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Abstract—Network emulations are widely used for testing novel
network protocols and routing algorithms in realistic scenarios.
Up to now, there is no emulation tool that is able to emulate
large software-defined data center networks that consist of several
thousand nodes.

Mininet is the most common tool to emulate Software-Defined
Networks of several hundred nodes. We extend Mininet to span
an emulated network over several physical machines, making it
possible to emulate networks of several thousand nodes on just
a handful of physical machines. This enables us to emulate, e.g.,
large data center networks. To test this approach, we additionally
introduce a traffic generator for data center traffic. Since there
are no data center traffic traces publicly available we use the
results of two recent traffic studies to create synthetic traffic. We
show the design and discuss some challenges we had in building
our traffic generator.

As a showcase for our work we emulated a data center
consisting of 3200 hosts on a cluster of only 12 physical machines.
We show the resulting workloads and the trade-offs involved.

I. INTRODUCTION

Today, more and more OpenFlow-enabled data center
switches [1] are available on the market but still data center
operators do not use them in practice. This is mostly because
it is unclear how OpenFlow behaves in scenarios with data
center traffic properties and how well existing OpenFlow
controllers scale to the size of the data center at hand. Network
emulations can help in providing virtual environments with
realistic properties to test OpenFlow in data centers before
deploying it in practice.

When evaluating new algorithms or protocols for Software-
Defined Networks (SDN), emulation using Mininet [2] is
the first choice. Mininet uses network namespaces to create
separate network contexts for each process running together on
one physical machine. With this technique, several OpenFlow-
enabled software switches can be run on one machine intercon-
nected by virtual network interfaces. In low-traffic scenarios,
Mininet scales to several hundred nodes on state-of-the-art
hardware. But when emulating large networks with both high
link bandwidths and high traffic volume, the computational
complexity of the emulation overwhelms today’s computers.
In such scenarios it is still possible to successfully emulate the
network by using a technique called time dilation [3]. Time
dilation slows down the emulated time with respect to the

walltime by a linear factor (called dilation factor) but keeps
the speed of peripheral devices constant. By setting the dilation
factor to 10, one second of a 10 Gbit link can be emulated
by using 10 seconds of a 1 GBit link. Of course, using time
dilation, the amount of walltime required for the experiment
is multiplied by the dilation factor.

We show that the relation between the size of the emulated
network and the required dilation factor is not linear, leading
to unacceptable run times for large network emulations. We
suspect this non-linearity is due to the huge amount of required
network namespaces, processes and virtual network interfaces,
which adds a high amount of overhead to the system and
causes the host operating system to work inefficiently. The
required dilation factor can be reduced by distributing the
emulation over multiple physical machines. This is a very
time-consuming and error-prone process when done by hand
because it has to be decided a) how to partition the virtual
network, b) which partition is emulated on which physical
machine, c) how to invoke commands at the emulated nodes
to keep the experiment synchronized, and d) how to collect the
resulting data from the machines for evaluation. In addition,
when using such hand-crafted solutions, measurements have
to be made to ascertain that the built system works properly
(for example, does not distort the latencies between nodes).

This work presents a framework called MaxiNet to use
multiple physical machines for large-scale SDN emulations.
The whole process of mapping and deploying the network to
be emulated onto the physical environment is transparent to
the user. Using MaxiNet is like specifying an experiment with
Mininet. We evaluated our system through several experiments
and found that it properly replicates the properties of a single-
machine emulation environment.

We built MaxiNet to allow us to test new routing algorithms
for data center networks. This did not only require a scalable
emulation environment but also realistic data center traffic.
Today, there are no publicly available traffic traces from data
centers but recent studies [4], [5] reported several properties
of such traffic. Using their findings we built a traffic generator
that produces traffic at flow level. Using MaxiNet we were able
to emulate a data center network interconnecting 3200 servers
using only a dilation factor of 200 on 12 physical machines.
MaxiNet and the traffic generator presented in this work areISBN 978-3-901882-58-6 c© 2014 IFIP
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open source. They can be downloaded from our website1. We
also provide preconfigured virtual machine images that can be
used to test MaxiNet.

The rest of the paper is structured as follows: Section II
presents work related to large-scale SDN evaluation. In Sec-
tion III we present our emulation environment called MaxiNet.
Since we aim at evaluating data center networks Section IV
presents our data center traffic generator. Section V presents
the experience we gained in large scale data center emulation
with MaxiNet. Section VI concludes this work.

