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Abstract—This paper proposes a comprehensive encryption-
based access control framework for content centric networking
(CCN), called CCN-AC. This framework is both flexible and
extensible, enabling the specification, implementation, and en-
forcement of a variety of access control policies for sensitive
content in the network. The design of CCN-AC heavily relies
on the concept of secure content object manifests and leverages
them to decouple encrypted content from access policy and spec-
ifications for minimum communication overhead and maximum
utilization of in-network caches. To demonstrate the flexibility
of framework, we also describe how to implement two sample
access control schemes, group-based access control and broadcast
access control, within CCN-AC framework.

I. Introduction

Information-centric networking architectures (ICNs) [8],
[13] are quickly becoming an attractive alternative to the cur-
rent host-to-host Internet design in both research and industrial
communities. Several novel networking architectures [2], [5]–
[7], [19], [22], [30], [31] have been recently proposed as
instances of the ICN. The most common and fundamental
features in these ICN instances are: (1) interest-based content
retrieval, (2) content oriented naming and routing at the
network layer, and (3) in-network caching. Features (1) and
(2) imply that users acquire content from the network via
explicit queries for uniquely named content, rather than by
establishing point-to-point connections between endpoints. In-
network caching permits a router to cache any content for
predetermined lengths of time such that subsequent requests
for the same content can be satisfied from the cache, rather
than by forwarding the interest upstream. These architectural
features enable many foreseeable benefits such as improved
performance [28] and lower network cost [32].

Due to in-network caching, content objects may not al-
ways arrive from their original producer(s). Consequently,
the content security – defined with respect to confidentiality
and authenticity – cannot be considered in the traditional
Internet model based on secure point-to-point channels. This
implies that content must be encrypted so as to prevent invalid
disclosure or modification within the network by unauthorized
parties [34], [36].

Several encryption-based access control schemes in ICNs
have already been proposed [18], [26], [29], [37] (We will
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summarize them in Section VI), with substantial differences in
each design. Rather than require each producer application to
implement their own form of application-specific access con-
trol specification and enforcement mechanisms, we advocate
a unified framework by which any access control scheme may
be constructed. In this paper, we present such a framework
for the latest revision of content-centric networking (CCN)
architecture, CCN 1.0 [1]. The framework is called CCN-AC
(CCN access control) and it is the first of its kind for ICN
architectures.

In Section III, we describe the basic design of the CCN-
AC and how the CCN-AC works based on content object
manifests [30] (we will briefly explain manifests in Section
II). We show how manifests decouple encrypted content from
the access control and decryption information via access
control specifications (ACS) and key-chains. Key-chains are
themselves manifests containing a list of decryption keys
necessary to access content protected under arbitrary group-
based hierarchies. The keys themselves are based on principals
in order to realize fine-grained access control schemes, where
a principal is an individual user or a group of principals.

In Section IV, we demonstrate the detailed configurations
of the CCN-AC framework that realize two typical types of
access control applications over CCN: group-based access con-
trol [29] and broadcast access control [12], [27], [33]. Other
potential extensions of CCN-AC, along with relevant security
claims and arguments, are presented in Section V. Although
our presentation in this paper is tailored towards CCN, we
note that our framework is compatible with any ICN design
that supports manifests and secure links or constructions of
equal functionality.

The rest of this paper is organized as follows: Section II
gives a brief introduction of the latest design of CCN (CCN
1.0) [1]. Section III describes our comprehensive framework of
access control in CCN based on manifests - CCN-AC. Section
IV presents some specific instances of access control scheme
realized over CCN-AC. Section V gives discussions on CCN-
AC and analyzes its security. Finally, Section VI summarizes
existing studies related to access control for ICNs, and Section
VII concludes this paper.

II. CCN Overview andManifest-Based Content Retrieval

In this section, we first introduce content-centric networking
(CCN) [19], [30]. We then explain its new content retrievalISBN 978-3-901882-68-5 c© 2015 IFIP
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Fig. 1. CCN 1.0 interest message format: [·] means an optional field and ∗·
means zero or more repeated fields
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Fig. 2. CCN 1.0 content object message format: [·] means an optional field
and ∗· means zero or more repeated fields

method based on manifests.

A. Content-Centric Networking (CCN) Architectural Elements

Content-centric networking (CCN) [19] is an instance of
ICN, and CCN 1.0 [30] is the latest protocol design of CCN.
There are four basic parties in CCN: (1) content producers,
(2) content publishers, (3) content consumers, and (4) routers.
For the sake of simplicity, we may refer to these parties as
producers, publishers, consumers, and routers, respectively.

