
1

Characterizing Mobile Open APIs in Smartphone

Apps

Li Zhang, Chris Stover, Amanda Lins, Chris Buckley, Prasant Mohapatra

Computer Science Department, University of California, Davis

Email: {jxzhang, cjstover, amicoskilins, cmbuckley, pmohapatra}@ucdavis.edu

Abstract—Mobile applications used in smartphones are in-
creasingly using Open APIs, and the trend is likely to continue
in the foreseeable future. However, the performance of the
Open APIs integrated in smartphone apps (Mobile Open APIs)
remains hidden from app developers and app users because
of the lack of a method to isolate the Open API calls from
the whole app execution process. In this paper, we present
the very first effort on characterizing Mobile Open APIs and
analyzing their performance in terms of four metrics: response
latency, network traffic, energy consumption, and CPU usage.
We first develop APIExtractor (APIX), a software tool to extract
the Mobile Open API calls as fine-grained as in the function
level from Android app files (.apk). Then the popularity of the
Open API functions were ranked by running APIX on 200 top
popular apps downloaded from the Android app store. We then
perform in-depth case studies on the the top 17 most popular
Mobile Open APIs, by wrapping each of them in a specifically
designed app (called APISymphone) and test the apps on both
Wi-Fi and cellular network. Furthermore, we conduct a global
scale measurements of the Mobile Open APIs by using Amazon
Elastic Computing service. Our comprehensive measurement-
based results provides very intriguing as well as interesting
insights to the performance characteristics of Mobile APIs.

I. INTRODUCTION

Open Application Programming Interface (Open API) is
a new technology that enables web devices to interact with
each other through certain web service protocols, e.g. Single
Object Access Protocol (SOAP) and Representational State
Transfer (REST) [1].
Recent years have witnessed a fast trend in the implemen-

tation of commercial software products by making use of
Open APIs. The number of companies which have published
their own Open APIs increased by a factor more than 200%
every 6 months since 2010 [2]. Correspondingly, the usage
of these Open APIs has also increased remarkably. By the
end of May 2011, there were 16 Open APIs each of which
was called more than 1 billion times per month [2]. For
example, Twitter Open APIs are called 13 billion times/day,
and AccuWeater Open APIs get 1.1 billion calls/day [2].
The increase in the popularity of integrating Open APIs into
commercial software products has also led to the similar
trends in designing smartphone applications (hereafter called
as “apps”). Upon examination of the top 200 apps in terms of
the number of downloads in Android App Market, we found
that 179 (89.5%) of these apps integrate at least one kind of
third-party Open APIs.
With the rapidly increasing usage and implementation of

Open APIs, it is important and necessary to understand the

resource usage and overheads of these popular web functions.
Furthermore, the increasing adoption in resource constrained
mobile devices warrants prudent implementation and design
trade-offs. To the best of our knowledge, no studies have
been reported yet on a detailed characterization of Open
APIs on smartphones (we refer to these as Mobile Open
APIs). Many Open APIs have similar functionality and it
is important for application developers to understand the
difference between these Open APIs. In order to decide which
Open API to integrate, developers should know what the time
and resource costs are for the popular APIs. Thus a detailed
characterization would provide app developers guidance to
optimize their apps with respect to performance, energy
consumption, and bandwidth consumption.

In order to characterize Open APIs, we analyzed 200
popular android applications. We decompiled the source code
and then were able to search for calls to APIs. This approach
offers insight into the Open APIs that are implemented
most frequently in popular Android applications. We have
designed and implemented a tool called APIX to automate
the extraction of APIs from the source codes. Analysis of
the APIX output helps us identify the most popular Open
APIs. To profile the mobile APIs, we then developed a
series of apps called APISymphone that helps in deriving the
latency, CPU, and power usage of the popular mobile APIs.
Furthermore, we also performed a global-scale study, aided
through Amazon EC2 service, to characterize Mobile Open
APIs when accessed from various parts of the world.

The following contributions can be highlighted from this
paper:

• Our APIX tool achieved extremely high coverage on
the potential search space for identifying the Mobile
Open APIs. Using APIX, we were able to identify the
Mobile Open APIs integrated in the popular Android
apps. We compared our ranking of the popularity of the
Mobile Open APIs with the ranking of the popularity
of the overall Open APIs.

• We tested the top popular Mobile Open APIs on
an Android device, and evaluated each Open API’s
performance by several metrics closely related to users’
quality of experience. We compared the performance
of each Open API in different networks (Wi-Fi and
Cellular 3G). We compared the performance of the
Open APIs with similar functions.

• We carried out global-scale measurements on the char-
acteristics of the Mobile Open APIs in multiple cities
around the world. We studied the impact of differentISBN 978-3-901882-58-6 c© 2014 IFIP

2

geographical locations on the characteristics of each
Mobile Open API. We also compared the performance
of the Mobile Open APIs with similar functions in
location-by-location level. Our results show that differ-
ent Mobile Open APIs have different “sweet locations”.

• The characterization of mobile Open APIs will be
useful for app designers and app users. App designers
can leverage the analysis to build models to predict
the behavior of their apps and learn the impact of
frequently called APIs. They can do various trade-off
analysis and can provide advice for users regarding
the access networks and the impacts therein. Overall
the fine-grained measurement based characterization
would lead to the design of resource-aware smartphone
apps.

The rest of the paper is organized as follows. An overview
of system-level issues of Open API is presented in Section II.
The APIX implementation and ranking of Mobile Open APIs
are done in Section III. The most common Open APIs are
profiled in Section IV. The global-scale evaluation is reported
in Section V. Section VI provides an overview of related
work, followed by the inferences derived in Section VII.

