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Abstract—Gaussian traffic models are widely used in the
domain of network traffic modeling. The central assumption
is that traffic aggregates are Gaussian distributed. Due to its
importance, the Gaussian character of network traffic has been
extensively assessed by researchers in the past years. In 2001,
researchers showed that the property of Gaussianity can be
disturbed by traffic bursts. However, assumptions on network
infrastructure and traffic composition made by the authors back
in 2001 are not consistent with those of today’s networks.

The goal of this paper is to study the impact of traffic bursts on
the degree of Gaussianity of network traffic. We identify traffic
bursts, uncover applications and hosts that generate them and,
ultimately, relate these findings to the Gaussianity degree of the
traffic expressed by a goodness-of-fit factor. In our analysis we
use recent traffic captures from 2011 and 2012. Our results show
that Gaussianity can be directly linked to the presence or absence
of extreme traffic bursts. In addition, we also show that even in
a more homogeneous network, where hosts have similar access
speeds to the Internet, we can identify extreme traffic bursts that
might compromise Gaussianity fit.

Index Terms—Traffic measurements, Gaussian modeling, Traf-
fic analysis.

I. INTRODUCTION

Traffic modeling is widely used for network planning,
deployment and management. Models are used to identify
and characterize traffic for purposes ranging from security
to network dimensioning. Since the 90’s, Gaussian traffic
models have received special attention among researchers
when studies revealed the presence of characteristics such as
self-similarity and long-range dependence in modern network
traffic [1], [2], [3]. It turned out that the fractional Brownian
motion and other Gaussian models have many desirable prop-
erties for the modeling of IP traffic. The presence of long-range
dependence and its long-term evolution were also studied in
more recent studies, such as [4].

In this context, an important question is under what con-
ditions network traffic can be assumed to be Gaussian. The
Central Limit Theorem states that aggregated metrics, such as
the amount of traffic transported per time unit on a network
link, are normally distributed if a sufficiently large number of
independent random variables are involved. Researchers have

studied what a “sufficiently large number” could be. Previous
works from 2002 [5] and 2006 [6] studied the amount of
horizontal aggregation (i.e., timescale for aggregating traffic)
and vertical aggregation (i.e., number of hosts and amount
of transferred traffic) needed to justify that the traffic offered
in an arbitrary timescale is Gaussian. In our own work [7],
we showed, by performing tests for a very long measurement
period of six years, that it is safer to relate high Gaussianity
to traffic bandwidth than to the number of users.

A question quasi complementary to the above one was
investigated in [8] in 2001. The authors studied why some
traffic is not Gaussian. They showed that network traffic can
be decomposed into a “beta” part which is nearly Gaussian
and strongly long-range dependent and an “alpha” part which
constitutes a small fraction of the total traffic and which
is responsible for traffic bursts. The authors showed that
generally very few high-rate connections dominate during a
burst and reasoned that the majority of them are due to large
file transfers over fast links.

With regard to modern network traffic, the work in [8]
depicts several limitations. Being published in 2001, it assumes
a strongly heterogeneous infrastructure where Ethernet lines
and slow 56k modems coexist. In fact, the fasted alpha traffic
flow was more than 50 times faster than the slowest beta traffic
flow. In addition, although it provided a successful model of
the network traffic, it did not study the quantitative relationship
between the presence of bursts and the degree of Gaussianity.

Contribution. The goal of this paper is to study the impact
of traffic bursts on the degree of Gaussianity of network traffic
using recent traffic measurements. We apply the concept of
alpha and beta traffic to an extensive set of traffic measure-
ments from 2011 and 2012. We identify the traffic bursts
and analyze the applications and hosts that generated them.
Furthermore, we link the bursts to the degree of Gaussianity
of the traffic, expressed as the goodness of fit. In our study
we consider timescales of 100ms and 1s, which dominate
users’ perceived Quality of Service and, hence, are used for
bandwidth provisioning approaches that often rely on Gaussian
characteristic of traffic.ISBN 978-3-901882-58-6 c© 2014 IFIP



Organization. The remainder of this paper is organized
as follows. In Sec. II we present the definition of Gaussianity
used in this paper. In Sec. III we describe the network traffic
datasets used in our experiments. In Sec. IV we describe
the performed traffic analysis and the obtained results. We
conclude the paper in Sec. V.