Content producers are responsible for generating content,
e.g., photos, sensor-collecting data, etc. Publishers convert
data from producers to named data objects with desired
security bindings and protections, and publishes them on the
network. Routers are responsible for forwarding requests for
data objects and corresponding responses through the network
between the consumers to the publishers.

Routers are composed of three primary elements: (1) a
forwarding information base (FIB), (2) pending interest table
(PIT), and (3) content store (CS). The FIB is used to route
incoming interests to the appropriate output port towards the
desired content producer. Much like traditional IP routing
tables, the FIB is populated using standard routing protocols
or static routes and matches content names in interest packets
to FIB entries using longest prefix match. The PIT serves as a
cache of interest state such that content objects that satisfy
interests may follow the reverse interest path back to the
requester. This preserves upstream and downstream network
flow. Finally, the CS is an optional cache for content objects
that, if present, is first searched prior to forwarding an interest
upstream. These caches serve to reduce content object retrieval
latency and bandwidth consumption in the network. A routing
protocol is responsible for asynchronously populating the FIB
based on the most probable locations of published data objects.

1) Network Messages in CCN 1.0: CCN 1.0 supports a
two main kinds of network messages: interests and content
objects, and a number of well-defined content object types
that are understood and interpreted at the network layer such
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Fig. 3. CCN 1.0 manifest format: [·] means an optional field, ∗· means zero
or more repeated fields, and ·|· means “or”

as manifests. Each network message in CCN 1.0 consists
of three components: (1) a message header (consisting of
FixedHeader and OptionalHeader fields), (2) CCN mes-
sage (CCNMessage field), and (3) validation data (consisting
of ValidationAlgorithm and ValidationPayload fields).
The message headers provide information about the message
structures and forwarding information. The CCN message is
the message body, which includes metadata and the actual
payload (for both interest and content object). Lastly, the vali-
dation data field is an optional field containing the information
necessary to validate the authenticity and/or the integrity of
the payload (e.g., the signature algorithm, public key and the
actual signature bytes).

A content object is a named data object that is requested
and located in the network via its name. An interest is a
message issued by a consumer to request a content object
with a particular name. Interests are composed of the name of
the desired content, optional metadata and optional payload.
Figures 1 and 2 briefly describe the format of interest and
content objects, respectively.

The Metadata field of interest, especially its KeyId and
ContentObjectHash subfields, in CCN 1.0 allows interest
messages to carry additional restrictions that are used to
determine which content objects may satisfy (match) the
interests. The KeyId limits the match to a specific pub-
lisher by checking the key ID (i.e., the cryptographic hash
digest of the public key) used to sign the content object.
The ContentObjectHash subfield will only allow the net-
work to return a content object whose cryptographic digest
equals to the indicated value, where the digest is com-
puted over the CCNMessage, ValidationAlgorithm and
ValidationPayload (shown in Figure 2). Note that an in-
terest message with a non-empty ContentObjectHash would
uniquely point to one content object (i.e., within the limitations
of the collusion space of the hash function).

We also emphasize that interest messages are allowed to
carry additional information within the payload field of the
network message. This payload information is not stored in
the PITs of routers, as it is only used by producers to generate
dynamic content to be distributed by a publisher.

The manifests are one of the recent enhancements in the
CCN protocol that was introduced to efficiently handle frag-
mentation and distribution of large content. As previously
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Fig. 4. The fields of list of names and list of hashes in CCN 1.0 manifest

mentioned, the manifest is defined as a type of content object.
Conceptually, a manifest is used to describe a logical collection
of a set of content objects. This is done by providing meta
information about the collection and enumerating the ordered
pointers to every constituent piece of the collection. This
format enables consumers to issue interests for all of the
content objects enumerated within a manifest.

Figure 3 shows the message format of manifest1. In the
Payload, the meta information and ordered names are given
in the format of Section that consists of ACS (access con-
trol specification), ListOfNames and ListOfHashes. The
ListOfNames and ListOfHashes fields jointly give secure
and ordered pointers to constituent content objects. If an ACS
field exists in the section, it gives all of the access control
information applicable to the listed content objects in the same
section. We emphasize that this paper defines the specification
of ACS, upon which the CCN-AC framework is heavily based.

B. Manifest-Based Content Retrieval

In this section we briefly describe how to handle the
(non access-controlled) large content through the manifest and
explain the merits of its usage. Since we are not yet dealing
with access control specifications or semantics, assume that
manifests here do not have ACS in any of its sections.