Throughout the text, with worker we refer to physical
machines that are used to compute the emulation. The term
node is used for switches and end hosts that are emulated. The
network that is to be emulated (consisting of interconnected
nodes) will be denoted as virtual network.

II. RELATED WORK

When evaluating new algorithms or protocols for SDN it
usually comes down to the choice between simulation and
emulation for a test implementation. For both directions there
is already a number of tools available. For simulation there are
OMNeT++ [6], NS3 [7], [8] and some commercial tools. NS3
already has a built-in module for OpenFlow and a comparable
extension for OMNeT++ [9] also exists.

For our approach we wanted to be able to run native
SDN controllers and to include the effects from a native
network stack into our evaluation. It is technically possible
to implement both with a simulation framework, but from
our point of view it is more straightforward to use emulation
instead of simulation.

For emulating SDNs there are two possible tools to be
considered: Mininet [2], [10] and EstiNet [11]. EstiNet is a
commercial tool, which contradicts our idea of building a
system that is freely extensible and usable by other researchers.
Thus, we focus on Mininet for our implementation.

The option to simulate or emulate large SDNs has been
researched in a number of works: In [12] the authors describe
how OpenFlow can be run on top of a simulation engine called
S3F. This approach is limited to one physical machine, thus the
performance of this approach is limited. The authors of [13]
show how replacing Mininet with their own tool fs-sdn can
speed up the simulation of SDNs, but again this approach is
limited to one physical machine. In [14] an elastic OpenFlow
controller is proposed that grows and shrinks with the amount
of routing decisions that have to be made. For evaluation the
authors built a hand-crafted emulation testbed based on several
Mininet instances that were interconnected by GRE tunnels.
The authors of [15] claimed they build a distributed version
of Mininet for the purpose of malware propagation analysis.
However, they lack a description of how their system works
and do not show the adequacy of the results obtained with
their system.

With respect to our main use case to emulate data center
traffic, the work in [16] investigates the distributed simulation

1https://www.cs.upb.de/?id=maxinet

of a multi-tier data center, but does not include the simulation
of SDN.

To the best of our knowledge, this is the first work to
integrate a physically distributed emulation of SDN together
with a per-flow generation of data center traffic.

III. MAXINET: DISTRIBUTED EMULATION

A. Requirements

When designing MaxiNet we had the following require-
ments:
• Centralized programming model that is like specifying an

emulation with Mininet
• Linear scaling of the virtual network size with the number

of physical machines
• Leverage the original Mininet
• Small (physical) network footprint
To achieve these goals we had to solve different problems.

The first problem is how to partition the virtual network onto
the workers such that a) the physical network does not become
a bottleneck and b) the workload is evenly distributed over
all workers. Traffic from one partition of the virtual network
has to reach all other partitions, requiring forwarding across
multiple physical machines. This forwarding process must not
introduce a noticeable penalty to the latencies experienced
by the nodes. Otherwise the partitioning could influence the
outcome of an experiment.

As we want to have a centralized programming model,
we need to access nodes across the different workers and
these workers have to be synchronized. To achieve this, we
decided to run all the control logic of an experiment (the
course of when to run which command at which node) on
one specialized physical machine called the frontend. The
frontend partitions and distributes the virtual network onto
the workers and keeps a list of which node resides on which
worker. This way we can access all nodes through the frontend.
The frontend itself can also act as a worker and is manually
selected prior to the experiment.

B. Overview

MaxiNet is an abstraction layer connecting multiple, un-
modified Mininet instances running on different workers. A
centralized API is provided for accessing this cluster of
Mininet instances. GRE tunnels are used to interconnect nodes
emulated on different workers. MaxiNet works as a front
end for Mininet that sets up all Mininet instances, invokes
commands at the nodes and sets up the tunnels required for
proper connectivity.

Figure 1 shows the schematic view of MaxiNet. A network
experiment can use MaxiNet to set up, control and shut down
a virtual network by using the MaxiNet API. This API is
designed to be very close to the Mininet API to ease using
MaxiNet when already familiar with Mininet. The emulation
as such happens on a pool of workers. Workers are controlled
by MaxiNet using the Mininet API. Communication between
MaxiNet and Mininet happens through RPC calls.
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Fig. 1. Schematic view of MaxiNet.