II. GAUSSIANITY AND GOODNESS OF FIT

In this section we present the methodology we used to assess
the Gaussianity of network traffic. To comply with recent
related work, the study presented in this paper uses the same
methodology from previous works [5], [6], [7].

A. Definition of Gaussianity

Consider L1(T ), . . . , Ln(T ) to be the amount of traffic in
bytes observed in time periods 1, 2, . . . , n of length T , where
T > 0 defines the timescale of traffic aggregation. The traffic
aggregate L(T ) is Gaussian if it follows a normal distribution,
i.e., L(T ) ∼ Norm(ρ, σ2), where ρ is the average and σ2 is
the estimated variance of L(T ) given by, respectively

ρ =
1

n

n∑
i=1

Li(T )

and

σ2 =
1

n− 1

n∑
i=1

(Li(T )− ρ)2 .

B. Assessing Gaussianity of L(T )

Perhaps the most straightforward manner of assessing Gaus-
sianity of samples is by means of quantile-quantile (Q-Q)
plots. These plots provide a simple way to visually check
whether a sample seems to be Gaussian or not. A Q-Q plot
is created by plotting the inverse of the normal cumulative
distribution function Norm(ρ, σ2) against the ordered statistics
of the sampled data L(T ). Hence, the pairs for Q-Q plot are
defined by(

Φ−1

(
i

n+ 1

)
, α(i)

)
, i = 1, 2, . . . , n , (1)

where Φ−1 is the inverse of the normal cumulative distribution
function, α(i) are the ordered traffic averages of L(T ), for
each time bin of length T , and n the size of our sample (i.e.,
the number of time bins of size T ). Note that in Eq. (1),
for the inverse of the normal cumulative distribution function,
the denominator n+ 1 is used instead of n because in normal
distribution the 100th percentile is infinite. However, according
to [9], [10], for large sample sizes (i.e., large n) the difference
of using one denominator or another is negligible.

As mentioned above, Q-Q plots provide a good visual way
to check whether a sample seems to be Gaussian or not. To
quantify the Gaussianity goodness of fit for a large amount
of samples, though, a more scalable approach is needed. To
comply with previous works [5], [6], [7] we use the linear

correlation coefficient, defined in [11]. The linear correlation
coefficient is determined by

γ(x, y) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2
, (2)

where the pair (x, y) is given by Eq. (1). That is, x is the
inverse of the normal cumulative distribution function and y
is the ordered statistics of traffic averages (i.e., α(i)).

It was showed in [6] that if the linear correlation coefficient
is relatively high (e.g., γ > 0.9), then the hypothesis that the
underlying distribution is normal distributed is equivalent to
a Kolmogorov-Smirnov test for normality at significance 0.05.
There are other tests for normality. For example, the authors
of [12] extensively studied the performance of different tests
and discussed their advantages and disadvantages for various
situations (e.g., when the empirical distribution is bimodal or
long-tailed). In order to make the results of this paper com-
parable to those found in earlier publications, especially [6],
we use γ to express the degree of Gaussanity. Whenever a
trace has γ ≥ 0.9 we refer to it as a “Gaussian trace” and,
oppositely, a trace with γ < 0.9 is referred to as a “not
Gaussian trace” (or non-Gaussian).

Given that we use a large amount of traffic traces in the
experiments presented in this paper, we assess the Gaussianity
goodness of fit of these traces by solely calculating the linear
correlation coefficient for each trace individually. In the next
sections we described the traffic datasets used in this analysis
and present our experimental results.

III. DATASETS AND TRAFFIC CHARACTERISTICS

The datasets used in this work are comprised of packet-level
traffic captures at three different links. These datasets comprise
a total of 119 15-minute traces. Note that the trace duration
of 15 minutes has been chosen in accordance with [6], [7],
and that longer periods are generally not stationary due to
the diurnal pattern. Moreover, our study focus on timescales
of 100ms and 1s, which are of interest, for example, to
bandwidth provisioning operations. Therefore, periods longer
than 15 minutes might not be “stationary enough” for these
timescales. These traces account for almost 30 hours of capture
time and more than 7.7 billion packets. Table I summarizes
the used datasets. Note that the column “length” gives the total
capture duration of all, not necessarily consecutive, 15-minute
traces for each location. Also note that, although Table I
presents the average link use for each location, such value
is generally not constant over the measurement period. For all
locations throughput varies due to diurnal traffic patterns. We
briefly describe the three measurement locations and present
traffic characteristics in the following.