II. OPEN API

In this section, we present the work flow of Open API
through an example, and describe the mechanisms associated
with the associated protocols.
An Example. In Figure 1, an app integrating AT&T

Speech Open API is used as an example to demonstrate
the basic work flow of the Open APIs [3]. AT&T Speech
API provides speech recognition service, which translates
spoken word into text, by using the well-known Watson
Speech Recognition Engine. The app is developed by Sphero,
a company that manufactures voice controlled robotic balls.
When the user says a command to the app, the AT&T Speech
API is invoked and the spoken voice will be streamed to the
AT&T Watson Server. Then the Watson Server carries out
speech recognition and sends the text back to the phone. Up
to now, the whole process of invoking the Speech API is
done. Afterwards, the Sphero app can start to process the
text received and send the corresponding commands to the
robotic ball. In Figure 1, the Apigee Gateway is a third-party
API management tool to provide traffic control, statistics and
security provision services [4]. The function of the AT&T
API server is to distribute different kinds of AT&T Open
API requests to proper handlers [3].

Turn Left

Operator’s

Internal Network

& Internet

Apigee Gateway AT&T API Server
AT&T Watson Speech

Recognition Engine

Turn Left
Turn LeftTurn LeftTurn Left

T
u

rn
 L

e
ft

Fig. 1: An Example of Invoking AT&T Speech Open
API [3]

Web Service Protocol Stack. Web service protocol is one
kind of application level protocol which is used to define,

locate, implement and let two web services to interact with
each other. REST and SOAP are two widely used web service
protocol stacks. According to [2], 73% of the Open APIs
follow REST protocol, and 17% of the Open APIs use SOAP
protocol, by the end of year 2011.
REST Protocol. REST was introduced and defined in

2000 by Fielding [5]. The REST architecture is client/server
based. Each network resource has a representation. The ser-
vice requests and responses between the client and servers are
built around transfer of representation of the resources. Since
REST standardizes http and https as its service transport
protocols, a key feature of the REST-style Open APIs is that
they can only be invoked by visiting http or https format
Uniform Resource Locators (URLs) [6].
SOAP Protocol. SOAP protocol was the dominating web

service protocol in the Open API market. It is also based
on the client/server model. The key feature of SOAP is that
it relies on XML format as its service messaging protocol.
Since SOAP does not specify the service transport protocol,
the client can use any transport protocols, e.g. HTTP and FTP,
to invoke a SOAP-style Open API, by visiting the desired
URL [6].

III. APIX AND RANKING MOBILE API

To the best of our knowledge, there has been no reported
statistical studies on the popularity of the Open APIs among
mobile app developers. The existing Open API marketing
analysis [7] did not distinguish between Mobile Open APIs
and the Open APIs for other non-mobile platforms. Here, we
account for the Open APIs used in the most popular Android
apps and present a ranking of the popularity of Mobile Open
APIs. It is interesting to note that our Mobile Open API
popularity ranking is completely different from the overall
Open API popularity ranking presented in [7].

A. Apps Selection

We performed a comprehensive study of the popularity
of the apps available in Android app stores. By the end
of October 22, 2012, there are about 33, 000 popular apps
each of which has more than 50, 000 downloads in Google’s
Android app store [8]. The statistics showed that these
popular apps were distributed asymmetrically in all the 32
categories of Android apps. We then selected a total of 200
popular apps from the market according to the ratio of the
number of popular apps in each category.

B. Design and Implementation of APIX

As mentioned in Section II, the existing Open APIs
generally use SOAP or REST web service protocol. Both
of these protocols require the apps to visit certain URLs
to invoke API service requests [6]. As an example, Twitter
OAuth, a popular social network Open API, allows third-
party apps to authenticate an app user by verifying the user’s
Twitter account and password at Twitter’s website. To invoke
the Twitter OAuth Open API, the apps must visit the URL
“https://api.twitter.com/oauth”. By tracing the URLs the apps
are interacting with, we are able to extract the Open API calls
integrated in the apps. Therefore the problem of achieving
full coverage of the URLs to invoke Open APIs becomes
vital.

3

.apk Files

.dex Files

.jar Files

.class Files

.java Files

Identify URL

Related String

Variables

Using String

functions or

operators?

Variable Usage

Trace

Possible URLs

For Open APIs

jar

dex2jar jad

unzip

No

Yes

Final

URLs

Insert

to

URLs to Invoke

Open APIs

Remove URLs

Used For Display

Fig. 2: Flow Chart of APIExtractor (APIX).

Earlier studies on Android security and privacy concerns
[9], [10] have pointed out that the external method by
monitoring the network traffic can not achieve full coverage
on the API calls due to the lack of automated Java program
test generators to execute all the subroutines of the mobile
apps. The internal identification approach usually parses
through the Android manifest file and the compiled Java files
(.class) generated by reverse engineering techniques from the
Dalvik Executable files (.dex). However, the existing internal
identification method [10] requires a pre-known database of
the targeted APIs, e.g. Android standard APIs. Moreover, the
variance of the coding styles of the app developers further
increase the hardness of identifying API invoking URLs, i.e.
some programmers may prefer using the string.append() or
the sring.replace() functions to build URL strings than assign-
ing the values to string variables directly. Since the number
of organizations which have already published Open APIs
has exceeded 7, 000 and is still doubling every 6 months, a
method which can identify both known and unknown Open
APIs is desperately needed.

We have developed a software tool “APIExtractor” (APIX)
to automatically accomplish the Open API extraction task by
parsing the Java source code (.java) of apps and tracing the
URLs. APIX is implemented in a mix of Python language
and Linux Shell scripts. Before running APIX, 4 free Linux
libraries have to be pre-installed, “jar”, “unzip”, “JAD (JAva
Decompiler)” and “dex2jar”. APIX takes a set of compiled
Android application package files (.apk) as input, and outputs
the profile of each Open API integrated in these apps. The
flow chart of APIX is presented in Figure 2.

