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Abstract—The Session Initiation Protocol (SIP) is a signaling
protocol widely used nowadays for controlling multimedia com-
munication sessions. Thus, understanding and troubleshooting
SIP behavior is of utmost importance to network designers and
operators. However, SIP traffic traces are hard to come by
due to privacy and confidentiality issues. SIP contains a lot of
personal information spread within the various SIP messages –
IP addresses, names, usernames and domains, e-mail addresses
etc. The known IP-address anonymization methods are thus
insufficient. We present SiAnTo, an extended anonymization
technique that substitutes session-participant information with
matching, but nondescript, labels. This allows for SIP traces to
be publicly shared, while keeping interesting traffic-session prop-
erties intact. We further demonstrate its usefulness by studying
the problem of SIP NAT traversal as recorded in the anonymized
traces. We analyze properties of the so-called “registration storm”
incident and measure the influence of the active NAT traversal
techniques on SIP traffic pattern, both only possible thanks to
the preservation of session relationships inside the anonymized
traces. As further benefit to the research community, we set up
a public data-store with both the anonymization module and the
anonymized traces available and invite other parties to share
further SIP data using these open tools.

I. INTRODUCTION

The Session Initiation Protocol (SIP) [1], [2] is a signaling
communications protocol widely used nowadays for control-
ling multimedia communication sessions such as voice and
video calls over Internet Protocol (IP) networks. It is also
the core networking protocol used within the IP Multime-
dia Subsystem (IMS) [3] and is expected to become the
dominant communication control protocol within LTE mobile
networks [4]. With its ever higher proliferation, SIP and its
control nodes, the SIP servers, attract much interest from the
perspective of practical functioning within the Internet infras-
tructure, its traffic characteristics and general considerations of
deployment. SIP is lightweight and has easily understandable
and human-readable structure. However, it is neither easy nor
standardized or obvious how to optimize its use in specific
situations and environments.

A good way to design optimization techniques for SIP
deployment would be to analyze SIP traffic from existing
networks. Is SIP traffic stable and monotonous, or does it
exhibit wildly fluctuating and skewed patterns? These are
sample questions that the community might look to answer.
However, publicly available analyses of SIP traffic are rare
and thus not a lot of knowledge exists about typical behavior
of a SIP server (as opposed to, for example, HTTP servers).

Our aim is to promote analysis of real SIP-server behavior.
SIP traffic traces are hard to come by due to privacy and
confidentiality issues. By its nature, SIP contains a lot of
personal information spread within the various SIP messages –
IP addresses, names, usernames and domains, e-mail addresses
and other information about the session participants.

Non-disclosure of IP addresses in publicly shared traces is
typically solved by anonymization [5], [6]. Unfortunately, the
classic IP-address anonymization methods are not sufficient
for SIP traces since they do not handle the other types
of sensitive information. Therefore, we present SiAnTo, an
extended anonymization technique that substitutes session-
participant information with matching, but nondescript, labels.
This allows for SIP traces to be publicly shared, while keeping
interesting traffic-session properties intact. To this end, we
anonymize a sample of traces from a freely accessible and
open SIP server with a worldwide user base.

We further demonstrate the usefulness of this technique by
studying the well-known problem of SIP NAT traversal as
recorded in the anonymized traces. NAT traversal is not well-
solved in SIP as the server and clients typically need to support
some other mechanisms (STUN [7], TURN [8], ICE [9]
etc.) to maintain a connection. If the SIP server becomes
unavailable for a time period, the clients keep trying to re-
register periodically. Once the server becomes available again,
all the clients try to register in a very short time interval and
the ones that succeed submit their other requests immediately.
This leads to a tremendous increase in SIP messages handled
per second and may render the server incapable of answering
all these requests timely, leading to delayed registrations and
re-sending of time-outed requests. We analyze the properties
of the registration-storm incident and discuss the influence
of the active NAT traversal techniques on the overall SIP
traffic, both only possible thanks to the preservation of session
relationships inside the anonymized traces. As further benefit
to the research community, we place the anonymization tool
as well as the anonymized traces on a publicly available data-
store available at sipdata.org and invite other parties to
share further SIP data using these open tools.