A. Datasets Locations

1) Dataset from location B: In location B the traces were
measured in a 10 Gb/s up/down link at the core router of
a university in the Netherlands. The link comprises all the
incoming and outgoing traffic of the university. A total of
approximately 886K IP addresses were observed during the



TABLE I
SUMMARY OF MEASUREMENTS

abbr. description year length # of hosts link capacity load

B university border router in the Netherlands 2012 6h 886k 10 Gb/s 10%
C university border router in Brazil 2012 18h45m 10.5k 155 and 40 Mb/s 19%
D backbone links interconnecting two cities in USA 2011–12 5h 3M 2 × 10 Gb/s 10%
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Fig. 1. Average traffic rate (throughput). Error
bars show the minimum and maximum rate ob-
served.
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Fig. 2. Average γ for all traces in our datasets. Error bars show the standard deviation of γ.
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Fig. 3. CDF of Gaussianity goodness of fit γ for all traces in our datasets.

measured period and they generated an average link use
of 10% (up to 15% in busiest hours). This is a full day
measurement in which traffic was captured during the first 15
minutes of every full hour for a period of 24 hours. Therefore,
this location comprises a total of 24 15-minute traces.

2) Dataset from location C: The traces from location C
were measured in the core router of a university in Brazil.
The aggregate of two links of 155 Mb/s and 40 Mb/s was
measured. It comprises traces collected during week days from
September 2012 to December 2012. Each trace corresponds to
the first 15 minutes of every full hour between 08:00 and 23:00
inclusive. Most of the traffic at location C is web browsing
and e-mail.

3) Dataset from location D: Traces from dataset D are
from the CAIDA public repository [13], [14] and were mea-
sured between December 2011 and February 2012. These
traces were measured in a backbone link of a Tier1 ISP
between the cities of San Jose and Los Angeles in the
USA. The measured links have a total of 10 Gb/s each.
Approximately 3 million unique IP addresses were observed
during the monitored period. The links have an average load
of 10%.

B. Link Usage

Table I presents the link load per location. However, this
value is not constant overtime. Fig. 1 shows the average traffic



rate per 15-minute trace for each location. The figure also
shows the minimum and maximum values of mean rate per
trace. Traffic variations for location C are the lower ones,
but this is also the location with the less active hosts and
link capacity. Traffic of location B is the one that varies
most. That can be explained by the fact that this is a 24-hour
measurement and, therefore, low averages are most likely to
be from the overnight period, while high averages are from
the day. Variations of rate in location C can also be explained
by the hour of the day the measurement took place. Although
location C does not have measurements from the overnight
period, low averages are likely to be from the day shifts (e.g.,
12:00–13:30 and 17:30–19:00) in which students and staff of
the university are not actively using the network. Traffic from
location D is more stable traffic, as shown in Fig. 1. That
might be expected since for this location measurements are
months apart, but happened always during the same hour of
the day.

C. Traffic Gaussianity

Using the methodology described in the previous section,
we have computed γ for all traces in our datasets. Fig. 2
shows the average and standard deviation of γ for all traces
per location. As one can see, traffic in our datasets tends to be
Gaussian, i.e., all averages are above the threshold γ > 0.9.
Furthermore, one can see that the difference on average γ
does not crucially change from T = 100ms (Fig. 2a) to
T = 1s (Fig. 2b). However, averages may be misleading
because for all locations we do have few traces with γ < 0.9
and, therefore, are not Gaussian.

In order to understand to which extend our traces are
Gaussian, and also to support the Gaussianity analysis in the
following section, Fig. 3 shows the cumulative density function
(CDF) of Gaussianity goodness of fit γ for all traces in our
datasets. For T = 100ms, roughly 28% of all traces are
not Gaussian. Clearly, most of them belong to location C,
where around 40% of traces have γ ≤ 0.9. For T = 1s the
number of non-Gaussian traces is reduced to around 13% of
all traces in our datasets. The majority of those is still from
location C, where roughly 15% of traces are not Gaussian.
The difference on Gaussianity fit for traces from location C
between T = 100ms and T = 1s can be explained by the
lower traffic rate in the measured links for this location. By
reducing the size of the time bins (i.e., T ), the small amount of
traffic from traces of location C is aggregated in a few bins,
interspersed with empty bins without any network packets,
ultimately resulting in an on/off-like behavior. As already
shown in previous works [5], [7], this behavior considerably
reduces the Gaussianity fit.