1) Extraction from Java source code: As shown in Fig-
ure 2, APIX first transfers the compiled app (.apk) files to
Dalvik Executable format (.dex) which is the format to be
run on Android’s Dalvik Virtual Machine. Then “dex2jar” is
applied to transfer the .dex files to Java Archive files which
is typically used to aggregate Java virtual machine readable
files (.class) and associate resources, e.g. images and text.
The .class files are inserted into the “JAD” module to be
decompiled to human readable Java source code files (.java).
By applying APIX on the 200 selected apps, we successfully
decompiled 13, 540(99.5%) out of a total of 13, 615 .class
files to their corresponding original Java source code. The

65 unsuccessfully decompiled .class files are written in Java
Development Kit (JDK) versions lower than 4, which are not
commonly used nowadays.
2) Identification of Open API calls in Java Files: By

parsing through the Java source code files and accounting
the variables containing Internet URLs, e.g. http://*, https://*,
ftp://* and fb-connect://*, APIX creates a list Lpotential of all
possible Open API invoking URLs. We observed from the
source code that sometimes the app developers constructed
the URL strings by using the Java string related functions or
operations, i.e. string.replace(), “+” and “-”. In the 13, 540
.java files decompiled, we observed a total of 167 code
blocks which include URL related Java string function calls
or operators. Then we did variable usage tracing on all
these 167 places and inserted the finally built URL related
strings to Lpotential. After removing the URLs related to
Internet resources aimed for display (images, text, flashes)
from Lpotential, APIX finally outputs a list of the invoking
URLs of the integrated Open API calls.

C. Ranking Mobile Open APIs

By running APIX on the selected apps, we identified a total
of 1715 distinct Open APIs, where the term “distinct” means
the URLs to invoke the Open API calls are different. From
the results, we observe that majority of the invoking URLs
begin with “http://” (74.1%) or “https://” (18.3%). There are
a few invoking URLs that start with other headers, e.g. “fb://”
(4.2%), “scoreloop://” (0.3%) and “ftp://” (0.3%).
Figure 3 shows the cumulative density function of the

number of Open APIs in the selected apps. There are only
21(10.5%) apps that do not use any Open APIs. Analyzing
the number of distinct Open APIs in each app, we found that
each app utilizes 17.8 different Open APIs on an average.
There are 2 apps, Line Camera and PicsArt - Photo Studio,
which integrate more than 100 distinct Open API calls. For
example, Line Camera integrated 43 distinct “pinterest.com”
Open APIs, 26 different “navercorp.jp” Open APIs and 12
disparate “twitter.com” Open APIs.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100

T
h

e
 P

e
rc

e
n

ta
g

e
 o

f
A

p
p

s
T

h
a

t

In
te

g
ra

te
d

 L
E

S
S

 T
H

A
N

 N
 O

p
e

n
 A

P
Is

The Number of Open APIs Integrated (N)

Fig. 3: The Cumulative Density Function (CDF) of the
Number of Open APIs in Apps

Finally, we categorize the identified Mobile Open APIs by
software development kits (SDKs) and functions, and rank
the popularity of the identified Mobile Open APIs. The top
15 popular SDKs and the top 17 popular mobile Open API
functions are presented in Table I and Table II respectively.
In Table I, we compare the popularity of the SDKs for

Mobile Open APIs with the popularity of the SDKs for
overall Open APIs. For the Mobile Open APIs identified by

