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Abstract—Recent Internet studies have reported on continued
traffic growth, changes in applications usage, and a proliferation
in the adoption of high-speed access links. Any adverse impact
that these observed trends may have on Internet traffic flows can
result in sub par performance, which in turn results in unsatisfac-
tory user experience. To study such adverse impacts, we examine
in this paper the flow-level performance of popular applications
across a range of size-based flow-classes and applications. We use
out-of-sequence packets, retransmissions, throughput, and RTTs
as key flow performance metrics. Leveraging data sets collected
from two complementary network environments, we compare
these metrics for popular applications and for the up/downstream
directions. We show that irrespective of the direction, flows are
severely impacted by the specifics of the network, e.g., DSL or
CDN and application behavior. We also find that, in general,
this impact differs markedly across the different flow-classes. In
particular, contrary to popular belief, the small flows from all
applications, which make up the majority of flows, experience
significant retransmissions, while the very large flows, although
small in number, experience very limited retransmissions. In
terms of application-related performance, we observe that es-
pecially when compared to HTTP, apart from large flows, P2P
flows suffer from continuously high retransmissions and low
throughput. As for the root cause of these retransmissions, we
identify the access part of the network as the main culprit and
not the network core.

I. INTRODUCTION

The ubiquity of high-speed Internet access and the popular-

ity of content-rich applications have considerably changed the

Internet landscape. High capacity access links have enabled

users to perform interactive browsing, stream videos, play

online games, and share content for social networking, from a

wide range of devices. This has caused a fundamental shift in

application usage and thus the traffic mix in the network [1],

[2].

The availability of high-speed Internet access has also

changed user expectations. Streaming high definition movies

should be possible without visual impairments. Online gaming

users require low latencies. Even standard Web browsing

needs latencies in the order of a few round-trip times. Voice

applications expect an experience at least equal to the standard

phone. Recent studies from Google, Amazon, Yahoo, and

Microsoft have demonstrated that few milliseconds difference

in web performance impact business value [3].

High-speed Internet access, however, has not made the net-

work less prone to bottlenecks. The popularity of video content

such as NETFLIX and YouTube [4] causes significant strain

on the network, especially on peering links between ISPs.

Aggressive peering strategies used by application providers,

visible through the flattening of the Internet hierarchy, i.e.,

the middle-mile, create bottlenecks at peak loads and result in

peering disputes among the big players [5], [6]. Furthermore,

P2P applications deliver content to users, by relying, e.g.,

on the often limited ADSL upstream capacity of other users.

Understanding how much bottlenecks in the network impact

flow performance is crucial for application providers, Internet

service providers, and end-users.

In this paper, we show that flows of different sizes from

various applications receive different service quality. We de-

vise a methodology that targets individual flow performance of

different applications using passive traces collected at multiple

vantage points. Our work differs from prior research in that we

consider the following performance metrics: TCP retransmis-

sions, out-of-sequence packets, throughput, and RTTs based

on different classes of flows according to their size, hereafter

referred to as flow-classes. We use TCP retransmissions as

a key performance metric as any retransmission in a flow

indicates either packet loss or high latency triggering a timeout

event. Our aim is to highlight that flows can experience severe

degradations that would be considered unacceptable by today’s

end-users. Our key takeaways and lessons learned are:

• Packet retransmissions vary significantly across different

flow sizes. For example, retransmissions for flows smaller

than 128KB range from less than 2% to as much as 40%.

Unexpectedly, some large flows do not experience any

retransmission or reordering.

• P2P (e.g., BitTorrent/eDonkey) and un-classified traf-

fic dominates in terms of packet retransmissions. The

average retransmission rate per flow for this traffic is

much higher than for other applications, especially in the

upstream direction. This confirms the anecdotal evidence

of P2P applications creating bottlenecks by monopolizing

the upstream capacity. At the same time, very large P2P

flows perform reasonably well without incurring high

retransmissions.

• Throughput received by the short flows in DSL environ-

ment is better compared to the flows of the same size

seen by the CDN. However, large (>8MB) CDN flows

exhibit higher throughput.

• P2P (e.g., BitTorrent/eDonkey) and un-classified flowsISBN 978-3-901882-58-6 c© 2014 IFIP



have throughput that is at least an order of magnitude

smaller than that of HTTP flows. Large P2P flows on the

other hand get a comparable throughput to HTTP.