Figure 4 shows the ListOfNames and ListOfHashes fields
in the payload of manifest. The ListOfNames field enumer-
ates name entries that indicate the content name prefix in
the MediaName subfield and its first chunk number in the
StartChunk subfield. In the ListOfHashes, each hash entry
indicates a content object by a number in the Index subfield
and the hash value of its CCN message in the Hash subfield,
where the number in the Index subfield corresponds to an
entry of ListOfNames. To illustrate this binding, consider the
case where the first entry of the ListOfNames is

{StartChunk = 3, MediaName = lci:/parc/obj},

and the first and second entries of the list of hashes are

{NameIndex = 1, Hash = 0x123},

{NameIndex = 1, Hash = 0xABC},

respectively. Then, the first entry of the ListOfHashes repre-
sents a content object with name lci:/parc/obj/chunk=3
and hash value 0x123, and the second entry represents one
with the name lci:/parc/obj/chunk=4 and hash value
0xABC.

1Note that the manifest type is indicated by the ContentType subfield of
the Metadata field.
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Fig. 5. An example distributed content-dissemination system that leverages
the CCN-AC design.

With manifests, a consumer first sends an interest for a
content objects and retrieves a manifest as the response. The
manifest is then parsed to obtain content object names and
hash values as shown in the above example. Using these names
and hash values, interest messages are created and issued to the
network sequentially or simultaneously to obtain all content
objects encapsulated by the manifest. Note that this general
content retrieval strategy is always followed even if an ACS
exists in a section of manifest.

Aside from the ease of simultaneously requesting chunks
of fragmented objects, manifests are useful to circumvent the
need to individually sign and verify all content objects in
CCN. Since each component content object is obtained via
an interest that restricts the responses to a particular object
by providing its cryptographic digest, a manifest can serve
as a tool for batch signing/verification and only the signature
of the manifest needs to be verified for any set of content
objects a manifest provides the hashes, i.e, cryptographic
fingerprints, for. This benefit can be exploited by creating and
leveraging manifest trees, in which the name of a component
content object within a manifest is itself the name of another
manifest. If the signature of the root manifest is verified
and the associated verification key is trusted, then all content
objects encapsulated by said manifest are also trusted.

III. A GeneralManifest-Based Access Control Framework

A. Design Goals

One of the primary goals of this work is to design a
comprehensive and scalable framework for encryption-based
access control in CCN. The framework should be flexible
enough to support arbitrary access control policies enforced
by appropriate cryptographic algorithms. We aim to make
CCN-AC flexible and scalable enough to support an arbitrary
number of consumers for any given producer.

To meet these requirements, consider a distributed system
design similar to the one shown in Figure 5. In this example,
the key manager uses a symmetric key for content encryption
and an asymmetric public key to encrypt the symmetric key.
Additionally, a user obtains his public-private key pair (or
help the producer to learn and authenticate its public key)
through a secure channel to the producer. The content provider
then generates content, either on-demand or by reading data
from persistent storage, and sends it to the encryption and



dissemination server for encryption under the symmetric key
and making it available in the network. The access policy man-
ager encrypts the symmetric key under the user’s public key,
and publishes the encrypted symmetric key over the network
as well. Finally, the user obtains the encrypted content and
symmetric key, decrypts the symmetric key, and then uses the
symmetric key to decrypt the content. This example consists
of these five reasonable entities working in a decentralized
manner; they could be collocated on a single machine or
distributed across different places within a network.

With regards to the underlying cryptographic algorithms
used to enforce access control, we also aim to support ar-
bitrary types of encryption that are appropriate for different
access control policies. For example, we leverage attribute-
based encryption [10], [14] for attribute-based access control.
Another goal we seek to achieve is maximized usage of in-
network caches so as to increase the efficiency of encrypted
content retrieval and access. In other words, we aim to
maintain the efficiency of the CCN content retrieval in terms
of the computational and communication overhead, even if the
content is confidential and needs to be access-controlled.

B. Basic Access Control Overview

Cryptographic access control in CCN-AC is based on hybrid
encryption of content data. Specifically, content objects are
encrypted under a cryptographically random symmetric key,
called the nonce key. The nonce key is then encrypted under
another encryption algorithm that is appropriate for the desired
form of access control (e.g., broadcast encryption for group-
based access control). Nonce keys are encrypted for principals,
which can be groups of or individual consumers. Technically, a
principal is defined as an individual consumer or an arbitrary
group of principals. Each consumer is treated as a user of
the access control system; consequently, we use the terms
interchangeably without loss of generality in the remainder
of this paper.