4

TABLE I: The Ranking of Popular Mobile Open API SDKs and Overall Open API SDKs

Mobile Open
API Ranking

SDK Name
The Number of

Selected Mobile Apps
Overall Open
API Ranking

SDK Name
The Number of

Application Mashups

1 Google’s AdMob 100 1 Google Maps 2424

2 Facebook 81 2 Twitter 752

3 Google API 74 3 Youtube 652

4 flurry.com 54 4 Flickr 615

5 inmob.com 39 5 Amazon eCommerce 416

6 w3.org 28 6 Facebook 387

7 Dropbox 28 7 Twillo 353

8 Twitter 23 8 Last.fm 226

9 tapjoyads.com 23 9 eBay Search 220

10 chartboost.com 20 10 Google Search 184

11 Amazon AWS 17 11 Microsoft Bing Maps 175

12 Yahoo Search 15 12 Twillo SMS 172

13 appspot.com 13 13 del.icio.us 160

14 adwhirl.com 12 14 Yahoo Search 144

15 greystripe.com 10 15 Yahoo Maps 135

TABLE II: The Identified Popular Mobile Open API Functions

Ranking
Mobile Open
API Functions

The Number of
Selected Mobile Apps

Web Service
Protocol

The Core of The URLs to Invoke

1 AdMob: ask server to send basic ads 82 REST http://media.admob.com/sdk-core-v40.js

2 Facebook: user authentication 64 REST https://api.facebook.com/restserver.php

3 Facebook: post content to Facebook 64 REST https://graph.facebook.com/

4 Facebook: download friend list 63 REST https://m.facebook.com/com/dialog

5 Admob: mobile rich media ad interface (MRAID) 57 REST http://media.admob.com/mraid/

6 Mydas: ask server to send basic ads 36 REST http://androidsdk.ads.mp.mydas.mobi/getAd

7 Mydas: get rich media ads 36 REST http://androidsdk.ads.mp.mydas.mobi/getAd.php5?

8 InMobi: get ads for testing 35 REST http://i.w.sandbox.inmobi.com/showad.asm/

9 InMobi: ask server to send basic ads 35 REST http://i.w.inmobi.com/showad.asm/

10 InMobi: send tracker information to server 31 REST http://ma.inmobi.com/downloads/

11 Dropbox: download a file 25 REST http://dl.dropbox.com/u/

12 Chartboost: ask server to send basic ads 20 REST https://www.chartboost.com/

13 Twitter: user authentication 18 REST https://api.twitter.com/oauth/

14 Tapjoy: get a list of offers 17 REST https://ws.tapjoyads.com/get offers/

15 Tapjoy: user authentication 17 REST https://ws.tapjoyads.com/connect?/

16 Twitter: post content to Twitter 14 REST https://api.twitter.com/1/

17 Amazon: upload a file to server 13 SOAP http://s3.amazonaws.com/

APIX, the most commonly used SDKs are basically related
to three categories: ads, social networks, and cloud storage.
For the overall Open API SDKs, the most widely used
ones basically fall in the areas of map, social networks, and
search. There are only 4 SDKs appearing in both the top
15 Mobile Open API SDK ranking and the top 15 overall
Open API SDK ranking. This observation further enhance our
motivation to characterize the popular Open APIs specified
for mobile apps.

In Table II, we present the top 17 Mobile Open API
functions identified by APIX. These functions basically en-
gage in 4 aspects: get ads, open standard for authentication
(OAuth), social networks, and cloud storage operations. We
also observe that REST is the dominating web service
protocol among the popular Mobile Open APIs. Among the
top 17 identified Mobile Open APIs, only Amazon AWS API
uses SOAP. The popularity of REST protocol also leads to
the fact that almost all the URLs to invoke API calls are
based on http and https protocols, which are the only two

transport protocols standardized in REST. The URLs listed
in the fifth column of Table II are the core part of the URLs
to invoke the Open API calls after removing the Open API
user identification information and the session IDs.

IV. PROFILING MOBILE OPEN APIS

In this section, we characterize the performance of the
Mobile Open APIs by using four metrics that largely impact
the users’ quality of experience. The four metrics are: latency,
energy consumption, network traffic generated, and CPU
usage. Latency is defined as the time from invoking the
Open API call to getting the desired response from the
server. Energy consumption quantifies the amount of Joules
used in executing the API and its associated operations. The
network traffic reflects the bandwidth usage requirements of
the mobile APIs. The utilization of CPU is also measured
for each of the APIs.
It is extremely challenging to isolate the Open API calls

from local operations, assuming we do not have access to the
apps’ original source code, which could then be run in debug

5

mode. We propose an approach to profile isolated Open API
calls. The basic idea is to implement apps which include
only one Open API, then insert probes into the source code
to profile the Open APIs. We have implemented a series of
apps called APISymphone, each of the app corresponds to
an API listed in Table II. We profile all the 17 Open APIs
and did a comprehensive analysis on their performance.

A. APISymphone

We implemented the APISymphone series apps by using
the Android SDK and 9 Open API SDKs. The pseudo-code
of the framework to implement each APISymphone app is
presented in Algorithm 1. All APISymphone apps include
only the minimum functions and resources to invoke the
Open API call. Each APISymphone app is consisted of 4
potential operations:

• Get Open API access token: Most of the Open API
servers require the app identification to be submitted
and verified before assigning an access token. The
app identification usually consists of a unique app
name and an encrypted key. The 9 SDKs we utilized
offer various functions for the verification process. For
example, Facebook uses “Utility.mFacebook =
new Facebook(APP ID);”.

• Prepare the local resources required for Open API calls
(optional): Some Open APIs need to access certain
local resources. For example, social network Open
APIs need to access the corresponding user name and
password. To ensure fair comparism among the APIs
with similar functions, all the corresponding resources
are kept constant, e.g. social network friend list and the
file (193KByte) to be accessed by cloud storage APIs.

• Loop Open API calls: Since some Open API calls
target on very simple tasks, some of the metrics may
be too tiny to be detected, e.g. latency. In each app,
we loop calling the APIs for multiple runs and cal-
culate the average value of the metrics. To avoid the
interference of caching, we clear the cache after each
run.

• Probes to detect latency and CPU usage: To measure
the latency and the CPU usage, probes are inserted
into the app. The details of implementing the latency
probe and the CPU usage probe is described in the next
section (Section IV-B).

B. Probes Implementation and Overhead Analysis

We present how the latency probe and the CPU usage
probe are implemented, and then analyze the overhead caused
by the probes. The latency probe is implemented by using the
Calendar class defined in java.util.Calendar. We measured the
running time of calling one Calendar instance by running it
5 million times on a Nexus S Android phone. The overhead
lies in the range of (0.0616, 0.0667) milliseconds.
The CPU usage probe is implemented by making use of

the ActivityManager class defined in
android.app.ActivityManager and the Android log files stored
in the directory “/proc”. An instance of ActivityManager
will return the process ID (PID) of each running process in
Android phones. In the Android operating system, the process
name is the same as the app package name by default. We

Algorithm 1 APISymphone Apps

Step 1 Get Open API access token;
Step 2 Prepare the required local resources;
Step 3 SumLatency=0;
Step 4 SumCPU=0;
Step 5 repeat K times

ProbeCPU.start();
ProbeLatency.start();
Open API call;
ProbeLatency.end();
ProbeCPU.end();
Clear cache;
SumLatency+=ThisRunLatency(ProbeLatency);
SumCPU+=ThisRunCPU(ProbeCPU);

Step 6 endrepeat
Step 7 AverageLatency=SumLatency/K;
Step 8 AverageCPU=SumCPU/K;

first search for the PID of the app being tested in all the
current running processes by matching the process name with
the app’s package name. Since Android system automatically
logs and stores the total CPU usage in “/proc/stat” file and the
CPU usage of each process “/proc/PID/stat” file, each time
we carry out CPU measurement by deleting the old log files
and reading the new log files created when the Open APIs
are being invoked. Since the log file only contains the CPU
usage during the Open API call, the CPU usage for the app is
actually the CPU usage of the Open API. The implementation
of the CPU usage probe is done by reading the log files
automatically created by the Android system. Thus the CPU
usage probe itself will not introduce any overhead in our
measurement.