For partitioning a virtual network onto several workers we
use the graph partitioning library METIS [17]. For n workers,
METIS computes n partitions of near equal weight. The goal
of our partitioning process is to confine most of the emulated
traffic locally to the workers. The optimization criteria we
use for partitioning is minimal edge cut. Edge weights in
the partitioning process are proportional to the bandwidth
limits specified in the virtual topology. Node weights in the
partitioning process are chosen to be proportional to the
corresponding node degree in the virtual topology. This makes
sense because a node with a higher number of links is likely
to forward more traffic, thus causing more load to the worker.

C. Using MaxiNet

To get the reader familiar with MaxiNet, this section pro-
vides a minimal example on how to use MaxiNet. Figure 2
shows the complete Python code (error checking omitted)
required to set up and run an experiment on a tree network
that is emulated on three different physical machines. First,
a MininetCluster object is built (line 5). This object
holds a list of all n physical hosts’ network addresses (here:
DNS names pc1, pc2, and pc3) that will be used as workers.
The start function (line 6) prepares the workers for the
emulation by starting a Mininet instance on each machine.

The Emulation object (line 8) is the interface to Maxi-
Net’s API. It’s creation requires the MininetCluster
object and a mininet.topo.Topo object describing the
virtual network topology. In the example we use a tree topol-
ogy from the Mininet library specified as TreeTopo(3,2).
The addController function (line 9) is used to specify
the OpenFlow controller for the experiment. By calling the
setup function (line 10), the topology is clustered into n
partitions using METIS. After clustering, from each partition
a mininet.topo.Topo object is built and emulated at a
worker. For each edge in the topology that is between nodes

1 import sys
2 import maxinet
3 import TreeTopo from mininet.topolib
4
5 cluster = maxinet.MininetCluster("pc1","pc2","pc3")
6 cluster.start()
7
8 emu = maxinet.Emulation(cluster, TreeTopo(3,2))
9 emu.addController("192.168.0.1", "6633")
10 emu.setup()
11
12 print emu.get("h2").cmd("ping -c5 10.0.0.3")
13
14 emu.stop()
15 cluster.stop()

Fig. 2. Minimal example experiment using the MaxiNet Python API.

in different partitions a GRE tunnel is set up that directly
connects to the interfaces of the nodes.

After invoking the setup function of the Emulation
object the emulation begins. Now, during the run time of the
emulation, it is possible to invoke commands at the nodes
(line 12). To do so, first the node object is fetched via the get
function. Afterwards, the cmd function can be used to pass a
shell command that is executed in the node’s environment.

D. Limitations

The current implementation of MaxiNet has no notion of
either the performance of workers or the physical network.
This restricts its usage in heterogeneous environments. Load
is aimed to be evenly distributed over all workers, so weak
machines will become the bottleneck of the emulation. Fur-
thermore, the physical network properties have no influence
on the partitioning itself or on the mapping of partitions to
workers. Thus, it has to be ensured that the latencies and
available bandwidth are the same for every pair of worker
nodes. Future work will concentrate on eliminating both these
shortcomings.

The experiments in Section V showed that when 12 workers
are connected with 1Gbit Ethernet in a star topology the
network does not become a bottleneck when emulating a data
center with 3200 hosts and a dilation factor of 200.

IV. DATA CENTER TRAFFIC GENERATION ON
MICRO-FLOW LEVEL

A. Traffic Characteristics

When it comes to testing new routing algorithms for data
centers, most work assumes traffic that is created by a Poison
process. But recent studies revealed that the traffic in real data
centers is very different from that assumptions [4], [5].

According to [4], the distribution of non-zero entries of a
typical data center traffic matrix (TM) is heavy-tailed. They
report that for a pair of servers located in the same rack, the
probability of communicating in a fixed 10 s period is 11%
whereas the probability for out-of-rack communication for any
pair of servers is only 0.5%. In addition, a server either talks
to the majority of servers in its own rack or to less than one
forth of them. The amount of traffic that is exchanged between
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server pairs is distributed based on their relationship: Servers
in the same rack (non-zero TM entries) either exchange only a
small amount or a large amount of data, whereas traffic across
racks is either small or medium per server pair.