Recall the manifest-based content retrieval described in
Section II-B. In CCN-AC, access-controlled content objects
that are specified in one manifest are encrypted under a nonce
key by a certain encryption algorithm, e.g., AES-256-CTR.
The names and hashes of the encrypted content objects are
given in the ListOfNames and ListOfHashes fields of the
manifest as the normal content objects. Hence, once a user
obtains the manifest, he can issue interests for all the encrypted
content objects sequentially or simultaneously. The ACS field
of the manifest provides the required information to decrypt
the encrypted content objects; specifically, the name of the
encrypted nonce key, parameters of encryption algorithms, and
any other information necessary for successful decryption by
authorized consumers. We will explain the structure of the
ACS field in Section III-C.

CCN-AC encrypts the nonce key used in the encryption
of content objects by another encryption algorithm that is
appropriate to realize the desired access control structure,
e.g., broadcast encryption, attribute-based encryption, session-
based encryption, etc. We refer to the key required to decrypt
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Fig. 7. Description of access control specification (ACS) field in a manifest:
[·] means an optional field and ∗· means zero or more repeated fields.

the encrypted nonce key as the decapsulation key. The decap-
sulation key itself is encrypted such that only qualified and
authorized principals can decrypt the decapsulation key.

Consider the following example illustrated in Figure 6.
First, each principal i is assigned a public-private key pair
(PKi, SKi). Individual users initially have their own principal
key pairs. We denote by EncPKC(SKi,PK j) the encryption of
SKi by some public key cryptographic algorithm under PK j.
In this example, when the principal group X is authorized
for access, the decapsulation key DKX to X is encrypted as
EncPKC(DKX ,PKX). User A can then obtain the decapsulation
key DKX by retrieving the ciphertexts EncPKC(SKX ,PKA) and
EncPKC(DKX ,PKX) using only their own private key SKA.

As we see, the decapsulation of nonce key and decryption
of principal key along with the principal tree are essentially
separated. This separation implies that the private key set is
flexible enough to enable sophisticated access control group
hierarchies for any principal(s). We expand on the private key
specification and retrieval procedures in Sections III-C and
III-D, respectively.

C. Access Control Specification in Manifest

In this section, we provide a detailed description of the
access control specification (ACS) field of the manifest. Func-
tionally, it contains all of the information needed to decrypt the
nonce key to obtain access to encrypted content objects. Figure
7 briefly describes the ACS field in the manifest, composed
of two subfields: (1) the EncryptionAlgorithm and (2) the
AccessControlConfig (ACC).

The EncryptionAlgorithm field simply describes an en-
cryption algorithm and its parameters that are used to encrypt



the content objects listed in the manifest2. The field value is
encoded in JSON [3], e.g.,

{{encryptionAlgorithm:AES-128-CTR, initialCounter:***}}.

The AccessControlConfig (ACC) field provides all the
information required to execute the decryption algorithm
specified in the EncryptionAlgorithm field. Unlike the
EncryptionAlgorithm, the ACC has a nested structure and
consists of four basic subfields: (1) AccessControl, (2)
NonceKeyName, (3) NonceKeyId, and (4) KeychainLink. It
can have other additional subfields depending on the access
control instance, as shown in Figure 7.

The AccessControlConfig field explains the type of
access control scheme that handles the symmetric key used
in the EncryptionAlgorithm field in ACS. It is encoded in
JSON, e.g.,

{type:NonceKey,

encapsulationAlgorithm:Naor-Pinkas-BE, ...},

where type: NonceKey means that access control to the con-
tent objects is done through the encapsulation of the nonce key,
and encapsulationAlgorithm: Naor-Pinkas-BE implies
that the Noar-Pinkas broadcast encryption algorithm given in
[27] is used to encapsulate the nonce key. The type is usually
NonceKey in CCN-AC. It can however take different values in
order to realize different types of access policies3. Decryption
process of the content objects listed in a manifest starts by first
referring to this field to determine which type of cryptographic
primitives are required.

The NonceKeyName field of the ACC simply provides the
(interest) name of the encapsulated nonce key. This name is
used to issue an interest for the decapsulation key(s). We
note that there exist cases where the nonce key name field
has aliases. Aliases are variables of name components and
introduced to represent state-dependent names in one name
field. For example,

lci:/parc/obj/noncekey/<principal public key hash>,

where <principal public key hash> is an alias of a
principal-specific value, the hash value of the qualified prin-
cipal’s public key4. By setting aliases in the nonce key name
field, one can query the nonce key encrypted with principal-
specific values, where the required types of principal-specific
values are described by the aliases themselves and/or the
AccessControl field of the ACC.

The NonceKeyId field of the ACC equals the hash value
of the (non-encrypted) nonce key. This enables one to easily
verify the integrity of the decrypted nonce key; with a proper
collision-resistant hash function (e.g., SHA-256), integrity and

2Note that this field can also specify multiple algorithms. In fact, when
we apply CCN-AC to instantiate TLS-like one-to-one secure communication
between a producer and consumer, this field describes multiple encryption
algorithms and their parameters in JSON format.