The remainder of the paper is structured as follows: In

Section II we describe our methodology. Section III presents

details about the data sets we use. We present our results

about retransmissions across flow sizes in Section IV. In

Section V, we study the behavior of different applications.

We discuss related work in Section VI and summarize our

work in Section VII.

II. METHODOLOGY

To understand traffic characteristics, it is common to sum-

marize the data at the flow level, e.g., using classical 5-

tuple flows based on source and destination IP addresses, port

numbers, and protocol. In our context, we need much more

detailed information, in particular about TCP retransmissions,

throughput, and RTTs. In addition, we want to use an applica-

tion level detection mechanism that is not purely port based. In

the following, we discuss our approach in detail for gathering

all the necessary information.

A. Annotated flow summaries

We use the network intrusion detection system Bro [7]

as it provides comprehensive analysis capabilities of TCP

connections and is able to handle large data sets. In this

context, a TCP connection refers to a bi-directional TCP com-

munication which starts with the arrival of TCP SYN packet

and terminates with FIN/RST packets by either side. Statistics

reported by Bro include start time, durations, originator IP and

destination IP, originator port and destination port, application

protocol, direction, TCP state, additional flags (e.g., to indicate

payload data in both directions), payload bytes and packet

counts in both directions, as well as a round-trip-time (RTT)

sample. The RTT sample is an estimation of the round-trip-

time as obtained from the initial TCP hand-shake using a

similar methodology as reported in [8]. Payload bytes are

accounted as seen in the packets on the wire rather than being

estimated from the TCP sequence space numbers.

To determine the application protocol of the connection,

we rely on Bro’s Dynamic Protocol Detection (DPD) [9]

mechanism. Bro includes a wide range of protocol analyzers

including HTTP, BitTorrent, eDonkey, FTP, POP3, SMTP,

etc. These analyzers detect application protocols by parsing

the connections byte stream and matching it to multiple

application signatures.

While Bro is capable of detecting a large base of application

protocols, we choose seven main categories of applications for

our analysis. Our first four categories are HTTP, BitTorrent,

eDonkey, and SSL. In addition, we group traffic which is

identified by DPD but does not belong to the first four

categories together into the group OtherDPD. This includes

traffic from protocols such as FTP, POP3, SMTP, and IRC.

The well-known category includes traffic on well-known ports.

All the remaining traffic is in Un-classified category.

We convert each connection into two half connections,

one in each direction, since we want to do separate analysis

for both directions. In the following, we refer to these half

connections as flows. These flows are then annotated with

richer meta-information than typical for standard 5-tuples.

B. Flow-classes

It is well-known [10] that Internet flow sizes are consis-

tent with heavy-tailed distributions. Thus, we use logarithmic

classes, referred to as flow-classes, for binning flows based on

their payload bytes. We bin flows into flow-class i, so that for

all flows within the flow-class i we have 2i < payloadbytes ≤

2
i+1 for i = 0, 1, 2..n. The largest flow-class also contains

flows larger than 2
n. By analyzing flows separately for each

size-based class, we gain insight about the relative behavior of

flows across flow-classes. We typically start with a flow-class

of 1KB and go up to a flow-class of 1GB.

Part of the motivation for looking at flows across differ-

ent size-based classes is that different flow-classes may be

dominated by different types of flows. For example, some

types of video objects have median sizes of 265KB, 802KB,

and 1743KB. Likewise, many Google products have flows

in the range of 4-16KB [11]. Moreover, recent studies about

the changing nature of website complexity [12] have shown

that overall median web-page sizes for short, medium, and

long web pages has grown to 40KB, 122KB, and 286KB

respectively.

C. Retransmissions

While TCP is designed to be robust against packet losses

and/or reordered packets, flow performance suffers signifi-

cantly in their presence, see, e.g., the report by Padhye et

al. [13]. Indeed, a significant amount of research has focused

on making TCP even more robust, e.g., [14], [15], [16], [17],

[18]. Therefore, ideally, we want to include both the number

of packet losses and the number of reordered packets in our

performance metrics. However, distinguishing between them

can be challenging [19]. A first approximation is to consider

out-of-sequence packets. The next step is to check if they are

due to retransmissions and reordering.

