, add complexity to the routers, and
may not adapt fast enough to changes in popularity.
Alternatively, this redundancy can be reduced by meta

algorithms like LCD and MCD, as considered by Laoutaris
et al. for hierarchical web caches [15]. WAVE [6] is a chunk
placement policy that is similar to MCD; it also has a chunk
marking window that is similar to a segment. These algorithms
have the common problem of caching only popular content at
the edge, leaving the caches in the core ineffective.
Another possibility is for a router to probabilistically decide

whether to cache a chunk that is passing through, i.e. random-
ized redundancy reduction, like in ProbCache [21]. Arianfar et
al. see probabilistic caching as a load-sharing strategy, having
pointed out the difficulty for memory latency to match line
speed [2]. Chai et al. also note that this need to work at
line speed rules out any collaborative caching algorithms that
require significant information exchange among the routers [4].
CCndnS does not require such control traffic. The Interests

and Data chunks at most carry hop count, file size and segment
size in their headers. Nonetheless, it spreads content so the
load for checking CS is spread out (Fig. 12). This reduces
queueing delays at the CS and significantly postpones router
saturation [24]. The redundancy reduction also ensures that
caching capacity in the core is not wasted. CCndnS thus
partly addresses the line speed and edge/core issues raised
by previous authors. Note that CCndnS cannot completely
eliminate redundancy, since it is a caching strategy, whereas
redundancy is partly determined by the routing algorithm.
The filtering effect that makes en-route caching ineffective

also makes the analytical modeling of a caching network
“extremely difficult” [25] and “far beyond the borders of
tractability” [14]. This is why many models consider only
hierarchical topologies [12], [22].
In contrast, by caching at the granularity of a segment,

CCndnS facilitates skipping, diminishes the filtering effect,
and decouples the behavior among caches (Fig. 13). We thus
obtain a simple model (Sec. IV) that can be used to predict
and analyze individual and aggregated router performance.



VI. CONCLUSION
This paper makes three contributions towards improving in-

network caching for NDN:
(1) We show how, by spreading a file over multiple routers,

CCndn’s caching strategy overcomes the edge/core prob-
lem. Instead of caching unpopular content in the core that
get few hits, spreading popular files raises hit rates in the
core (Fig. 4(b)). Cache pollution by unpopular content
can be further reduced by using SLRU instead of LRU,
thus reducing its performance impact (Fig. 6). Redundant
chunk caching in the core is reduced (Fig. 5(b)) because
CCndn assigns chunks to routers.

(2) Since chunks are assigned to routers, an Interest can skip
some CS checks. We show how this skipping idea helps
CCndnS reduce router miss rates (Fig. 8) without hurting
network hit rates (Fig. 9), and helps to even out Interest
traffic among the routers (Fig. 12). Reducing misses and
balancing traffic helps to reduce memory latency so the
routers can sustain line rates.

(3) We present a simple analytical model for hits (Sec. IV) that
is accurate for both edge and core routers (Fig. 14). It can
also be used to calculate aggregate performance for the
network (Fig. 15 and Fig. 16). The key to overcoming
the modeling intractability lies in the skipping used by
CCndnS, which decouples the caches (Fig. 13).

As with any networking protocol, CCndnS has parameters
S and H that require tuning (Fig. 3, Fig. 10 and Fig. 11) to
suit the topology and traffic.
The model can be used for resource allocation, e.g. memory

or bandwidth assignment to traffic classes that have different
service level objectives. This requires techniques for estimating
model parameters (Cr, fk, pk) and adjusting them dynamically.
Space constraint prevents us from elaborating on tuning, al-

location and estimation, as well as Interest routing (Sec. III-A).
We will address them in future work.
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