3In fact, we use the value type: SecureSession to realize TLS-like one-
to-one secure communication over CCN-AC.

4Any other valid principal value may be used in lieu of the public key hash.

unforgeability are guaranteed since the hash value is covered
by the manifest’s digital signature.

The KeychainLink field of the ACC provides the link to
another manifest called a key-chain, where the link consists of
its name and signer’s key ID (KeyId to the content object of
key-chain). The key-chain can be viewed as an ordered list of
all the (encrypted) principal private keys required to decrypt
the decapsulation key. Since the key-chain is itself a manifest,
one can retrieve all required keys for the decryption of the de-
capsulation key in parallel by parsing the embedded name/hash
lists. We defer a detailed description of the key-chain manifest
to Section III-D. Just as with the NonceKeyName, the name
of KeyChainLink usually has aliases to provide a key-chain
personalized to each user. In the ACS field of the key-chain
manifest, the specific algorithm for each of the principal key-
chain hierarchy nodes is specified. For example, if a key-
chain contains three keys, then the ACS of the key-chain
has three ordered encapsulationAlgorithm fields in the
EncryptionAlgorithm field.

The DecapsulationKeyLink field of the ACC provides the
link to the encrypted decapsulation key, where the link consists
of its name and its signer’s key ID (KeyId to the content
object of the decapsulation key), and the name usually has the
aliases, just as the nonce key name, to assign a decapsulation
key personalized to each qualified principal. Note that the
key-chain provides the name of the decapsulation key to the
principal. However, we do not need to retrieve the key-chain
when a user already stores the decapsulation key. The purpose
of this field is just to check if we need to fetch the key-chain
to recover the decapsulation key, which is used to successively
obtain the nonce key, by using the name and the signer’s key
ID of the decapsulation key.

D. Key-Chain to Retrieve All the Required Keys

As explained in Section III-B, our framework provides
principal-level access control to content objects, and each
user needs obtain his ancestors’ private keys (leading to the
decapsulation key) by recursively traversing the principal tree
from their respective leaf to the root. In order to efficiently
fetch these (encrypted) keys without O(pathlength) round trip
messages [29], we introduce a new key retrieval method using
the key-chain.

The key-chain is a manifest that provides an ordered list of
the private keys required for a user (principal). Although the
key-chain is itself a normal manifest, it has only one ordered
list of encrypted keys and has the following values in the fields
of its ACS.
• AccessControl of ACC: {type: Keychain},
• EncryptionAlgorithm: The encryption algorithm with

parameters that are used to encrypt keys listed in the
manifest, e.g., RSA-1024. This can be repeated for each
different algorithm applied to each listed key.

The ListOfNames fields provides the ordered list of names
of encrypted (decryption) keys required for a user.

We now provide an example of how to use the key-chain to
decrypt the nonce key given the principal hierarchy shown



in Figure 6. Consider the situation where the group Z is
qualified to access content objects listed in a manifest and user
B tries to access the content objects by retrieving all the keys.
Then, the user needs to retrieve the encrypted private keys
(decryption keys) of his ancestors, EncPKC(SKX ,PKB) and
EncPKC(SKZ ,PKX). User B also needs the encrypted decap-
sulation key assigned to the principal Z, EncPKC(DKZ ,PKZ).
To retrieve these keys, user B first issues interests for the key-
chain personalized to him by referring to KeychainLink of
the ACC. The name of the key-chain will typically have aliases
of a user-specific value, e.g.,

lci:/parc/obj/key-chain/<user public key hash>.

As the response to the interest, user B obtains the key-chain
with the ordered key list in its ListOfNames fields as

{StartChunk=1, MediaName=name of EncPKC(SKX ,PKB)}

{StartChunk=1, MediaName=name of EncPKC(SKZ ,PKX)}

{StartChunk=1, MediaName=name of EncPKC(DKZ ,PKZ)},

where the ListOfHashes field enumerates the hash values of
their (chunked) content objects. At this point, user B needs to
retrieve the content objects of encrypted keys and sequentially
decrypt them, starting with the leaf. Note that if the user’s
private key can be used to decrypt the nonce key, then the list
of keys in the key-chain will be empty.

Note that in a group-based access control setting where a
principal hierarchy exists, the encapsulation algorithm of any
decapsulation key is not necessarily coupled to the algorithms
used to encrypt other keys in the key-chain. In other words,
RSA may be used to encrypt all non-root nodes in the key-
chain, and a different algorithm may be used to decrypt the
root key. This means that different encryption algorithms may
be applied at each level in the root-to-leaf path given in
the key-chain. The ACS specifies which algorithm applies
to each level in the tree so that consumers may apply the
appropriate decryption algorithm when traversing the path.
This decoupling allows any group-based access control policy
to be imposed over a group-based principal hierarchy.