C. Experimental Setup

Our experimental setup consisted of a Nexus S Android
phone, 17 APISymphone series apps, a Monsoon power
monitor, a Dell E5400 laptop and a Cisco WRT310N wireless
router. The operating system running the phone is Android
4.1.1. We set the sampling rate of the Monsoon power
monitor to be 20kHz. The Dell E5400 laptop was used as the
console of the monsoon power monitor. The Cisco wireless
router was utilized to provide dedicated Wi-Fi access to the
Nexus S phone.

To prevent our experiments from being interfered by other
apps, we uninstalled as many apps as possible from the
phone and disabled all the unnecessary background services
by using the app management tool offered by Android. To
ensure there are no other apps running in the background, we
also used a well-known third-party task manager app called
“Advanced Task Killer” [11].

Latency and CPU usage were measured by using the
probes implemented in the apps. The power consumption
metric was measured by using the monsoon power monitor.
To monitor the network traffic generated during the Open
API calls, we used a packet sniffing app “tPacketCapture”,
available in Android app store. Running “tPacketCapture”
in background consumes considerable energy, and incurs
latency and CPU usage overhead to the measurement. We
therefore carried out the packet sniffing experiments sepa-
rately.

6

D. Data Analysis

We ran each APISymphone app on the Nexus phone 10
times and calculated the average values of the metrics mea-
sured. The network traffic monitoring experiments were done
separately and were also repeated 10 times. The experimental
results are presented in Figure 4. Due to space limitations, we
abbreviate the description of each Open API. The sequence
of the Open APIs follows as listed in Table II.

1) Latency: Figure 4(a) shows the response latency of
each Open APIs. The Open APIs are tested both on Wi-
Fi and AT&T 3G (HSPA+) cellular network. Majority of the
Open APIs running in 3G network incurred longer latency
compared to the Wi-Fi network. For example, the latency of
the DB Download API on 3G is 4.9 times higher than its
latency on the Wi-Fi network. On an average, the latency
of the Open APIs on 3G network is 2.3 times higher than
on Wi-Fi network. One of the obvious causes is that the
Wi-Fi connection usually has higher bandwidth than the
3G connection. However, the magnitude of the difference
indicated other probable causes. We observed that the Open
API requests are handled by different servers which incur
different amount of processing latency. We use the Twitter
OAuth API as an example to explain this observation. By
analyzing the packets captured during the Open API call, we
found that the API requests were handled by two different
Twitter servers, one at IP address 199.59.150.9 (for Wi-Fi
accesses), the other at IP address 199.59.149.232 (for 3G
accesses). In both 3G and Wi-Fi scenarios, the phone faced
2 − 4 times packet loss in a portion of the runs. In Wi-
Fi scenario, the uplink and the downlink lost packets were
always retransmitted in less than 120ms. However, in several
runs of 3G scenario, it was observed that the downlink
retransmissions incur around 36 seconds latency.

From Figure 4(a), it is also observed that the performance
of Open APIs with similar functions varies a lot in terms
of latency. For example, using Wi-Fi, the loading of basic
advertisement from Mydas cost 62 times more latency than
loading basic advertisements from Admob. Another example
is that the latency of the Twitter OAuth API is 4 times the
latency of Facebook OAuth API. This observation sheds light
on the motivations for the app developers to pick proper Open
APIs to integrate, if there are no other constraints.

2) Network Traffic: In Figure 4(b), we compare the net-
work traffic generated by each Open API. As expected, the
APIs interacting with image or multimedia resources tend
to generate more network traffic, e.g., posting pictures to
Facebook and downloading ads video from Madas. The Wi-
Fi scenario generated more traffic than the 3G scenario for
some APIs, and less for the others. The average difference
of the traffic values in Wi-Fi and 3G scenarios is only 0.7%.
Unlike the latency comparison, we did not observe much
difference between the APIs with similar functions in terms
of traffic generated.

3) Energy Consumption: Battery life is also an important
concern for the app users’ quality of experience. In Fig-
ure 4(c), we present the energy consumed to carry out each
Open API call. For each API, the energy consumption on
3G is usually higher than the power consumption on Wi-Fi
network. This is not only because the 3G radio consumes

more power than the Wi-Fi radio [12], but also due to the
higher latency incurred in the 3G access network.
To compare the energy consumption of the API with

similar function, we use the Nexus S battery as an example
and assume there is no other apps running on the phone.
Considering the 1, 500 mAh and 3.7V Nexus S battery,
the total energy is 19, 980J . By using the corresponding
Open APIs, users can post approximately 6, 263 photos to
Facebook, but only about 5, 328 photos to Twitter, in Wi-Fi
network. In 3G network, these numbers reduced dramatically
to 1, 237 for Facebook and to 4, 768 for Twitter.
4) CPU Usage: CPU usage is also an important parameter

that the app developers should consider before integrating the
Open API into their apps. We present the CPU usage of each
tested Open API in Figure 4(d). There are 2 CPU resource
draining APIs: AdMob Basic and Twitter OAuth. These two
APIs consume over 60% of the CPU time when connecting
throughWi-Fi, and consume over 80% of the CPU time while
connecting through 3G network. Considering the 15 second
latency of running Twitter OAuth on 3G, it is highly probable
that the users are driven into the risk of incurring long time
system lag even freeze.
5) Inferences: The analysis of the data infers the following

aspects:

• Latency of an Open API depends not only on the
network bandwidth but also the behaviors of the Open
API servers. The apps designers may choose to exploit
the fact regarding the variance of latency because of
the access (WiFi vs 3G).