The authors of [4] found that 80% of the flows in the data
center last no longer than 10 s and that only 0.1% of the flows
last longer than 200 s. More than half the traffic is in flows
shorter than 25 s and every millisecond 100 new flows arrive
at the network.

An independent study [5] looked at traffic from 10 different
data centers. They showed that across all data centers the flow
sizes follow nearly the same distribution. Most of the flows
were smaller than 10 KB and 10% of the flows are responsible
for more than half of the traffic in the data centers.

We built a versatile traffic generator that is capable of gener-
ating traffic with the properties found by the above-mentioned
studies. In addition, our traffic generator can be adjusted to
create traffic from various distributions. It takes as an input
six cumulative distribution functions (CDFs) describing the
following properties:

1) Number of in-rack non-zero TM entries per host
2) Number of out-of-rack non-zero TM entries per host
3) In-rack outgoing traffic volume (in bytes) per host
4) Out-of-rack outgoing traffic volume (in bytes) per host
5) Flow size in bytes
6) Inter-arrival time of flows

As additional input, the total number of hosts in the data center
as well as the rack size (in hosts) has to be given. We assume
each rack in the data center is of equal size.

B. Generating Traffic Matrices

From the above mentioned inputs, we create a series of
traffic matrices (TMs). A single TM describes the amount of
traffic exchanged between each server pair in a fixed 10 s
period.

To create a TM, for each row u (which corresponds to
Server u) we first determine the number of non-zero TM
entries. We do so by sampling a) the number of in-rack and b)
the number of out-of-rack communication partners of u using
CDFs 1 and 2. The corresponding communication partners
are chosen uniformly at random from either a) the servers in
the same rack or b) the rest of the servers in the data center.
After all communication partners (u, v) (non-zero TM entries)
are chosen, these entries are assigned a traffic volume. This
volume is sampled from either CDF 3 or CDF 4, depending
on the locations of u and v. In a subsequent step the traffic
volume between any pair of hosts is divided into single flows.

C. Generating Flows

Data center traffic consists mostly of short-lived flows [4],
[5]. Thus, to create data center traffic a number of flows for
each non-zero TM entry has to be given. We define a flow to
be a series of packets between a source and a destination that
are logically belonging together. This could, for example, be
one TCP connection. This leads to our definition of a flow as
the 4-tuple (start time, source, destination, size).

Generating flows that have to have specific properties
(CDFs 5 and 6) for a given traffic matrix is a challenging task.
A simple approach would be to go through all non-zero TM
pairs (u, v) and sample flows for them according to the CDFs.
There are a couple of challenging questions arising from this
approach, for example:

When to stop sampling new flows for (u, v)?
When we stop assigning flows to (u, v) when the
sum of flows for (u, v) is larger than specified by
the TM, than a lot more traffic would be generated
than is specified by the TM. Another way would be
to stop sampling flows for (u, v) when the next flow
that is to be sampled would exceed the amount stated
be the TM. This way, the amount of generated flows
would be less than specified by the TM.

What if for a small TM entry a huge flow size is sampled?
Resampling the flow size in a situation where a too
large flow is sampled for a small TM entry distorts
the flow size distribution. And by assigning too large
flows the resulting traffic would no longer follow
CDFs 3 and 4.

So generating flows for each host pair individually is not
practical.

One way to get around these issues is to first create the TM
and then a set of “unmapped” flows following CDFs 5 and
6 (where unmapped means the flow is not yet assigned to a
source or a target). Afterwards, flows get mapped to source-
destination pairs (s-d pairs) such that the sum of flow sizes
mapped to each s-d pair matches the amount given by the
traffic matrix. However, this mapping has to be done very
carefully. Since there is no information known about inter-flow
dependencies, the mapping must not introduce any artificial
patterns to the generated traffic (such a pattern could, for
example, be a higher probability to map large flows to node
pairs with large TM entries). Thus, the goal is a random
assignment of flows to host pairs (u, v) where the amount
of traffic given by the flows between u and v is equal to the
TM entry (u, v). We call such a mapping an exact mapping.
Note that it is not guaranteed that an exact mapping exists.
Nevertheless, a good mapping strategy gets the amount of
flows and the TM entries as close as possible.