The main contributions of this work are as follows:
(i) the SiAnTo anonymization method and implementation;
(ii) practical study showcasing its usefulness;
(iii) deep analysis of the registration-storm incident;
(iv) establishing an open platform for further SIP data ex-
change.ISBN 978-3-901882-58-6 © 2014 IFIP



II. RELATED WORK

SIP is very popular nowadays and with deployment in
various new services, its popularity is only growing. Not
surprisingly, many works have already focused on SIP and its
various aspects. RFCs [1] and [2] describe the SIP standard
as a whole. Papers by Sparks [10] and Prasad and Kumar [11]
describe SIP basics and some typical extensions used in SIP
environments. The well-known problem of NAT traversal in
SIP and various approaches to solving this problem were
described in numerous papers e.g by Yeryomin et. al. [12] and
Song et. al. [13]. Even though there are many proposals how to
solve the NAT traversal issues, none of these was adopted as a
general solution since they typically impose strict requirements
on the SIP devices and so active NAT keep-alive “pinging”
methods are still used by SIP clients and servers. We locate
and analyze these methods in real SIP traffic in this paper.

A lot of work was done on identification of SIP anomalies.
From these we can name for example works by Heo et. al. [14]
who focused on usage of statistical distances for respective
SIP message types, Yunli et. al. [15] who proposed usage of
Petri nets for SIP INVITE transaction description, Cortes et. al.
[16] who used performance metrics to identify SIP processing
times, Kang et. al. [17] who used some already known profilers
on various real SIP datasets and Ehlert et. al. [18] who used
decision modules to learn upon and then detect anomaly SIP
traffic. While all the proposed methods are definitely useful,
they require live access to the SIP traffic data or at least
offline access to SIP traffic dumps. Obtaining such data is
often complicated due to personal information contained in
SIP traffic and threatening privacy breach issue. We try to
overcome this issue by proposing SiAnTo designed specifically
for this purpose and demonstrate that the anonymized traffic
is still quite useful for anomalies identification and analysis.

The concept of hiding private or sensitive data but pre-
serving some form of structural information has been studied
in various sub-domains of ICT. Techniques concentrating
on hiding the originator of information are routinely called
anonymization. An important theoretical foundation for data
anonymity and originator protection was laid in [19]. The
k-anonymity model for protecting privacy allows holders to
release their private data without being distinguishable from
at least k-1 other individuals also in the release.

A well-known anonymization scheme over the network
packet IP addresses called Crypto-PAn [5] preserves the
prefix hierarchy of the original addresses, while making them
computationally hard to reconstruct by using hashing. This
in turn allows to share network traces (with packet headers
only), with preservation of the prefix hierarchy. Similarly,
in [20], structure of the router configuration files and data is
preserved, while the actual values are obfuscated. A technique
to process and transform the network packet payload has
been proposed in [21]. This method uses dictionaries of
important sequences that are valuable from the data mining
perspective and should be preserved, while encrypting the rest
with a cryptographically strong hash function. It is similar

to SiAnTo and performs well in terms of data protection,
however, its universality creates much overhead and prevents
easy automation, a trademark of the lightweight SiAnTo.

SIP traffic anonymization is generally an unsolved problem.
There are options allowing for privacy in SIP communication,
such as practical and implemented SIPANON [22] introduced
by Castleman or more general standard-based SIP privacy
mechanism described in RFC 3323 [23] by Peterson et al.
There are also various secure SIP proposals incorporating
usage of encryption mechanisms such as RFCs 3329 [24]
by Arkko et al. and 6216 [25] by Jennings et al. However,
these mechanisms modify the SIP traffic directly and require
deployment into the actual SIP network. Moreover, such traffic
modification complicates the monitoring of SIP traffic and
dependent service such as billing, troubleshooting etc. We aim
to solve the problem of anonymization (privacy preserving) of
captured SIP traffic, making the traces publishable without the
fear of compromising privacy and without the need for any
modification of the deployed SIP environment itself.

III. SIP ANONYMIZATION

Capturing a “real” SIP trace from a SIP deployment is not
a difficult task, however, infrastructure owners are reluctant
to share this data due to concerns about clients’ privacy. The
same problem arose in the past with web traces and was solved
by anonymizing IP addresses and removing packet payloads.
Such anonymization is not feasible in case of SIP, as SIP is an
application layer protocol. By removing packet payloads, one
would lose all the SIP-related information. Methods anonymiz-
ing SIP traffic “inline”, during actual communication, such
as [22], [23], require deployment inside the SIP environment.
From the perspective of network administrators, they often
modify SIP traffic in an undesirable manner too. We are not
aware of any publicly available solution to anonymize an
existing SIP traffic dump. There are two possible ways to
tackle the problem of SIP anonymization: either extract only
the “minimum” necessary information from each SIP message
and keep and anonymize only this essential part, or leave the
whole SIP message intact and anonymize only the potentially
privacy leaking parts. Anonymization is easier to handle in
the first approach as identification of personal data in smaller,
clearly-defined parts is rather straightforward. However, imple-
menting the first approach, it would be necessary to choose
and define what data exactly are to form the essential part
and some important property might be missed, complicating
the utility of such anonymized capture. We follow the second
approach. The SIP Anonymization Tool (SiAnTo) presented
in this paper keeps SIP messages largely intact and leaves
out only segments impossible to anonymize in principle (e.g.
user-identifying SDP lines in the INVITE messages that could
contain personal information in varying format). With regards
to statistics and analyses, traffic anonymized with this tool is
almost as useful as unanonymized traffic. Design, properties
and implementation of SiAnTo are described in this section.