However, as one observes in Fig. 3, the opposite situation
can also happen: some traces have poorer Gaussianity fit at
larger T . This behavior has also been briefly explained in [7].
For such traces, traffic bursts at smaller timescales (e.g., T =
100ms) are very close to each other in time. Therefore, once
we aggregate this traffic into larger bins (e.g., T = 1s), traffic
of these bursts are grouped into few bins, resulting in bursts

that reach much higher rates than the average rate of the trace.
In the end, these few bins with exceptionally high rates disturb
the Gaussianity fit at larger T .

For a thorough study of the Gaussianity fit of the datasets
used in this work, we refer to [7]. In the next section our
analysis focuses on the differences between traces with low
and high Gaussianity fit.

IV. TRAFFIC ANALYSIS

In this section we present a thorough analysis of traffic char-
acteristics and their potential relationship to Gaussianity. We
start by demonstrating the impact of bursts on the Gaussianity
fit. Then, we show that these bursts are mostly related to single
applications running in the network, and we also assess the
impact of individual hosts on Gaussianity. Finally, we argue
why identifying applications and linking them to the degree
of Gaussianity of traffic is a quite complex and challenging
task.

A. Impact of Bursts on Gaussianity

Normal distributed traffic is expected to have bursty and
calm moments. By definition, if the traffic aggregate Li(T )
follows a normal distribution Norm(ρ, σ2), the probability that
it exceeds x is given by the complementary CDF

P (Li(T ) > x) = 1− 1

2

(
1 + erf

(
x− ρ√

2σ2

))
. (3)

Fig. 4 shows the difference between two traces from location
D with low and high Gaussianity fit, respectively. The curve
in the bottom half of these plots shows the traffic aggregate
of the sample traces over the measurement period of 15
minutes. Note that we have chosen T = 2s in this figure
for visualization purposes, while we use T = 100ms and
T = 1s in all other experiments. The trace from Fig. 4a has one
of the highest Gaussianity fits in our datasets (γ = 0.9977).
One can clearly see that traffic of this trace has regular ups
and downs and in any moment a burst really protrudes from
the baseline traffic. Contrariwise, Fig. 4b shows the traffic
time series of one of the traces with the lowest degree of
Gaussianity (γ = 0.8175) among all traces we have collected.
In this case, one can easily notice the very high bursts during
the time period 50–200 and at time 420.

We have manually inspected and compared several traces
with poor and good Gaussianity and noticed that such bursts
are typical for poorly Gaussian traces. In order to assess this
behavior systematically, we define a burst as a time bin where
the traffic aggregate exceeds the threshold θ defined by

θ = ρ+ 3σ . (4)

That is, θ is three standard deviations above the trace average
rate ρ. A similar definition of burstiness has been used in [8],
[15]. According to Eq. (3) this should only happen with
probability 0.00135 in perfect Gaussian traffic.

The plots of Fig. 5 and 6 show for each trace of different
locations, respectively at T = 100ms and T = 1s, its Gaussian
fit γ and the percentage of time bins that exceed the above
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Fig. 4. Traffic aggregate and traffic shares at T = 2s for two sample traces from location D.

threshold θ. In these plots, traces are sorted by their Gaussian
fit, i.e., trace 1 (left on the x-axis) is the trace with the lowest γ.
Note that the traces positioning in the x-axis varies from
T = 100ms to T = 1s due to their different values of γ at
different T . That is, trace 1 in Fig. 5a may not be the same as
trace 1 in Fig. 6a. Moreover, the colors of the background in
these plots indicate the regions where γ < 0.9, γ < 0.95 and
γ ≥ 0.95, respectively. These considerations are also valid for
plots from Fig. 8 to 11.

Although the resulting curves in these pltos depict strong
fluctuations independently of T , we observe an inverse rela-
tionship between the amount of bursts exceeding the threshold
and the Gaussian fit. That is, non-Gaussian traces tend to have
more bursts than Gaussian ones. This tendency is highlighted
by the least-squares-fitted diagonal dotted line. Note that this
is not a trivial outcome since non-Gaussianity could be also
caused by the absence of bursts. In fact, a few non-Gaussian
traces have a very small number of bursts.

B. Impact of Applications on Gaussianity

In the previous section we have shown the relationship
between bursts and (non-)Gaussianity. In this section, we want
to study which applications are responsible for bursts. Note
that we use the straightforward port-matching method for iden-
tifying applications. However, we are aware of the drawbacks
of such method. Challenges related to traffic classification
and its connection to Gaussianity are further discussed in
Section IV-D.