To create flows, we first determine the overall required
traffic sM of the TM (as the sum of all entries) and then create
a set of unmapped flows matching this overall demand. We
denote the sum of all generated flow sizes as sF . Since both
sM and sF are random variables it will hold that sM = sF ·ε,
ε ∈ R+

0 , where ε is the imbalance factor between the size
of the flows and the TM. Of course, ε should be very close
to 1 (meaning there is no imbalance at all), which is why
we resample the set of unmapped flows with adjusted flow
inter-arrival times (CDF 6) as long as | ε − 1 |> 0.01. This
means that the amount of generated flows deviates at most 1%
from the traffic specified by the TM. We assume this to be a
reasonably small number.

We will now present two different strategies to map the
unmapped flows to node pairs. The first one is a purely random
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Fig. 3. Selecting s-d pairs for flows using Deficit Round Robin.

process and the second one uses a variation of the deficit round
robin (DRR) queuing strategy [18]. Afterwards we study the
quality of both strategies.

The randomized assignment uses the TM as a probability
distribution and, for each generated flow, samples a node pair
from this distribution. After a flow has been assigned, the
probability distribution at the point of the node pair is lowered
by the size of the flow and the next node pair is sampled.

The DRR-inspired strategy can be seen in Figure 3. In the
algorithm, s always corresponds to a source, d to a destination
and R is the residual traffic as specified by the TM (whenever
a flow is assigned to (s, d), Rs,d is decreased by the size of
the flow). F is a queue that initially contains all flows in a
randomized order. Ds,d is the deficit counter (due to DRR) of
the TM entry (s, d) in the flow assignment. Ds,d increases over
time and is decreased whenever a flow is assigned to (s, d) by
the size of the flow. The algorithm iterates Round Robin over
all node pairs and tries to assign the flows queued in F . For
each flow f the algorithm iterates as long over the node pairs
(s, d) as no valid candidate has been found. (s, d) is a valid
candidate for flow f if Ds,d is larger than or equal to the size
of f . After a pair (s, d) has been inspected its deficit counter
is increased by max(α ·Rs,d, ω). α and ω control the increase
of the deficit counter over time. Ideally, both parameters are
chosen to be very small. We found that setting them to values
below α = 0.1 and ω = 100 has no significant influence on
the flow assignment and only increases the run time of the
algorithm. Thus, we consider α = 0.1 and ω = 100 to be a
good choice.

D. Quality of Flow Assignment

In an optimal flow assignment, each node pair is assigned
flows which exactly sum up to the amount of traffic stated by
the given TM. To express the difference between the given
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TM M and the TM M ′ produced by the flow assignment
we interpret both M and M ′ as probability distributions of
exchanging traffic. Then we express the distance between these
two distributions by the relative entropy. The relative entropy
is naturally defined as the Kullbeck-Leibler divergence (KL),
but KL implies that M ′i,j = 0 ⇒ Mi,j = 0 ∀ (i, j) ∈ n× n
which does not hold in our case. However, the symmetric form
of KL, called Topsøe distance (see Equation 1) does not have
this implication and can be used instead to compute the relative
entropy.

Topsøe(M (l),M (l)′) =

∑
(i,j)

(
M

(l)
i,j ln

2M
(l)
i,j

M
(l)
i,j +M

(l)′
i,j

+M
(l)′
i,j ln

2M
(l)′
i,j

M
(l)
i,j +M

(l)′
i,j

)
(1)

Given a fixed flow size distribution, an increasing commu-
nication volume (TM size) will influence the results of the
flow assignment methods: If the total traffic volume tends
towards infinity, a single flow gets very small compared to a
TM entry. In such a scenario it is very easy to find matching
flow assignments. We thus look at the quality of the methods
under different amounts of traffic. To this end, we consider
different load levels. A load level is created by linearly scaling
CDFs 3 and 4 (which determine the size of the non-zero TM
entries) by factor l. We denote the corresponding TM with
M (l). We then assign flows for M (l) to s-d pairs and calculate
the TM M (l)′ based on that flow assignment. The data center
for which we generate traffic consists of 75 racks with 20
servers each. It is the same size that was used for the study
[4].