Schematic 1: Packet anonymization process inside SiAnTo
Input: Packet P to be anonymized
Output: Anonymized packet A
begin

A := P
foreach defined object pattern O do

S = find(O inP )
foreach x ∈ S do

y = O.anonymize(x)
replace(x ⇒ y in A)

end
end
fix lengths and checksums(A → header)
return A;

end

A. SiAnTo Architecture

The core problem was to identify the potential personal
information leaking objects inside SIP messages and devise a
way for their anonymization. After analyzing the SIP standard
and SIP traffic, we concluded to use pattern matching for
object identification, as the benevolent SIP architecture allows
for optional loosely-defined header fields and message parts
that potentially contain personal information too. Each object
type has its own specific anonymize function. The object
types share the mapping tables for username and domain-
name anonymization. The high-level schematic of SiAnTo per-
packet processing is described in Schematic 1.

The three typical objects leaking personal information were
identified as: 1) IP address 2) SIP URI 3) e-mail address
IP address anonymization was already handled well in many
works targeting web traffic anonymization. We chose to use
Crypto-PAn [5] for anonymization of both the IP addresses
inside the IP header and IP addresses inside the SIP message.
During anonymization, we keep track of the unanonymized-
anonymized IP pairing in form of a 1-to-1 map. This way, the
reverse process of deanonymization is possible. Additionally,
deanonymization of IP addresses could also be achieved using
the built-in Crypto-PAn feature if a key string is used.
SIP URI anonymization consists of three steps. First, we lo-
cate lines containing SIP URIs inside SIP messages by looking
up the sip: string. Second, the SIP URI must be separated
from the rest of the line using content-aware separator-oriented
string tokenization. This is necessary due to the SIP URI form
(see example in Figure 1). Note that the free-text username
part is not effectively part of the SIP URI itself, however
we need to anonymize it since otherwise it could leak user
identification. The “extended” URI is therefore split into the
free-text username part (everything before sip:), username
part (everything after sip: and before @), domainname part
(everything after @ and before : or a delimiter) and the port
part (if : is present, then everything from : to the next
delimiter). Third, the username and domainname parts are
anonymized separately. Each unique username is mapped to a

Fig. 1. Example of a From: line inside a SIP INVITE request. Division
into tokens for anonymization process highlighted.

unique sequence number and a table, mapping the username
to a sequence number, is maintained. The same goes for
domainname. An example of anonymized extended SIP URI is
available in Figure 2. The secure variant of SIP URI identifier,
sips, is handled the same way as sip:.

E-mail address anonymization is similar to SIP URI
anonymization. We can locate e-mails by looking up the
mailto: identifier or the @ symbol. If it contains @ and is
not a SIP URI, then it probably is an e-mail. However, since
e-mail addresses are not directly related to SIP, we simply
remove them instead of anonymizing them. If reconsidered,
anonymization could be done in the same way as for the SIP
URI, just with separate map tables for usernames.

There is one other specific part requiring anonymization,
though not part of the SIP protocol by itself. This is the
Session Description Protocol (SDP) payload inside an INVITE
request. While we consider only the signaling part (SIP
traffic) anonymization and not the actual media traffic (is
not part of the captured signaling traffic), lines starting with
u=, e= and p= are interesting from the point of containing
personal information. For simplicity, we delete these lines
during anonymization, keeping all other SDP lines intact.

Further object types could easily be added to be handled by
the anonymizer in the same manner as the existing object types
and such extension would not affect the overall architecture.

B. SiAnTo Security and Privacy

While the proposed anonymization method is privacy-
preserving on the basic level and not leaking any personal
information directly, we cannot call it a secure solution from
the formal security standpoint. There remain quite a few
possibilities to exploit the unanonymized parts and prop-
erties to gain some knowledge about the participants in
the SIP traffic captured – specific version of SIP clients
(UA SIPAUA.build.bob0001 probably belongs to Bob), fre-
quency analysis of SIP connections revealing timezone where
the SIP network is deployed, pattern matching of known
unanonymized traces to the anonymized ones etc. We are
aware of these possibilities, however, all these attacks re-
quire some additional knowledge. After anonymization, the
trace by itself does not provide sufficient information usable
for mapping the anonymized sequence numbers to existing
users/domains.