• Open APIs with very similar functionality exhibit
highly varied latency. The apps designers can analyze
the trade-off between the level of desired functionality
and the latency overheads before developing their apps.

• The network traffic consumption does not show any
definitive trend for mobile Open APIs.

• The variance in energy consumption is quite significant
for the Open APIs, especially while using different
access networks. For certain specific APIs, if their fre-
quency of usage is high, the preferred access network
may be advertised to conserve energy.

• The CPU usage factor may impact the quality of certain
apps if they overuse a few specific Open API calls.

Using the aforementioned analysis of latency, network
traffic, energy consumption, and CPU usage, designers would
be able to model and predict the behavior of the apps that
use these APIs. Detailed and fine-granular models can be
developed using the characteristics of the open APIs. Based
on the analysis, the users can be apprised of the impact of
access networks on their apps if they (the apps) use frequent
calls to a few specific open APIs.

V. GLOBAL SCALE EVALUATION

Due to increase of the popularity of Open APIs among
app developers, apps integrating Open APIs are being used by
smartphone users all over the world. It is thus desirable to do
a global-scale test on Mobile Open APIs to study and analyze
their impact with respect to the geographical locations. In
this section, we proposed a global-scale measurement-based
study on the performance of the Open APIs by making use
of the Amazon’s Elastic Compute Cloud (EC2) services. The
results and corresponding analysis are also discussed.

7

0

5000

10000

15000

20000

25000

30000

35000

La
te

n
cy

 (
m

s)

The Open APIs

Wi-Fi

3G

(a) Latency of The Open APIs

0

50

100

150

200

250

300

350

400

N
e

tw
o

rk
 T

ra
ff

ic
 G

e
n

e
ra

te
d

 (
k

b
y

te
s)

The Open APIs

WiFi

3G

(b) Network Traffic Generated by The Open APIs

0

10

20

30

40

50

60

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
J)

The Open APIs

Wifi

3G

(c) Energy Consumption of The Open APIs

0

10

20

30

40

50

60

70

80

90

100

C
P

U
 U

sa
g

e
 (

%
)

The Open APIs

WiFi

3G

(d) CPU Usage of The Open APIs

Fig. 4: Measurement Results of The Open APIs

A. Amazon EC2 Instances Configuration

We set up Amazon instances at 7 locations in 5 continents,
as listed in Table III. For all the instances, we chose the
M1.Large type virtual machine with duo core 3.0GHz CPUs
and 7.5GB RAM.

TABLE III: Virtual Machine Instances

EC2 Region Location Static IP Address

N. Virgina Ashburn, VA 174.129.3.36

Oregon Boardman, OR 54.245.235.96

N. California San Jose, CA 54.241.15.165

Europe Dublin, Ireland 79.125.123.198

Asia Pacific Singapore, Singapore 54.251.114.141

Asia Pacific Sydney, Australia 54.252.99.12

South America Sao Paulo, Brazil 177.71.189.164

On each EC2 instance, we set up an AVD. The device type
was set to be Nexus S with Android 4.1.1. In the next step,
we selected 6 Open APIs from Table II to be tested on these
instances:

• Two ads related Open APIs: AdMob and InMob
• Two social network related Open APIs: Facebook and

Twitter
• Two cloud storage related Open APIs: Dropbox and

Amazon.

The corresponding APISymphone apps were launched se-
quentially on the AVD to be tested. For the AVDs, we only
profiled the latency and the network traffic generated. The
experimental results are shown in Fig 5 through Fig 7. Each
data in these figures is also the average value of 10 runs.

B. Case Studies of The Selected Open APIs

In this section, we provide an in-depth view into the
performance of the Open APIs in 7 different locations.
1) Ads Related Open APIs: AdMob Basic Ads and InMob

Basic Ads APIs are two representative ads related APIs.
Their basic functions are quite similar. When Ads APIs are
invoked, the phone will send an ad request, with users’
context information, to the ads server. Then a thread is
created to continuously receive ads from the server. In our
implementation, each run of the APIs is from the invoking to
the moment that the first ad is completely cached. Between
each two runs, we clear the cached ad data.
Figure 5(a) shows the latency of AdMob Basic Ads API

is basically around 1200 ms and does not vary much around
the average value. The AVDs in Oregon and N. California
are observed to suffer roughly 37% more delay than the
AVDs located in Ireland. On InMobi Basic Ads API, we
observe another kind of characteristic of latency. As shown
in Figure 5(b), the latency of the InMobi Basic Ads API in N.
Virginia is much higher than in any other places. However,
by comparing and analyzing the traffic packets captured at
all 7 locations, we did not observe that the N. Virginia AVD
is suffering higher retransmission rate than the other AVDs.
We believe the difference in the server processing time is the
main reason that explains the pattern presented in Figure 5(b).
Both Figure 5(c) and Figure 5(d) show that the traffic

generated by the ads APIs varies from place to place. This be-
havior is expected as both the Ads APIs send the ads request
as long as the users’ context information to the servers. Since
every AVD is with the same setting except the location, it is
very likely that the amount of ads traffic difference is caused
by the location context. It is also observed that AdMob API

8

0

200

400

600

800

1000

1200

1400

1600

1800

N. Virginia Oregon N.

California

Ireland Singapore Sydney Sao Paulo

La
te

n
cy

 (
m

s)

Locations

(a) Latency (AdMob Basic)

0

500

1000

1500

2000

2500

3000

3500

4000

N. Virginia Oregon N.

California

Ireland Singapore Sydney Sao Paulo

La
te

n
cy

 (
m

s)

Locations

(b) Latency (InMobi Basic)