We use M (l) as the ground truth and express the difference
between M (l) and M (l)′ as the relative entropy of both ma-
trices. Figure 4 shows the relative entropy of both the random
strategy and the Deficit Round Robin strategy calculated as
the Topsøe distance (see Equation 1) from 40 matrices of 10 s
generated traffic each. It can be seen that for both methods
the Topsøe distance decreases with increasing load but for
Deficit Round Robin the relative entropy is much lower, thus
the method achieves a better flow assignment than the random
mapping process.
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Fig. 5. One switch pair consisting of 2 switches and 2 hosts connected in a
line.

V. PERFORMANCE EVALUATION OF MAXINET

A. Scalability

1) Environment: The small-scale experiments presented in
this section are all run on a cluster of 4 Intel i7 3.3 Ghz
quadcore servers with 24 GB ram interconnected by 1 Gbit
Ethernet in a star topology. The software switch we used
is the Openflow 1.0 userspace reference implementation. We
did not use OpenVSwitch because even in its latest version
(2.0) OpenVSwitch does not scale well in scenarios where a
high amount of switches is emulated at a single host. When
emulating a fat tree of depth 7 the throughput of the single
switches was highly fluctuating, leading to very bursty traffic
patterns. We thus recommend using the userspace reference
implementation when aiming at emulating a very high amount
of switches, even though the forwarding performance is not
as high as for OpenVSwitch.

2) Single Worker: To understand the scalability of a single
Mininet instance, we run the following experiment: We create
pairs of switches with one host each that are interconnected in
a line by 10 Gbps links (see Figure 5). Two flows are created
(one for each direction) to fully utilize the links. To find out
the lowest possible dilation factor we monitored the data rates
of the links and lowered the dilation factor as long as all
links were fully utilized. The dashed line in Figure 6 plots
the number of emulated 10 Gbit links against the required
dilation factor (by choosing a smaller factor the processing
power of the worker does not suffice to forward all packets).
Note that each emulated switch pair corresponds to 30 Gbit.
It can be seen that due to the introduced overhead per node
the scaling is not linear.
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We now look at fat trees with full bisection bandwidth and
a data rate of 10 Gbps on the lowest (ToR) level. Each ToR
switch is connected to one host for traffic generation. We
again aim at fully utilizing every single link while keeping
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Fig. 7. Speedup gained from an increasing number of workers in the fat-tree
and switch-pair scenarios.

the dilation factor as low as possible. For a fat tree with n
ToR switches we create flows between ToR i and n − i to
accomplish full utilization of every link in the topology. The
solid line in Figure 6 shows the outcome of this experiment:
the fat-tree scenario has a nearly linear scaling which is
due to the small amount of emulated switches and hosts in
comparison to the line scenario. The largest fat tree used in
this experiment had a depth of 6 resulting in 128 switches
and 64 hosts. The largest switch-pair scenario consisted of
150 pairs, which makes 300 switches and 300 hosts.

3) Multiple Workers: We now show the effect of distribut-
ing the two scenarios onto multiple workers using MaxiNet.
For the experiment we use 120 switch pairs in the switch-pairs
scenario. This results in 240 switches, 240 hosts and 360 em-
ulated 10 Gbit links with an aggregated traffic of 3600 Gbps.
For the fat-tree scenario we fix the number of leaf nodes to 64,
resulting in a fat tree of depth 6. The number of switches is 128
and the number of hosts is 64. The aggregated bandwidth in
this scenario is 4480 Gbps and hence off the scale for a single
Mininet instance. The two scenarios are chosen to be the best
case for the emulation, respectively the worst case because in
the switch-pair scenario the virtual network consists of many
isolated and thus independent network components and in the
fat tree all traffic is routed through one single switch (the
root of the tree). Since the root can only be emulated at one
worker this affects the performance of the whole network and
restricts the possible scalability when distributing to a cluster
of workers.

Figure 7 plots the speedups over the number of used
physical workers. For the switch-pairs scenario, the speedup is
better than linear which is due to the lower overhead of smaller
virtual networks. When using only one worker, the amount
of nodes and virtual links is very high, leading to severe
performance penalties (the Linux kernel has to handle 720
virtual interfaces and 360 veth pairs and do traffic shaping on
them). When distributed over multiple workers the overhead
gets lower and no longer hurts performance.

It can be seen from Figure 7 that the effect of adding more
workers to the fat-tree scenario does not have a large effect on
the speedup. There is basically no gain from adding a fourth
worker to the cluster. As already said, this is due to the root
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node of the fat tree. The experiment is designed such that all
traffic is routed over the root switch. That switch can only be
emulated at one single worker and thus its CPU becomes the
bottleneck of the emulation.