One of the complexity of identifying TCP retransmissions

from a passive packet level trace is that the trace is collected

in the middle of the network and not at any of the endpoints

where the TCP state is available. Thus, the challenge is to

infer the TCP connection state, including continuous estima-

tion of RTT, and/or congestion window. Moreover, due to

routing asymmetry and/or load balancing techniques, not all

packets may be seen at the monitor. We again rely on Bro

to implement our mechanism for detecting out-of-sequence

and retransmitted packets based on ideas by Paxson [20]. The

advantage of Bro is that it already tracks per connection state

and scales to large data sets [21]. More precisely we classify

out-of-sequence packets as follows:

If a packet with the same sequence number as a previously

seen packet is observed, it is considered retransmitted. Note,

we use the end sequence number of the data within the packet
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for sequence number matching, rather than the start sequence

number. This ensures that all cases are excluded where the

retransmitted packet transmits more payload than the original

packet. Also, we count SYN and FIN retransmissions as they

indicate packet losses.

If a packet with an unexpected sequence number according

to the ACKs is detected, this indicates a hole in the sequence

number space. In this case we compare the timestamp of the

out-of-sequence packet to that of the highest sequence number

seen so far for this connection. If this time difference is larger

than the current minimum RTT estimate of the connection,

then the packet is considered retransmitted. The underlying

assumption is the expectation that reordered packets are not

delayed longer than a round trip time. If the time difference

is less than the current minimum RTT estimate and it has a

lower IPID, the packet is considered reordered. This strategy

allows us to detect out-of-sequence packets and separate them

into retransmitted packets and reordered packets.

D. Flow performance metrics

To compare flow performance across different flow-classes,

we define four performance metrics. We use throughput, RTT,

out-of-sequence, and retransmission packet rate as key flow

performance metrics. In the following we present how we

compute them. (1) We calculate throughput as the ratio of

the payload bytes and the duration of the flow. (2) As round-

trip-time estimation, we use the one from the initial three

way hand-shake as calculated by Bro. (3) The out-of-sequence

packet rate per flow is calculated as the ratio between the

sum of the retransmitted and reordered packets, and the total

number of packets:
∑

(retransmit+reorder)
totalpackets

. (4) The retransmis-

sion rate per flow is calculated as the fraction of retransmitted

packets divided by the total packets: RTX =
retransmit
totalpackets

.

III. DATA SETS AND TERMINOLOGY

In this section, we describe the four data sets used in the

paper (see Table I). In this paper, we mainly focus on the

MAR-10 DSL trace and the CDN trace. However, we have

verified our results across all other traces and will point out

differences where applicable. In general, we report our results

for the full 24 hours traces as well as for selected hour-long

TABLE I
SUMMARY OF PROPERTIES OF ANONYMIZED TRACES.

Name Type Time Size Duration

AUG08 packet (full) Aug 08 > 4TB 24h
APR09 packet (full) Apr 09 > 4TB 24h
MAR10 packet (full) Mar 10 > 4TB 24h
CDN conn. logs (sampled) Mar 10 > 50GB 2 weeks

time periods from different times of the day. This allows us

to check for time of day effects.

A. Residential broadband ISP traces

Our first data set consists of anonymized packet level traces

of residential DSL connections collected at an aggregation

router inside a large European ISP. This broadband aggregation

router situated in the backbone network of the ISP is a gateway

for more than 20,000 DSL customers to the Internet. Data is

collected through the help of monitors equipped with Endace

cards and is immediately anonymized. The monitor observes

traffic from customers with varying line speeds that range from

1200/200 Kbps (downstream/upstream) to 17000/1200 Kbps.

In this data set, the distribution of access speed for lines with

downstream speeds 1200, 1800, 2300, 3500, 6500, and 17000

Kbps is 15, 2, 20, 23, 31, and 9% respectively. From this

monitor, we have collected packet level traces in 2008, 2009,

and 2010, each covering a 24 hours period. Overall, the traffic

pattern follows a diurnal pattern and does not exceed a link

utilization of 45% during the peak hour.

We call traffic that is sent by DSL customers upstream and

traffic which is received by the DSL customers downstream,

see Figure 1. Similarly, we refer to the network segment

between the DSL customer and the monitoring point as the

local side, whereas the remote side refers to the network

segment between the monitor and the rest of the Internet.