Fig. 2. Example of From: line inside a SIP INVITE request processed by
SiAnTo. The free-text username part was deleted, username and domainname
parts were anonymized and port part remains the same.



Since the traces do not contain the actual sessions (voice or
video) and since to obtain the additional information required
to derive the sequence-name mapping (for example about SIP
user accounts and their use inside a company) the attacker
would likely have to compromise the infrastructure of the
service provider (which no anonymization can prevent), we
consider the level of privacy sufficient for the initial release.
We are looking forward to user feedback and plan to modify
SiAnTo according to users needs. Removal of authorization
fields and noonces during anonymization is currently under
consideration.

C. SiAnTo Implementation
We implemented a prototype of SiAnTo in the form of

a standalone C++ application. The prototype is available
for using and testing at sipdata.org. To allow other
researchers modifications, we publish the prototype as open
source, under the GNU GPL license. The current version of
the prototype (version 1.0) is capable of processing about
6500 packets per second on an average server machine (Intel
Xeon@2.5GHz) and is single-threaded. Processing speed can
be greatly improved (based on the available number of CPU
cores) by splitting the capture file before processing and
running the application multi-threaded.

To improve the utility of the tool, we also implemented
some basic SIP statistics, generated during anonymization.
These are among others: distribution of SIP messages to
individual request and response types, traffic in “to server”
and “from server” directions, number of individual user-
names/domainnames in the trace, etc.. The user will therefore
get not only his anonymized traffic dump but also a list
specifying all basic SIP characteristics of the traffic processed.
The computational cost of these statistics is very low as all
the required information has to be processed anyway for the
anonymization reasons. To view which statistics are currently
provided, kindly visit sipdata.org.

IV. DESCRIPTION OF THE TESTBED

This section describes the network in which we conducted
our experiment.

To obtain realistic and representative results, we were run-
ning all our experiments including scheduled outage against
a live SIP service hosted by the iptel.org site. The
iptel.org site is an open SIP service. That means that any
Internet user with a working SIP client can create an account
and use the service for Internet telephony. As a result, the site
is used by SIP clients of tens of different types and varying
level of standard compliance and maturity. Some clients use
the service from behind NATs, some use the service directly
from the public Internet. The clients are geographically spread
all around the globe with majority of users located in Europe
and Northern America. For details see [26].

A. Network Traffic
In our experiments, there were two types of load: the

ordinary iptel.org traffic and additional background load
we introduced to cause congestion conditions.

Ordinary traffic is caused by about 3100 clients that are
registered at any time of day with the service. For the sake of
this study, we only consider SIP traffic and do not consider
RTP traffic relayed through the site to facilitate NAT traversal.
Ordinary traffic amounts to approx. 320 packets per second
(pps). The biggest part of the SIP traffic, approx. 40%, is
constituted by SIP REGISTER requests and responses to these
requests. The reason is that the service is configured to force
clients to re-register frequently. Frequent re-registrations help
clients behind NATs to keep their NAT-bindings alive. If the
bindings were not refreshed they would expire and incoming
SIP traffic towards the client would fail.

The background load was generated by SIPp-DD [27], a
modified version of the SIPp traffic generator [28]. It caused
variable additional load and increased CPU load of the Session
Border Controller in front of the iptel.org network to
create the state necessary for congestion tests.

B. Network Topology

The iptel.org service consists of two key SIP elements:
a Session Border Controller (SBC) and a SIP proxy server. The
SBC is connected to both the public Internet and intranet, and
its main task is facilitation of NAT traversal. The SIP proxy
server is combined with a SIP registrar and located in a private
network. The server performs all other SIP processing.

The SBC is “Frafos Adaptive Border Controller (ABC)”,
version 2.0.1.27 running on a linux-based rack PC – Dell
Poweredge 1850 server constituting 3.2GHz Intel Xeon CPU
with 2GB RAM. The SBC acts as a Back-to-back User Agent,
i.e., it appears in SIP signaling as a User Agent to both
upstream client and downstream server (see [29] for a more
detailed description of the B2BUA concept). The SBC is
configured to force clients to re-register in short intervals no
longer than 180 seconds. This is achieved by forcing the value
of “expires” parameter in Contact header field in answers
to clients’ REGISTER requests. This behavior dramatically
increases registration traffic. To make sure that the traffic
does not offend the infrastructure behind the SBC, the SBC
caches the registrations and passes them downstream only
in much longer intervals. Note that also other methods can
be used to keep NAT bindings alive: clients sending empty
packets or STUN requests to servers or servers sending unso-
licited OPTIONS or NOTIFY requests to clients. However, the
iptel.org configuration is using the frequent re-registration
method so that it works with practically any SIP client,
regardless what NAT traversal features it implements or not.