Fig. 7 shows the traffic aggregates of three sample traces
(one from each location) with a low Gaussianity fit. The upper
curve gives the aggregate of all traffic. We observe several
bursts. For the trace from location B, the lower curve only
shows the aggregate for traffic transferred on port 563 (i.e.,
NNTP). For the sample traces from locations C and D, the
lower curve shows the aggregate of traffic transferred on ports
80 and 443 (i.e., HTTP and HTTPS, respectively). It can
be seen that the protocol-specific curves follow closely the
shape of the bursts for all the three examples. In fact, we
have observed that typically a burst consists entirely of traffic



 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1  3  5  7  9  11  13  15  17  19  21  23
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5
γ

%
 o

f 
ti
m

e
 b

in
s

traces ordered by γ

γ

% of time bins

(a) Traces from B

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1  10  19  28  37  46  55  64  73
 0

 0.6

 1.2

 1.8

 2.4

 3

 3.6

γ

%
 o

f 
ti
m

e
 b

in
s

traces ordered by γ

γ

% of time bins

(b) Traces from C

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1  3  5  7  9  11  13  15  17  19
 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

γ

%
 o

f 
ti
m

e
 b

in
s

traces ordered by γ

γ

% of time bins

(c) Traces from D

Fig. 5. Percentage of time bins with bursts at T = 100ms.
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Fig. 6. Percentage of time bins with bursts at T = 1s.
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Fig. 7. Traffic aggregates at T = 1s and the port causing the bursts.

from only one application and, hence, removing the specific
traffic of such application from the trace would also remove
the bursts. Note that all bursts in a trace are not necessarily
caused by the same application.

In order to validate this observation for the entire dataset,
we have calculated for each burst that exceeds θ (as defined
in Eq. 4) the share of the traffic on the most active port in
the time bin of that burst, and computed an average share
for all bursts of a trace. The plots in Fig. 8 and 9 show

the resulting (average) traffic share, for T = 100ms and
T = 1s respectively. Again, traces are sorted on the x-axis
by their respective Gaussianity fit γ and the background color
indicates the regions where γ < 0.9, γ < 0.95 and γ ≥ 0.95,
respectively. We observe that for traces with low γ, the traffic
bursts that exceed θ mainly consist of traffic from the most
active ports, and that this relationship weakens with increasing
γ. Note that the share never reaches 100%. Clearly, this is
because the time bin containing the burst also contains normal
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Fig. 8. Share of the most active applications in bursts at T = 100ms.
Note the different scales of the y-axes.
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Fig. 9. Share of the most active applications in bursts at T = 1s. Note the
different scales of the y-axes.

baseline traffic. Furthermore, we observe a generally high
share for all traces of location C. This is because HTTP(S) is
the most dominant traffic at this location.

C. Impact of Individual Hosts On Gaussianity

The previous analysis has shown that bursts are caused
by single applications. In this section we investigate how
individual hosts contribute to the traffic in such bursts.

The five curves in the top half of the plots in Fig. 4 show the
absolute number of the most active hosts that are responsible
for 25%, 50%, 90%, 99%, and 100% of the traffic sent in a
given time bin. More formally, let b1(t) ≥ b2(t) ≥ . . . be the
sorted number of bytes sent by the hosts in time bin t, i.e.,
b1(t) is the number of bytes sent by the most active host in
time bin t, b2(t) is the number of bytes sent by the second
most active host etc. The number qs(t) of the most active hosts
responsible for a share s of the traffic in time bin t is defined
as

qs(t) = min∑x
i=1 bi≥s·B(t)

x, (5)

where B(t) is the total number of bytes sent in time bin t.
One can see that while for the good Gaussian trace in Fig. 4a

the number of users that are responsible for any share of

the traffic remains quite constant over time. In any moment
the number of contributing hosts drops considerably, not even
during the highest traffic burst of this example trace, around
690s. On the contrary, for the trace with bad Gaussianity fit
in Fig. 4b, the number of hosts that contribute to a certain
share of traffic significantly drops during bursts. For example,
during the burst at time 420s, only one host sends 25% of
the traffic, which more or less corresponds to the difference
between the 0.45 Gb/s peak throughput of the burst and the
baseline throughput of 0.35 Gb/s, i.e., that burst is caused
by traffic from one single host. Outside the bursts, a much
larger number of hosts contribute to the 25% traffic share.
In general, the non-bursty part of the traffic is in accordance
with the observations made in [16] that typically 90–95% of
IP traffic is generated by 10–5% of the sources. The authors
of [16] also found bursts in their traffic but mostly connected
them to attacks. However, after a manual inspection of several
bursts, we consider it unlikely that the bursts in our traces
are caused by malicious activities. The size of the bursts also
makes them very unlikely to be caused by source-level bursts
on packet level [17].