Using Bro with DPD, we classify the traffic according

to application protocols into seven categories. In our traces

we find, consistent with the results of Maier et al. [2], that

HTTP is the dominant protocol with a traffic volume share of

more than 60% in the downstream direction. In the upstream

direction, HTTP has a share of 30%. However, this varies

significantly across time and can go as low as 10% during off-

peak hours in the early morning. The total traffic from P2P—

BitTorrent, e-Donkey—and un-classified is less than 25% of

the overall traffic. However, in the upstream direction, the

traffic is dominated by P2P (BitTorrent 20%) and un-classified

(22%).

B. Content Distribution Network logs

Our second data set consists of connection level logs from

the servers of one of the largest content distribution networks

(CDNs). We specifically select servers which are serving

customers of the same large European ISP from which we

gathered the DSL traces. The connections include both those

by DSL users as well as all other customers of this ISP,

therefore complementing the view from the residential DSL

customers. The data within the logs is obtained via kernel



level monitoring on the CDN caches and includes low level

statistics such as total packets, bytes, retransmitted packets

and bytes, RTTs, and durations for each TCP connection. Due

to the huge data volume, these logs are only generated for

sampled connections.

At the time of when sampling is triggered (i.e., every

1000th packet), the statistics of the sampled connection till

that time are recorded and captured on the disk. We note that

by definition this process samples connections and is by far

the best to get insight for the connections as compared to

packet sampling. Packet sampling on the other hand is biased

towards the flows with large flow sizes and is prone to miss

short flows.

Statistics for all flows are maintained in the kernel, and once

the sampling mechanism is triggered, statistics for that flow

are recorded to disk. Note, contrary to the previous data, this

data is single-sided. It captures only the HTTP traffic in the

direction from the CDN to the customer.

IV. FLOW SIZE MATTERS

We begin our study by asking the question if out-of-

sequence packets are distributed evenly across flow size

classes. In this section we focus on out-of-sequence packets

as they are a good approximation for retransmissions.

A. Flow size—Motivation

In the past, bulk transfers and their performance have

attracted a lot of attention from operators and researchers,

for multiple reasons such as optimizing network bandwidth

usage [22] to new protocol design [23], [24]. However, while

bulk flows contain the majority of the bytes, most of the flows

are short [10]. In comparison to the attention that bulk flows

have received, short flows have received very little. Yet, it is

known that the performance small flows receive can be crucial

for the experience of the user. Therefore, some researchers

have proposed to give short flows priority over long flows [25].

Still, there is a general belief that short flows do not face

as much trouble as long flows since they are not subject to

congestion control.

Before delving into the behavior of specific flows bins, we

look at the global results. Overall, we observe less than 1.5%

out-of-sequence packets across all traces. This is comparable

to previous results [26], [11] which observe retransmission

rates in the order of 1-2.8%. More precisely, we see 1.2% and

1.5% out-of-sequence packets for MAR10, and CDN.

Out-of-sequence packets are only seen by 9.2% and 16.91%

of the connections from MAR10 and CDN. A large number of

connections therefore do not see any out-of-sequence packet.

This implies that some connections must see more out-of-

sequence packets than the average. For example, 1.4% and

3.5% of the connections have more than 20% out-of-sequence

packets for MAR10 and CDN. Out-of-sequence packets are

therefore not evenly distributed across all connections, which

already answers our main question above.

Next, we verify the common belief that short flows do

not face much trouble. Figure 2 shows the fraction of out-

of-sequence packets. Each plot uses logarithmic flow binning

according to flow size (see Section II-B). For each bin, we

compute, for all flows within the bin, the percentage of out-of-

sequence packets. We then use another binning to show what

percentage of flows within a given bin size, have a percentage

of out-of-sequence packets that falls within the bin range. This

data is then plotted as a stacked barplot with a separate bar

per flow size class. Within this bar we show the fraction of

flows with an out-of-sequence range larger than 25% at the

top and the fraction of flows with no out-of-sequence packets

at the bottom. Thus, the y-axis shows, for each flow size bin,

the cumulative percentage of flows with a retransmission rate

of at least y. In addition, the numbers on the top of the bins

indicate the overall percentage of flows within the bin that

have out-of-sequence packets.