The integrity and unforgeability of the listed keys in a key-
chain can be verified and guaranteed as long as the key-chain
has a valid signature. Also, since the user is given the set of
all decryption keys necessary to decrypt the nonce key, he can
issue an interest for each key in parallel, thereby maximizing
his usage of the available network bandwidth.

IV. Instances Realized over CCN-AC

With the foundation of our framework in place, we now
show how to instantiate and enforce common access control
policies over CCN. We first present an analog to the group-
based access control that was implemented in the old version
of the CCN protocol [29]. We then show how to instantiate
broadcast access control over CCN by implementing broad-
cast encryption [12], [27], [33] in CCN-AC.

A. Group-based Access Control

1) Access Control Model: Consider the following content
dissemination system to be used to enforce group-based access
control in CCN-AC. Assume that there exists one content
publisher, e.g., Netflix. Also assume a network topology in
which all published content flows from the content publisher to
individual consumers by traversing core-network and Internet
service provider nodes (CCN routers). Assume that any node
may cache content as it flows from the producer to the
consumer. Furthermore, assume that each user of the Netflix-
like service is already assigned their public-private key pair to
be used when traversing the principal hierarchy for key-chains.
These keys may be distributed offline or over a secure-session.
Note that this system model can be easily extended to multiple
publisher cases.

To begin, the content publisher encrypts and publishes
named content objects to the network. The random nonce
key used to encrypt each content object is then encrypted
(encapsulated). The content publisher in the group-based
access control setting allows certain groups of users, i.e.,
principals, to access the content simply by generating multiple
(different) ciphertexts of the nonce key encrypted for different
principal groups. Then, each ciphertext can be decrypted
only by qualified principals in each group using the key-
chain retrieval method described in Section III-D. This means
that the qualified principals’ public keys are directly used to
encrypt the nonce key and hence the decapsulation keys are
qualified principals’ private keys.

As explained in Section III, each user initiates the retrieval
of a piece of content by issuing an interest to the manifest
with the name associated with the content. Upon receiving and
parsing this manifest, the user unambiguously obtains all the
encrypted content objects using the names and the hash values
listed in it, and can decrypt them according to the ACS in the
manifest after fetching the key-chain and all of the required
keys. The next subsection gives the detailed description of the
ACS in this manifest.

2) Configuration of ACS in the Manifest: For the sake
of simplicity, we assume that the name of content objects
generated by the content publisher in this instance have prefix
lci:/parc/GE/. Also suppose that RSA encryption with a
1024-bit key is used as the encryption and encapsulation
algorithm of keys. Using the example ACC subfield in Table
I, we shall explain the configuration of the ACC of the ACS
in the manifest by using these prefix and assumptions in each
of the respective fields.

• AccessControl: This field may include any parameters
related to the encapsulation algorithm.

• NonceKeyName: The name of the nonce key encrypted
under the qualified principals’ public keys, including the
alias that is specific for each qualified principal.

• NonceKeyId: The hash value of the (non-encrypted)
nonce key.

• KeychainLink: The link to the key-chain.
– Name: The name of the key-chain including the alias



TABLE I
An Example ACC of a Group-Based Access Control ACS

AccessControl = { type:NonceKey, encapsulationAlgorithm:RSA-1024,. . . }
NonceKeyName = lci:/parc/GE/NonceKey/<principal private key hash>

NonceKeyId = 0x********

KeychainLink

{
Name = lci:/parc/GE/Keychain/<user private key hash>
KeyId = 0x********

DecapsulationKeyLink

{
Name = lci:/parc/GE/PrincipalPrivateKey/<principal private key hash>/<member private key hash>
KeyId = 0x********

of the user-specific value.
– KeyId: The signer’s key identifier for key-chains.

• DecapsulationKeyLink: The link to the encrypted de-
capsulation key.
– Name: The name of the decapsulation key, i.e., qualified

principal’s private key, encrypted under its member’s
public key, including the aliases that are specific for
the qualified principal and its members.

– KeyId: The signer’s key identifier for encrypted de-
capsulation keys.

Note that the DecapsulationKeyLink field of the ACC in
the ACS can be blank when it is capable of always retrieving
the key-chain without checking if the user’s key store has the
decapsulation key for access control.