0

5

10

15

20

25

N. Virginia Oregon N.

California

Ireland Singapore Sydney Sao PauloN
e

tw
o

rk
 T

ra
ff

ic
 G

e
n

e
ra

te
d

 (
k

b
y

te
s)
)

Locations

(c) Network Traffic Generated (Ad-
Mob Basic)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

N. Virginia Oregon N.

California

Ireland Singapore Sydney Sao PauloN
e

tw
o

rk
 T

ra
ff

ic
 G

e
n

e
ra

te
d

 (
k

b
y

te
s)

Locations

(d) Network Traffic Generated (In-
Mobi Basic)

Fig. 5: Basic Ads Open APIs in Different Locations

0

50

100

150

200

250

300

350

N. Virginia Oregon N.

California

Ireland Singapore Sydney Sao Paulo

La
te

n
cy

 (
m

s)

Locations

(a) Latency (FB Oauth)

0

2000

4000

6000

8000

10000

12000

N. Virginia Oregon N.

California

Ireland Singapore Sydney Sao Paulo

La
te

n
cy

 (
m

s)

Locations

(b) Latency (Twitter Oauth)

0

2

4

6

8

10

12

14

16

N. Virginia Oregon N.

California

Ireland Singapore Sydney Sao PauloN
e

tw
o

rk
 T

ra
ff

ic
 G

e
n

e
ra

te
d

 (
k

b
y

te
s)

Locations

(c) Network Traffic Generated (FB
Oauth)

0

2

4

6

8

10

12

14

16

18

N. Virginia Oregon N.

California

Ireland Singapore Sydney Sao PauloN
e

tw
o

rk
 T

ra
ff

ic
 G

e
n

e
ra

te
d

 (
k

b
y

te
s)

Locations

(d) Network Traffic Generated (Twit-
ter Oauth)

Fig. 6: Oauth Open APIs in Different Locations

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

N. Virginia Oregon N.

California

Ireland Singapore Sydney Sao Paulo

La
te

n
cy

 (
m

s)

Locations

(a) Latency (DB Download)

0

2000

4000

6000

8000

10000

12000

N. Virginia Oregon N.

California

Ireland Singapore Sydney Sao Paulo

La
te

n
cy

 (
m

s)

Locations

(b) Latency (Amazon Upload)

0

50

100

150

200

250

N. Virginia Oregon N.

California

Ireland Singapore Sydney Sao PauloN
e

tw
o

rk
 T

ra
ff

ic
 G

e
n

e
ra

te
d

 (
k

b
y

te
s)

Locations

(c) Network Traffic Generated (DB
Download)

0

50

100

150

200

250

300

N. Virginia Oregon N.

California

Ireland Singapore Sydney Sao PauloN
e

tw
o

rk
 T

ra
ff

ic
 G

e
n

e
ra

te
d

 (
k

b
y

te
s)

Locations

(d) Network Traffic Generated (Ama-
zon Upload)

Fig. 7: Cloud Storage Open APIs in Different Locations

generates much more traffic than InMobi API in all of the
locations. We also observe from the captured packets that
AdMob API’s uplink and downlink traffic ratio is about 1 : 7,
while the InMobi API’s uplink and downlink traffic ratio is
1 : 0.7. In other words, AdMob uses a much richer media
format for basic ads delivery than InMobi.
2) Social Network OAuth Open APIs: OAuth Open APIs

allow users to get a token to access their private resources
on the OAuth API publisher’s website from a third-party
website, by supplying their account and password of the
OAuth API publisher’s website. Facebook OAuth and Twitter
OAuth APIs are two representative OAuth Open APIs.
Figure 6(a) shows the latency to get a Facebook token from

different locations. It seems the Facebook OAuth API works
pretty well in all the locations with less than 350ms latency.
According to [13], human’s average reaction time is 215ms.
That means the users will feel like the authentication is done
almost immediately.
The latency caused by Twitter OAuth API is much longer

than Facebook. Figure 6(b) shows the AVDs need around 7
seconds to get a token from Twitter. We believe the main
reason is the server’s processing latency, since we did not

observe considerable packet loss in packet traces.
In terms of the traffic generated, the two APIs perform

almost the same. As shown in Figure 6(c) and Figure 6(d),
each call of the Facebook OAuth API and the Twitter OAuth
API generates 12.54kbyte and 15.15kbyte traffic on average
respectively.
3) Cloud Storage Open APIs: We also analyze two cloud

storage Open APIs in detail. The function of the Dropbox
Download API is to download a file in the our Dropbox
account from Dropbox server. The Amazon Upload API is
to upload a file to our account on Amazon Simple Storage
Service (S3). The file we choose to upload and download is
the same image file (193Kbyte) used in the Nexus S based
experiments.
The latency and traffic of the Dropbox Download Open

API is presented in Figure 7. According to our obser-
vation, all the AVDs interact with the same server (IP
199.47.219.158) to carry out the downloads. From Fig-
ure 7(a), we can observe that the AVD in N. Virginia enjoys
the lowest latency. Figure 7(c) shows the average overhead of
downloading the 193 Kbyte file is 6 Kbyte, where overhead
is defined as the difference of the file size and the traffic

9

generated.
We present the metrics of Amazon Upload Open API in

Figure 7(b) and Figure 7(d). It is observed that the latency
in N. Virginia is much lower than in other locations. For
example, the AVD in Singapore suffers 7 times more latency
than the AVD in N. Virginia. As shown in Figure 7(c) and
Figure 7(d), Dropbox Download API generates 6.4Kbyte
overhead on average, while Amazon Upload API introduces
49.5Kbyte overhead.