The proxy server is implemented using “sip-router”, version
3.3.0, running on a linux-based rack PC – Dell Poweredge
1850 server with 3.2GHz Intel Xeon CPU and 2GB RAM. It
authenticates incoming traffic against its subscriber database
using SIP digest authentication, stores SIP registrations in user
location database and performs basic call processing: user
location lookups, call-forwarding, and routing.

REGISTER requests from the public Internet visit the SBC
initially. The SBC decides whether it can process them locally
using its cache or forwards them to the downstream SIP server.



Fig. 3. Topology of the iptel.org service site.

If the request is forwarded, the SIP server authenticates the
REGISTER and updates contacts upon success.

All other requests take a loop path through the network:
they initially visit the SBC. The SBC forwards the requests
to the proxy server. The proxy server looks up the request
recipient in its user location database and forwards it to the
registered User Agent through the SBC.

The message flow is depicted in the diagram in Figure 3.
For the sake of brevity, the diagram only shows non-cached
requests and omits authentication and responses.

V. DATA ANALYSIS

This section describes data analysis over the SIP data col-
lected from network described in Section IV and anonymized
using SiAnTo described in Section III. The traces were specif-
ically captured to contain a SIP server outage period, to allow
analysis of traffic anomalies caused by it. The outages were
negotiated with our colleagues from iptel.org and caused
artificially (by a firewall block). We stress that the outages
were agreed upon beforehand and were timed and long enough
only as necessary, to diminish the negative impact on the
clients. To inspect the impact of heavy load on phenomena
observed during outage, artificial load was generated using
SIPp-DD [27], a modified version of the SIPp [28] traffic
generator. Artificial traffic consisted of REGISTER requests
with constant rate (simulating additional clients trying to
register). We got the following traces for analysis:

TR01 44 minutes of normal SIP traffic in 1128074 pack-
ets; time division [12 mins normal traffic; 21 mins
outage; 11 mins after outage]

TR02 41 minutes of enhanced SIP traffic (750 artificial
REGISTER requests mixed with normal traffic from
the 18th till the 30th minute) in 1941810 packets;
time division [11 mins normal traffic; 10 mins out-
age; 20 mins after outage]

TR03 34 minutes of enhanced SIP traffic (1500 artificial
REGISTER requests mixed with normal traffic from
the 18th till the 30th minute) in 2118021 packets;
time division [11 mins normal traffic; 10 mins out-
age; 13 mins after outage]

Together with the traces, we got also the full log from
the anonymization process. The concrete SIP statistics im-
portant for the analysis are described in detail later in this

section. Worthwhile noting are also the processing times of
the anonymization process, which took 150s for TR01, 264s
for TR02 and 284s for TR03. This demonstrates ability of
SiAnTo of processing even huge traces in reasonable time.

In the analysis we focused on the impact of presence of
active NAT keep-alive methods on SIP traffic pattern and on
the problem of registration storms. We also discuss the impact
of anonymization on the measurements and the limitations
imposed by anonymization on the analysis options.

A. Active NAT Keep-Alive Methods

Next to the standardized methods of NAT keep-alive defined
for SIP (ICE, TURN), many clients and servers still use
active repetitive messages to keep the NAT bindings alive.
The reasons are purely practical – if the SIP device does not
support any of the standardized methods, it can still keep
its binding using periodical messages. The content of the
messages is irrelevant, REGISTER or OPTIONS messages
are used most often. Proprietary solutions such as empty UDP
packets (with payload set to 0x0d0a) and NOTIFY messages
for the keep-alive event are also frequently used.

Instead of sending periodic SIP messages, the SIP server
might choose to modify registration policy and force the
clients to register more often. This can be done via setting the
expires parameter in response to the REGISTER request
(typical value is 3600s). Setting expires low enough, the
server forces the clients to re-register often and thus the NAT
bindings are kept alive using these enforced registers.

The drawback of active NAT keep-alive is the traffic over-
head. SIP is by design very low-load and periodic messaging
violates this property, as we demonstrate in the analysis.

B. Registration Storm in Theory

A “registration storm” is an incident occurring when many
SIP clients try to register at the same SIP server at the same
time. Depending on the implementation and configuration of
the SIP server, the registration storm may negatively impact the
SIP service and even lead to server failure in the worst case.
Due to the nature of SIP – long default register expiration
period of 3600s and often maximum thousands of users per a
SIP server, this situation seems strange to occur, however, it
was observed repeatedly in the SIP environment and leads to
significant problems.