Again, we have validated this observation for the entire
dataset. We have calculated for each burst higher than θ the
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Fig. 10. Share of traffic for top-IPs in bursts at T = 100ms.
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Fig. 11. Share of traffic for top-IPs in bursts at T = 1s.

share of the most active host, the two most active hosts,
and the five most active hosts to the traffic in that burst and
computed the average shares for all bursts of a trace. The plots
in Fig. 10 and 11 show the resulting traffic shares for each
trace per location at T = 100ms and T = 1s, respectively. We
observe for all traces that, independently of the Gaussianity
fit, very few hosts are responsible for a significant amount
of transferred traffic during the bursts. In some situations, at
T = 1s, less than 5 hosts are responsible for more than 80%
of all burst traffic in traces from location B and C and more
than 35% in traces of D.

D. Challenges on Traffic Classification

In this paper we have identified applications to the level
of protocol, e.g., HTTP(S), by matching the port numbers,
e.g., 80 and 443. However, it is known that a plethora of
applications are currently running on top of HTTP(S) and
identifying those is not a straightforward task. Researches
such as [18], [19] point out that the high rate of development
of new applications and “bad habits” on implementing their
communication blocks make traffic classification quite chal-
lenging. For example, many applications do not have IANA
registered ports. Instead, they make use of well-known ports or
tunneling to prevent detection and deceive filtering or firewalls.

For instance, BitTorrent can also make use of random ports,
complicating their identification by default communication
ports.

Sophisticated traffic classification almost precludes applica-
tion identification with goals of Gaussianity assessment. That
is, to ultimately have a kind of rule-of-thumb that would allow
us to make assumptions on the degree of Gaussianity of a given
traffic aggregate based on the mix of applications found within
it seems to be more complex than simply measuring the traffic
for a short period and performing the same operations as we
have done in this paper (i.e., computing Gaussianity goodness-
of-fit γ). Nonetheless, we have shown that bursts of traffic tend
to belong to a handful of hosts and being transferred on a very
limited range of ports, even for large networks. Hence, we also
see our work as a first contribution toward an application-
oriented method to assess the Gaussianity assumption: instead
of performing a costly network-wide measurement on packet-
level, researchers or network operators would first identify
hosts that contribute most to bursts in the main traffic and later
explore further the applications that are being used by those
hosts (i.e., to a higher level than the application protocol that
they use).



V. CONCLUSION

In this paper, we have shown by an extensive analysis of
recent network measurements that the degree of Gaussianity
of network traffic, expressed by a goodness-of-fit factor, is
directly linked to the presence of extreme traffic bursts. While
fairly Gaussian network traffic is mostly burst free, traffic with
a low Gaussian fit is during up to 3.6% of its duration bursty.
Furthermore, we have shown that these bursts are mostly
created by single applications. In particular, traffic bursts at
two of our measurement locations mostly consist of HTTP(S)
traffic. We have also observed that bursts in traffic with a low
Gaussian fit tend to consist of traffic from only one application.
Finally, we have shown that the traffic inside bursts is sent
from only a few hosts. Our results allow the conclusion that
poor Gaussianity is caused by short but intensive activities of
single network hosts. This suggests that the bursts are related
to transfers of big files over fast links.

Our findings confirm that the concept of alpha and beta
traffic introduced by [8] in 2001 is still valid in recent
network traffic. However, it is worth to note that two of
our measurement locations were university core routers that
connect a rather homogeneous set of hosts with identical or
at least similar link speeds to the Internet. While the authors
of [8] speculated that the diversity of clients could be a reason
for the existence of alpha and beta traffic, our results indicate
that the cause can probably be found in the characteristics of
the servers. We plan to study this aspect in future work.

It is important to keep in mind that, although measurements
used in this work have very distinct users and traffic nature,
our dataset is definitely not fully representative of the whole
Internet traffic. Nonetheless, our conclusions certainly pave the
way for additional research in this area.
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