Also, the EncryptionAlgorithm field of ACS describes
the encryption algorithm used to encrypt the content objects
listed in the manifest, such as:

EncryptionAlgorithm= {encryptionAlgorithm:AES-128-CTR,

initialCounter:0x********, . . . }. (1)

As long as all the encrypted content objects are specified in
the lists of the manifest and in the ACS, a user belonging to
the qualified principal can retrieve and decrypt them correctly.

B. Broadcast Access Control

1) Access Control Model: As in the model described in
Section IV-A1, we assume a simple centralized setup in the
broadcast access control model in which all network nodes
are CCN routers and there exists one content publisher who
encrypts and disseminates content objects over the network.
Also suppose that each user is already assigned his public-
private key pair in the principal hierarchies, generated by the
content publisher.

The content publisher qualifies a certain set of principals to
access his content objects by encrypting the content objects
under a random nonce key and then by encapsulating the
nonce key with a group-specific (principal-specific) key using
broadcast encryption. Each private key qualified to decrypt the
decapsulation key is associated with a qualified principal.

After retrieving and analyzing the manifest including the
ACS in this model, each user starts to access the content
objects as we explained in Section III. The next subsection
gives the detailed description of the ACS in this manifest.

2) Configuration of ACS in the Manifest: For the sake of
simplicity, assume that the name of content objects gener-
ated by the content publisher in this instance has the prefix

lci:/parc/BE/. Also suppose that the Naor-Pinkas broadcast
encryption [27] is used as the encapsulation algorithm of the
nonce key. We shall explain the configuration of the ACS in
the manifest by using these prefix and assumptions in each of
the respective fields.

Table II presents an configuration example of the
AccessControlConfig ACC field in the broadcast access
control under the assumed settings. In this instance of CCN-
AC, the ACS in the manifest that each user first retrieves has
these values in the ACC field. Note that the following fields
in Table II are specifically different from those in the case of
group-based access control described in Section IV-A2.
• AccessControl: This field may include any parameters

related to the encryption of [27].
• NonceKeyName: The name of the nonce key encrypted

by the broadcast encryption [27], where it is common
to all qualified principals and therefore does not contain
aliases.

• Name subfield of DecapsulationKeyLink: The name of
the (encrypted) decapsulation key including the alias that
is specific for each qualified principal.

Also, the EncryptionAlgorithm field of ACS has the de-
scription of the encryption algorithm used to encrypt the
content objects listed in the manifest, similar to the encoding
specified in (1).

Note that the configuration of the ACC is very flexible and
one can easily demonstrate that the broadcast access control
schemes given in [9], [10], [14], [16], [17], [20], [24], [35] and
the role-based access control scheme of [39] can be directly
realized over CCN-AC as an exercise.

V. Discussion

We now discuss several topics pertinent to CCN-AC. Sec-
tion V-A briefly summarizes the security of CCN-AC, and
Section V-B discuss about user (principal) revocation in CCN-
AC. Lastly, Section V-C shows some potential extensions of
our basic framework to realize other access control structures.

A. Security of CCN-AC

The security of correctly implemented CCN-AC can be con-
sidered as a combination of manifest-based content retrieval
and that of the access control or encryption schemes utilized.
Since CCN-AC invokes any access control procedure by using
a properly-signed manifest, we can guarantee the integrity and
unforgeability of any objects that are listed or linked with
their names and hash values in the manifest as long as the



TABLE II
An Example ACC of a Broadcast Access Control ACS

AccessControl = { type:NonceKey, encapsulationAlgorithm:Naor-Pinkas-BE, ... }

NonceKeyName = lci:/parc/BE/NonceKey

NonceKeyId = 0x********

KeychainLink

{
Name = lci:/parc/BE/Keychain/<user private key hash>
KeyId = 0x********

DecapsulationKeyLink

{
Name = lci:/parc/BE/PrincipalPrivateKey/<principal private key hash>
KeyId = 0x********

hash function used is secure. Moreover, although some objects
linked from the manifest, e.g., objects personalized to each
principal, cannot be described with their hash values, it is
enforced that they have valid signatures that would be trusted
by specifying a KeyId field in the interest and they are verified
once received. Hence, we can guarantee the integrity and
authenticity of all the objects, including encrypted content and
decryption-related information, retrieved (recursively) through
the manifest.

This implies that for an access control instance over CCN-
AC, the only security consideration is that of the access control
scheme and the encryption scheme (e.g., specific broadcast
encryption algorithm like [12]). In other words, any access
control scheme implemented in CCN-AC will be secure as
long as the underlying encryption algorithms, protocols, the
access control scheme and their implementations are secure.