Registration storms seem to be caused by the SIP server
stopping to serve requests, thus the clients becoming un-
registered and trying to re-register. The reason for server
unresponsiveness is typically a network failure. The SIP server
becomes unreachable, however, as SIP is an application layer
protocol, the SIP clients are unaware of the unreachability
of the server and keep demanding registration. Interestingly,
the rate of the registration traffic from clients increases quite
drastically during server outage (impatient clients shorten their
registration period, to be re-registered as soon as possible).
After the server becomes reachable again, it starts serving
requests, but due to the nature of SIP register handshake
(after receiving response to the first REGISTER, sending a



Fig. 4. The overall SIP traffic intensity monitoring before, during and
after SIP server outage in a 1s resolution. A registration storm incident is
emphasized.

second one containing the necessary authorization info) this
only worsens the situation for a short time period as the clients
generate additional register requests to finish the handshake.
Additionally, successfully registered clients try to get access
to other services using SUBSCRIBE, OPTIONS and NOTIFY
requests right away, which just intensifies the load.

C. Analysis of the Actual Registration Storm

We use the TR0 trace in this analysis, graphical represen-
tation of the traffic is available in Figure 4.

To analyze the traffic in more detail, we split the trace
into three different parts – normal traffic, outage traffic and
registration storm traffic. Normal traffic term is used for traffic
before the server outage and after the residues of the outage
diminish and represents a casual load on the SIP server. As a
representation of this traffic type we analyzed first 12 mins of
the trace. Outage traffic starts when the SIP server becomes
unreachable and ends when it becomes reachable again. Reg-
istration storm starts when the SIP server becomes available
after the outage and ends when the level of registration traffic
(REGISTER messages per second) stabilizes.
Properties of normal SIP traffic

number of registered users fluctuating around 3152
average traffic load 323 pps (packets per sec.)
traffic to:from SIP server 55% : 45%
request types distribution see Fig. 5
SIP traffic is generally assumed to be symmetric and of

low load. Average load of 323 pps for 3152 registered users
is a bit higher than expected, but this is caused by many
active NAT keep-alive mechanisms observed in the traffic
and by the fast-paced re-registration enforced by the server
(expires set to 180s). The slight but notable asymmetry in
the data indicates probability of minor problems with request
handling for specific cases. After thorough analysis, we found
a few of these problems, an interesting one being ignorance
of requests having specifically malformed domain URI part
(with two @ signs inside the URI). The predominant request
types are caused mainly by active NAT traversal methods –
re-registration policy set up by the SIP server, active probing
by clients using OPTIONS requests and keep-alive event
related SUBSCRIBE and NOTIFY messages. Obviously, most

Fig. 5. Request type distribution in normal SIP traffic observed on the
monitored server. Request types having less than 1% of the request traffic
were left out.

of the SIP traffic is used just to keep the users registered
and the NAT binding alive. Note that the analyzed snippet
contained only 203 INVITE requests out of the total number
of 90673 requests e.g. the actual session creation method
constitutes only 2.2‰ of all the requests.
Properties of “outage” SIP traffic

number of registered users decreasing 3152 → 0
average traffic load 549 pps
traffic to:from SIP server 100% : 0%
request types distribution see Fig. 6
The traffic is notably higher than in the normal case, the

biggest increase is in the number of REGISTER requests. This
is caused by the clients who, after finding out that their register
request was not responded to, start repeating the request more
often. Depending on the type of client, the register message
rate observed is around 1-17s (while in the normal case it is
between 100-180s). Typical clients make a few tries (typically
8-20) in tight succession and then wait for a time period before
trying again. The observed time periods of waiting vary –
the shortest one observed was 30s, the longest 1200s. Some
“smarter” clients are even able to dynamically prolong the
waiting period, starting with 60s first waiting, 120s second
etc. Figure 7 shows register requests of randomly chosen
clients plotted throughout the whole trace. Note the different
registration rate outside the outage and the different behavior
during the outage. Interestingly, there are not only REGISTER
requests being sent during the outage, as one would expect.
All the observed request types are performing some kind of

Fig. 6. Request type distribution in “outage” SIP traffic. Request types having
less than 1% of the request traffic were left out.



Fig. 7. Register requests of a few users demonstrating different registration
patterns and client behaviour. Note that client A stopped trying and did not
register again in the analysed trace. This per-user analysis is only possible
thanks to the session-preserving feature of the SiAnTo anonymizer.

NAT keep-alive – periodic OPTIONS requests, REGISTER
requests (these are hard to discern due to many repeated
“classical” register requests), SUBSCRIBE and NOTIFY with
the keep-alive event. As observed, the clients try to keep
their NAT bindings alive even if they are not registered. These
requests are inherently useless and a small modification in the
client software could optimize the SIP traffic by not issuing
keep-alives when not registered.