VI. RELATED WORK

To the best of our knowledge, none of the prior efforts
have focused on profiling the performance of the Mobile
Open APIs. Prior works have investigated several related
aspects such as user behaviors, energy consumption, signal-
ing overhead, and security and privacy issues at the phone
level or at the app level. In [14], Falaki et al. analyzed the
diversity of smartphone user behaviors, e.g. the pattern how
the smartphone users typically use the smartphone and apps.
Efforts in [15]–[17] profiled and analyzed the energy con-

sumed by smartphone apps. Pathak et al. implemented eprof,
a tool which can estimate the power consumption of apps
by tracing the system calls. In [17], another study applied
a model for Radio Resource Control (RRC) to estimate the
power consumption on the 3G radios of Android phones.
Some previous works focused on profiling the overhead

generated by mobile advertisement deliveries and analytic
data collections. According to [18], 77% of the top free
Android apps were implanted with at least one third-party ad
component that downloads ads in real-time. In [11], the au-
thors pointed out the analytics data collection will introduce
overhead to the Android system. The amount of overhead is
qualified by comparing the packets of the paid version and
the free version of the apps. A comprehensive analysis of
the mobile advertising ecosystem is presented a most recently
work [19]. There are also a few multi-layer Android profiling
efforts reported in the literature. For example, Wei et al.
developed ProfiledDroid, a multi-layer system to monitor and
profile the apps [20]. ProfileDroid profiles the apps in four
layers: static, user interaction, operating system and network.
Unlike the previous efforts, APIX is not focused on the

manifest file of the apps but on the source code directly
to achieve extremely high coverage (99,54%) of the search
space. Furthermore, we also proposed a methodology to test
isolated Open APIs by implementing APISymphone series
apps. Lastly, to the best of our knowledge, this is the first to
propose a methodology for profiling the performance of the
Open APIs in global scale by making use of Amazon EC2
services.

VII. CONCLUSIONS

The software APIX we built for this work provides an
accurate approach with extremely high coverage (99.5%) to
identify both known and unknown Open APIs integrated in
the apps at function level. Relying on APIX, we identified
the Mobile Open APIs integrated in the selected Android
apps. By comparing our ranking of the popularity of the
Mobile Open APIs with the ranking of the popularity of
the overall Open APIs, we observed that the two rankings
are almost distinct. We tested the top popular Mobile Open

APIs on Android devices in both Wi-Fi and 3G networks,
and characterized each Open API’s performance by four
metrics: latency, traffic generated, energy consumption, and
CPU usage. Our results show the Open APIs basically suffers
longer latency and higher energy consumption in 3G network
than in Wi-Fi network. It is also shown the network traffic and
the CPU usage does not follow definite trend in 3G versus
Wi-Fi comparison. We also observed differing characteris-
tics of the Open APIs with similar functions. Global-scale
measurements were also performed to study the impact of
different geographical locations on the characteristics of the
Open APIs. Our experimental results expose the potential
to optimize the performance of the smartphone apps by
analyzing the performance and resource requirements of the
popular mobile Open APIs.

REFERENCES

[1] A. Nghiem, IT Web Services: A Roadmap for the Enterprise. Prentice
Hall, Oct 8, 2002.

[2] J. Musser, ProgrammableWeb, Open APIs: State of the Market. AT&T
Summit, 2012.

[3] M. Owens and J. Lieske, “Step-by-step with at&t speech,” Sep 2012.

[4] Apigee, http://apigee.com/about/.

[5] R. T. Fielding. Architectural Styles and the Design of Network-
based Software Architectures. Doctoral dissertation, University of
California, Irvine, 2000.

[6] D. Chappell, SOAP vs. REST: Complements or Competitors? 2010.

[7] Programable Web Open API Popularity Ranking,
http://www.programmableweb.com/apis/.

[8] AppBrain. http://www.appbrain.com/stats/.

[9] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” MobiSys ’11, pp. 239–252,
ACM, 2011.

[10] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” CCS ’11, pp. 627–638, ACM, 2011.

[11] L. Zhang, D. Gupta, and P. Mohapatra, “How expensive are free
smartphone apps?,” SIGMOBILE Mob. Comput. Commun. Rev.,
vol. 16, no. 3, 2012.

[12] N. Balasubramanian, A. Balasubramanian, and A. Venkataramani,
“Energy consumption in mobile phones: a measurement study and
implications for network applications,” IMC ’09, ACM, 2009.

[13] G. R. Grice, R. Nullmeyer, and V. A. Spiker, “Human reaction
time: Toward a general theory.,” Journal of Experimental Psychology:
General, vol. 111, no. 1, pp. 135 –153, 1982.

[14] H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govin-
dan, and D. Estrin, “Diversity in smartphone usage,” MobiSys ’10,
pp. 179–194, ACM, 2010.

[15] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the energy spent inside
my app?: fine grained energy accounting on smartphones with eprof,”
EuroSys ’12, pp. 29–42, ACM, 2012.

[16] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff, “What is keeping
my phone awake?: characterizing and detecting no-sleep energy bugs
in smartphone apps,” MobiSys ’12, pp. 267–280, ACM, 2012.

[17] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O. Spatscheck,
“Profiling resource usage for mobile applications: a cross-layer ap-
proach,” MobiSys ’11, pp. 321–334, ACM, 2011.

[18] I. Leontiadis, C. Efstratiou, M. Picone, and C. Mascolo, “Don’t kill
my ads!: balancing privacy in an ad-supported mobile application
market,” HotMobile ’12, pp. 2:1–2:6, ACM, 2012.

[19] N. Vallina-Rodriguez, J. Shah, A. Finamore, Y. Grunenberger, K. Pa-
pagiannaki, H. Haddadi, and J. Crowcroft, “Breaking for commercials:
characterizing mobile advertising,” IMC’12, ACM, 2012.

[20] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Profiledroid: multi-
layer profiling of android applications,” Mobicom ’12, ACM, 2012.