4) Latency distribution: Since we are using GRE tunnels
over a physical network infrastructure to interconnect the
different workers, we now take a look at the latencies between
hosts emulated at the same physical machine and nodes emu-
lated at different machines. To make latency measurements we
use the fat-tree topology described above with 128 leaf nodes
and a dilation factor of 5000, emulated at 4 worker nodes. Each
link has an emulated delay of 0.05 ms. With the dilation factor
this means a latency of 250 ms was configured for each link.
We use UDP flows and let them create a utilization of 30% on
each link. During the experiment we perform all-to-all latency
measurements. The latency histogram between nodes emulated
at the same worker (internal) and nodes emulated at different
workers (external) are plotted in Figure 8. Both distributions
do not differ significantly from each other. This is because the
physical network only adds a negligible latency in comparison
to the used dilation factor. The same holds for experiments
with a lower number of leaf nodes and a lower dilation factor.
These results are omitted due to space constraints.

5) Effects of a distributed emulation: When distributing an
experiment over multiple workers with MaxiNet, the results
should be the same as when running the experiment with
original Mininet. To show that MaxiNet does not distort results
we ran the following experiment on both original Mininet and
MaxiNet: We emulated a data center consisting of 300 servers
interconnected in a Clos-like topology. Figure 9 shows a sketch
of this topology. The lowest layer in the topology are racks of
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Fig. 10. Distribution of flow completion times between 300 servers emulated
at a) one worker (Mininet), and b) four workers (MaxiNet) in a Clos-like
network with a dilation factor of 200.

servers. Each rack consists of 20 servers and one top-of-rack
(ToR) switch, resulting in 15 racks. Servers are connected with
1GBit links to the ToR switches. Pods are formed by grouping
three ToR switches and connecting them to two pod switches
with 10Gbit links. Each pod switch is connected to two core
switches with 10Gbit links. In the experiment we used two
switches at the core layer. Note that for the comparison, the
emulation has to run at a single machine. This is why we
decided for such a small scenario.

We emulated 60 seconds of traffic that was generated as
described in Section IV. The CDFs we used were extracted
from the papers [4], [5]. The dilation factor was set to 200
which means our experiment completed after 200 minutes.
We assumed a forwarding delay of 0.05 ms per switch.

Figure 10 shows the CDFs of the flow completion times
for a) the experiment emulated with original Mininet and
b) emulated with MaxiNet on four workers. Note that the
results include the dilation factor of 200. The flow completion
times in both scenarios follow the same distribution which
means that for this particular scenario there is no difference
between the results from MaxiNet and Mininet. We cannot
think of a reason why this should not also hold for different
network sizes and topologies. Hence, we consider the results
of experiments with MaxiNet to be not distorted when being
distributed over multiple workers.

B. Large-Scale Data Center Emulation

To learn about the scalability of MaxiNet we choose to
emulate a data center consisting of 160 racks employing
a Clos-like topology as before. Each rack consists of 20
servers and one ToR switch, which makes 3600 servers overall.
Servers are connected by 1Gbit links to ToR switches. Pods
consist of eight ToR switches and are connected to two pod
switches with 10Gbit links. Pod switches are connected to two
core switches with 10Gbit links. The core layer in our topology
consists of seven switches, which makes 207 switches overall.
We assume a forwarding delay of 0.05 ms per switch.
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We emulated 60 seconds of traffic that was generated as
described in Section IV and used a dilation factor of 200 which
means the emulation completed after 200 minutes. The CDFs
were extracted from the papers [4], [5] as before. Figure 11
shows the aggregated traffic demand for both traffic that stays
within one rack and traffic that is destined to servers located
in other racks. Due to our traffic generation process a new TM
is generated every 10 s. It can be seen that the TM for the 40 s
– 50 s period contains significantly less traffic than the TMs
for other periods, which mimics a low-load phase in the data
center. We did not force that to happen; it is just a variation
in the random process.