Properties of the registration storm traffic
number of registered users increasing 0 → 1988
average traffic load 481 pps
traffic to:from SIP server 54% : 46%
request types distribution see Fig. 8

The moment the server becomes available again, the register
requests start being processed, which leads to enormous in-
crease of traffic load in a very short time. While the registration
storm duration is about 40s in the observed case, the time inter-
val of the excessive traffic is much shorter (about 3 seconds).
The traffic increase is caused by the nature of SIP register
handshake. The clients that manage to successfully register
then immediately require additional services by issuing other
requests. Therefore, instead of trying one message in a few
secs (typical in the outage case), each client sends at least
2, but often 4-6, messages almost at once, generating more
traffic. As can be seen in the request type distribution graph
(Fig. 8), the distribution of requests is getting back from the
outage distribution into the normal distribution.

A better view of the storm progress can be made looking
at the traffic load progress in Fig. 9 (the traffic formed by

Fig. 8. Request type distribution during the registration storm.

Fig. 9. Registration storm traffic progress.

REGISTER requests only is plotted in red). The spike visible
in the 34th second was identified as a small group of clients
that, upon receiving the 500 Server Internal Error
response during the storm started waiting for 30s before
trying to register again. Presence of 500 responses during the
registration storm was unexpected. We analyzed the responses
and found out, that almost 17% were 500. The cause was
identified as a temporary SIP server problem that occurred
during the highest load (between the second and third second
of the storm). The server was able to overcome the error quite
quickly, the majority of 500 responses was sent between the
second and sixth second of the storm, yet, some 500 responses
were still being sent even in the latter part of the storm. Closer
inspection of the problem by our colleagues at the provider
side showed that there was a memory error that occurred
due to strange race conditions. They were able to track the
problem and issue a fix thanks to the results obtained from
the anonymized-trace analysis.

After the first wave of the register requests is handled, the
traffic quickly returns to its normal pace and the properties
become the normal SIP traffic ones. While the duration of the
registration storm itself, characterized by extremely increased
request traffic rate is quite short, the residues of the server
outage in form of number of not yet successfully re-registered
clients prevail for much longer. Note that after the registration
storm ended, there were only 1988 successfully registered
clients out of the original 3152 ones (see Figure 10). This
slowed re-registration is caused by the “smarter” clients, that
are waiting for longer periods instead of periodically sending
their REGISTER requests in fast pace. While this behavior
actually helps to lower the congestion during the registration
storm (as these clients are not sending any requests), the
question is whether it is desirable from the service point
of view – until the clients successfully re-register, they are
unreachable for other clients and thus cannot participate in
sessions. Ping from the server side targeting the previously
known client IP addresses after the outage might help to speed
up the re-registration process quite notably (but should be
arranged to be sent only after the registration storm fades out).

D. Registration Storm with Additional Traffic Load

In the previous analysis, the SIP server utilized only 18%
of his processing capacity under normal load and was thus
highly overprovisioned. To analyze the progress of the outage



Fig. 10. Number of successfully registered clients during and after the
registration storm.

and the consecutive registration storm for SIP server under
higher load, we used traces TR02 and TR03 in this analysis.

Analyzing TR02, the observed registration storm as well as
the re-registration time of the clients did not change notably
from the TR01 case. The storm itself was 3s longer and
the average re-registration time per client increased by some
0.2s (the re-registration time would probably increase more
but the error producing 500 Internal Server Error
responses to REGISTER requests that we encountered in the
previous analysis was already fixed and so there were no
delays caused by it). Other than that there were no notable
differences in the traffic pattern.

Before analyzing TR03, we were notified by colleagues
from iptel.org, that this test had effectively incapacitated
the SIP service. The analysis showed that after the outage
ended, the clients were getting some responses, but only very
irregularly and not a single client was able to re-register again.
The incident would require additional analysis in cooperation
with iptel.org, however, the observed impact was devas-
tating for the SIP service in this case.

Our tests with artificial load demonstrate that if the storm
is strong enough facing a heavily utilized SIP server, it could
lead to critical disruption of service. However, the artificial
load is just a simple substitution for the real situation and
gaining access to traces containing real registration storms
from deployed SIP environments will make it possible to
conclude general statistics and metrics for this incident.

E. Mitigating Registration Storm

Thanks to the analysis, we now better understand the causes
and progress of a registration storm. The inevitable question
is how to defend against registration storms or, if impossible,
how to diminish their negative impact?

If we do not wish to modify the registration handshake of
the SIP standard itself and we cannot modify the behavior
of all the different client types, we do not see any way how
to prevent registration storms from happening. Decreasing the
number of concurrent registrations during a storm by setting
longer registration expiry period, thus allowing for longer
server outage without all the clients registrations expiring is
a possibility, however, while this might help a bit, it is not
a very good idea due to the problem of NAT traversal and

already mentioned active NAT keep-alive pinging, that is still
very popular in SIP environments. It is also possible to use
a transparent backup SIP server substituting during outage of
the primary server, however, this is an expensive solution and
cannot generally prevent outages caused by network failures.