B. Revocation in CCN-AC
Achieving both rapid access revocation and high cache

utilization within a network is not easy. Even if the publisher
changes his local content objects to revoke some principals
from the access control structure, the revoked user might still
be able to retrieve the older copies of content objects from
various caches in the network. Since caching is a fundamental
feature of CCN (and ICNs in general), whenever possible,
we recommend using the lazy revocation approach in CCN-
AC to make the most out of the caches in the network. For
applications that require rapid revocation capability, CCN-
AC can easily support session-based access control schemes,
however at the expense of low cache utilization within the
network.

In lazy revocation, when a principal is revoked, old content
objects listed in a manifest are not required to be updated.
Note that in CCN-AC, content objects are encrypted under a
symmetric key that is unique and random for each manifest.
Hence, as long as the revoked users cannot obtain valid
(plaintext) decapsulation keys, they cannot access content
objects that are listed in new manifests generated after the
revocation. However, all the public-private key pairs of the
revoked principal’s ancestors in the principal hierarchy needs
to be updated. Moreover, the decapsulation key have to be
re-encrypted under the updated qualified principal’s key. Note
that as long as the key-chain is up-to-date, a user can easily
check if his ancestors’ private keys and decapsulation keys
stored by him or cached nearby are valid or expired by their
hash values given in the key-chain.

C. Potential Extensions

We claim that various types of encryption-based access
control schemes can be easily realized in CCN by using CCN-
AC, as shown in Section IV. For instance, the proxy re-
encryption access control scheme proposed in [37] can be
realized over CCN-AC by introducing some optional ACC
subfields associated with proxy re-encryption [11], [15], [25].
Moreover, by using several additional fields in the ACS of a
manifest, CCN-AC can be easily applied to interactive security
protocols. In fact, TLS-like end-to-end secure communication
can be realized over CCN-AC, as discussed in [23], with no
changes to the framework; it only requires users and publishers
to support the interactive protocol.

VI. RelatedWork

This section summarizes existing works related to our access
control framework. There exist several existing approaches
of specific access control schemes for ICNs. Smetter et al.
[29] gave a group-based access control scheme as a default
access control scheme based on the old version of the CCN
software (CCNx 0.x) [1]. This corresponds to the instance of
CCN-AC given in Section IV-A. Misra et al. [26] proposed
a broadcast-based access control procedure in CCN that uses
broadcast encryption [12], [27], [33] to encrypt the nonce key,
which is exactly the instance of CCN-AC presented in Section
IV-B. Ion et al. [18] gave an attribute-based access control in
ICNs by applying an attribute-based encryption [10], [14], and
proposed a routing scheme based on user’s attributes. Wood et
al. [37] presented an access control schemes using proxy re-
encryption to personalize cached content objects to each user,
as mentioned in Section V-C.

Each of these works are merely instances of access control
in ICNs, and, to our knowledge, there has been no compre-
hensive access control framework for ICNs on which various
access control schemes can work. Consequently, we designed
CCN-AC in such a way that existing and potential ICN access
control schemes can work as similar, simple instance of the
framework.

Outside of information-centric networking, there have been
many proposed access control frameworks. Recently, access
control of content in shared cloud storage or social network
services, e.g., Google Drive, Dropbox, Facebook, etc., is
attracting many researchers [20], [35], [38], [39]. For in-
stance, Kamara et al. [21] modeled encryption-based access
control framework for cloud storage. Microsoft PlayReady



[4] is another popular access control framework for content
dissemination over the Internet. Such services, along with
social network services, consist of multiple entities similar to
our distributed system design, e.g., a key manager, encryption
server, storage server, client proxy, etc. Recall that the network
in ICNs can be viewed as cloud storage from the producer,
publisher, and consumer (user) perspective. Consequently,
these ICN-agnostic access control frameworks inspired our
design of CCN-AC.

VII. Conclusion

This paper described the design of a comprehensive access
control framework for CCN, called CCN-AC. The design
is heavily based on CCN-specific manifests, which enables
maintaining the efficiency and security of standard content
retrieval strategies using the new features in CCN 1.0. CCN-
AC provides the much needed flexibility for implementing
access control in CCN applications over a common framework,
where various types of access control schemes can be easily
implemented and enforced. To illustrate this flexibility, we
showed how to realize two common access control schemes:
(1) group-based access control, and (2) broadcast access
control, using CCN-AC.

This paper presents our initial effort in designing a flexible
and comprehensive access control framework for CCN. There
exists many possible avenues for future work. For example,
more sophisticated access control schemes that are based
on interactive and non-interactive protocols for establishing
secure communication and can be designed and instantiated
using the framework. Similarly, we also believe that CCN-
AC facilitates rapid prototyping and analysis of new security
protocols in CCN, which is critical for an emerging networking
protocol with such grand ambitions.
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