The emulation took place on 12 physical worker nodes
that were equipped with Intel Xeon E5506 CPUs running at
2.16 GHz, 12 Gbytes of RAM and 1GBit network interfaces
connected to a Cisco Catalyst 2960G-24TC-L Switch. For
routing, we implemented equal cost multipath (ECMP) routing
based on the Beacon controller platform [19]. As the controller
was placed out-of-band and did not use any kind of time
dilation, the routing decisions of the single controller were fast
enough for the data center network. In addition, the latency
between the controller and the emulated switches was not
artificially increased. This means that in relation to all the other
latencies in the emulated network, the controller decisions
were almost immediately present at the switches and did not
add any noticeable delay to the flows. Please note that for
a real data center (without using time dilation) an ECMP
implementation based on only one centralized controller would
not keep up with the high flow arrival rates. Figure 12 shows
the system utilization of the OpenFlow controller we used for
the experiment (which was also run at a 2.16 GHz Intel Xeon
E5506). The CPU utilization of the controller is around 4%
on average and the data rate required to install rules at the
switches is around 5 Mbit/s. When using no time dilation these
values would rise to 800% CPU utilization and 1Gbit/s data
rate on average. This means for a data center of this size it
would require a distributed OpenFlow controller with more
than 8 physical machines to run our ECMP implementation.
Even assuming a perfect linear scaling of the distributed
OpenFlow controller.

Figure 13 shows the CPU utilization of the 12 worker
nodes during the experiment. It can be seen that the load is
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Fig. 13. Average CPU usage of the 12 workers during the large-scale
experiment. Confidence intervals with confidence coefficient of 0.95 given.

distributed evenly over the worker nodes and that load per
worker is very stable. No worker was running at its capacity
which means the experiment was not affected by hardware
limitations. Figure 14 plots the corresponding network usage
over the course of the experiment. It can be seen that the
network also does not run at its capacity and that data rates
are not subject to heavy fluctuation. The later is due to the
ECMP routing algorithm and the type of traffic which results
in an even distribution of load over the emulated switches.
Please note that Figure 14 only plots the portion of traffic
that used the physical network and does not include traffic
that was exchanged on links connecting nodes emulated at
the same worker. This is why there is no strong correlation
between Figure 13 and Figure 14.

From the data it can be seen that 12 physical worker nodes
are sufficient to emulate a data center consisting of 3600
servers interconnected in a Clos-like topology. The required
physical network footprint is very low and the CPU utilization
of each worker in this experiment is below 80%. When
emulating larger networks, however, either more workers have
to be used or a larger dilation factor has to be chosen.
Otherwise there are not enough free CPU cycles to compensate
for peaks in the CPU usage, which otherwise will bias the
outcome of the experiment.

C. Lessons Learned

To ease the setup of the large-scale experiment we first
used MaxiNet in virtual machines (VMs) where each physical
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worker hosted one VM. We used Linux KVM as the virtu-
alization environment. KVMs network virtualization module,
however, is restricted to only one RX/TX queue per network
interface. This led to an uneven CPU utilization inside the
VMs and thus limited the scalability of MaxiNet. We assume
that the same effect will also occur when using physical ma-
chines with network interfaces limited to one RX/TX queue.
We thus recommend to use network interfaces with multiple
RX/TX queues to reduce the required dilation factor.

Choosing the right dilation factor is crucial for the emu-
lation. When choosing a too high factor the emulation takes
unnecessarily long to complete, and by choosing a too low
factor the results of the emulation are distorted by limitations
of the physical network or by the limited processing power
of the workers. Unfortunately, the required dilation factor
strongly depends on the used virtual topology, the amount of
traffic and the software running at the emulated hosts. This
makes it hard to give a general statement about the required
dilation factor. To find out the smallest possible dilation
factor we started with a high dilation factor and decreased
it subsequently as long as the result of our experiment did not
change.

VI. CONCLUSION

With MaxiNet it is possible to emulate data center topolo-
gies at scale in a reasonable amount of time using a cluster of
physical machines for the computations. This, together with
our traffic generator, opens the door for realistic evaluation
of novel data center routing protocols through emulation that
can be used for rapid prototyping evaluations. We could show
that the physical resources required for the emulation of a mid-
sized data center are very low even when using acceptable time
dilation factors. Our whole emulation environment consisted
of old Intel Xeon processors. It can be assumed that by
using state-of-the-art hardware even larger data centers can be
emulated without using more physical resources or increasing
the dilation factor.
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