If we accept the fact that server outages and subsequent
registration storms are happening, we need some ways to
diminish their impact. We now list some of the possibilities
and discuss their properties.

The most straightforward solution is overprovisioning. If the
SIP server is capable of handling 10-times higher load than
its normal traffic, then it is very likely to survive the storm
without problems, recovering from its impact in a few seconds.
The disadvantage of this solution is price. Overprovisioning
requires more expensive hardware and higher maintenance
costs. It is also very ineffective since most of the time the
overprovisioned capacity is wasted, as it cannot be used for
other purposes.

Another solution is to distribute the load peak over time by
dropping messages or asking clients to try later. Particularly,
inserting a “Retry-After” header field inside the 5XX response
message should force the clients to wait for the time specified
inside this field. Using a randomized threshold-based variable
as the “Retry-After” value should lead to efficient load spread-
ing. The question is whether the SIP clients are implemented
to use the time interval returned them inside this header field.
We plan to address this question in future work.

Non-SIP based solution is to limit the number of requests
per second on the network device before the SIP server. If
we calculate the maximum number of requests per second the
SIP server is able to handle and set a firewall limit for SIP
port to this number, congestion at the SIP server will never
occur. Unfortunately, due to the nature of SIP registration
handshake, this solution might also lead to extreme registration
prolonging. In the worst case, the first register request from
one client gets processed, but the second one (with the actual
authorization information) is over threshold and gets dropped.
The client tries to re-register later, but the new registration
request faces a chance of dropping again.

F. Anonymization Discussion

In Section III we introduced our anonymization technique
together with an open source tool SiAnTo that implements
it. We have used only anonymized data for the analysis
introduced in this section, yet we have not specifically pointed
out whether or how the anonymization itself impacts the
progress or results of the analysis.

Concerning registration-storm analysis, the specific
anonymization employed enables tracing of individual
sources even after the anonymization and thus enables the
vital per-source analysis. To prevent the need for guessing
the SIP server address (unknown after anonymization) within
the anonymized trace, we implemented SiAnTo so that it
provides the new SIP server address on its output too. We
recommend sharing the anonymization statistics together with



any shared captured SIP traffic data to make classification
and search over the datasets easier.

When comparing the non-anonymized data obtained in our
previous work [26] with their anonymized version, we identi-
fied the following limitations of our anonymization technique:

• geographical division based on IP address assignment is
impossible due to the anonymized IP addresses;

• non-SIP messages get lost, even though they might be
used for SIP-connected purpose (typically “empty” UDP
NAT keep-alive pings);

• non-standard SIP messages can get malformed;
• SiAnTo currently does not handle IPv6 and has some

issues with SIP over TCP.
We are currently unaware of other limitations. If any arise
when SiAnTo is used on other SIP traces, we shall address
these issues in future work and development of SiAnTo.

VI. CONCLUSION

With the growing popularity of SIP, the need for proper
understanding of the engineering limits of its deployment is
going to rise. Without open sharing of technical records within
the engineering community this would prove difficult. Sharing
of anonymized traces is thus essential to develop best practices
in SIP deployment.

We have presented a first proposal for full anonymization
of SIP traces, and shown that such traces reveal important
traffic aspects, in particular relevant to the long-term problem
of SIP, the NAT traversal. We have analyzed the incident of
registration storm, described its progress, properties and dis-
cussed its eventual consequences. Our traffic analysis suggests
that registration storms might after all not be as dangerous a
phenomenon as perceived by the engineering community [30].
Nevertheless, we suggest a few remedies such as load distri-
bution over time, request number limits or overprovisioning.
Many other aspects can be analyzed in a similar manner, in
particular various vulnerability exploits or events stemming
from complex behavior of large SIP-user communities.

We make a further step of setting up sipdata.org,
an open public SIP data-exchange platform similar to those
already existing for pure IP traffic, and initiate it with the
traces of this paper and the SiAnTo anonymization tool. While
we have tested SiAnTo only on data provided by a single
company, other problems that we did not encounter may arise.
However, our plan is to maintain and regularly update SiAnTo
to reflect the needs and feedback of its users.

We invite further interested parties to become involved and
contribute to sipdata.org. This should spur many creative
uses, understanding and best practices of SIP deployment,
allowing researchers for testing their approaches and validating
their assumptions on real SIP traffic samples and resulting in
a marked improvement of all SIP-engineering aspects.
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