Figure 2 confirms that the answer to our question is that

out-of-sequence packets are not evenly distributed across flow-

classes. We will now delve specifically into the different plots

of Figure 2.

B. Flow size—DSL access

ADSL provides broadband Internet access and typically has

highly asymmetric bandwidth at the access. These networks

generally rely on an over-subscribed access network, an over-

provisioned backbone, and an under-utilized home network.

As such, one may expect that small flows manage to sneak

through while large flows may suffer from occasional perfor-

mance problems.

We start with Figure 2(b), which provides the results for the

DSL in the downstream direction. As expected, the fraction

of flows with no out-of-sequence packets decreases as the

flow size increases. Between 2.9 and 17.1% of the flows

smaller than 128KB experience at least one out-of-sequence

packet during their lifetime. Indeed, the out-of-sequence rate

for such flows is relatively low, i.e., in the range of 2 to

15%, as compared to the roughly 4% observed by Jaiswal et

al. [19]. We observe similar results in the AUG08 and ARP09

traces (not shown). For example, for the flow-classes 1-

128KB, the percentage of flows with out-of-sequence packets

varies between 5.6 and 23.3%, and between 3.3 and 20%

respectively.

Small flows are not the only ones experiencing very low

out-of-sequence rates—some large flows in the tail, i.e., the

1G flow-class, experience no out-of-sequence packets, even

though TCP is designed to fully utilize the available network

capacity by increasing its network usage until it experiences

packet loss. Manual verification has shown that at least some

of these are constrained by receive window limitations. About

60% of the flows in the 1M flow-class see an out-of-sequence

rate of less than 1%.

Most ISPs DSL offerings provide downstream to upstream

ratios of 10:1, which roughly corresponds to the typical data

ratios observed when browsing the Web. However, in times of

user-generated content, the limited upstream speed can be a

major hindrance. Thus, we next check the impact of out-of-

sequence packets on the flows in the upstream direction, see

Figure 2(a). The overall flow performance, as seen through
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(a) MAR10 upstream.
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(b) MAR10 downstream.
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(c) CDN.

Fig. 2. Out-of-sequence packet rate per-flow for full trace

out-of-sequence packets, looks vastly different than in the

downstream case. First, the percentage of flows with out-of-

sequence packets in the 1-128KB flow-classes increases to

values between 1.9 up to 40.7%. Our 2008 and 2009 traces

show similar values: between 3.3 and 56.1% and between 2.4

and 47.7%, respectively (not shown). More than 40% of the

flows of size 256KB-8MB have an out-of-sequence rate above

5%, with around 15% of them experiencing more than 25%

out-of-sequence packets. Indeed, the medium sized flows are

among those experiencing the largest fraction of very large

out-of-sequence packets.

We conclude this subsection with a more nuanced answer

to our question: Out-of-sequence packets are not evenly dis-

tributed across flow-classes - while small flows can have

substantial number of out-of-sequence packets, large flows

may have none. Moreover, there are significant differences

with respect to traffic direction.

C. Flow size—CDN’s viewpoint

Next, we focus on a monitoring point close to the servers:

the CDN. Note that the CDN data set allows us to analyse

per-flow retransmissions, not only out-of-sequence packets.

Surprisingly, we again find that 7.6-29.1% of flows smaller

than 128KB experience retransmissions, see Figure 2(c). Their

number is slightly higher than for DSL (downstream), which

can be explained by the diversity of access technologies used

by the customers of the CDN1, including high-speed private

networks, cable, mobile, as well as DSL. Overall, we note

that the general shape and structure of the plot is similar to

the others. The flow behavior as seen from the CDN server

perspective is therefore similar to the one observed in the DSL

access network environment.

V. APPLICATIONS AND FLOW-CLASSES

In this section, we ask the question if out-of-sequence rates

as well as retransmission rates are evenly distributed across

applications. In particular, we want to understand if there

are any significant differences between HTTP and P2P either

across time or application protocol.

1Remember that these are the CDN customers that also belong to the large
European ISP.

A. Application type

We find that overall the mean percentage of out-of-sequence

packets differs significantly by application. BitTorrent, un-

classified traffic, as well as eDonkey experience significantly

larger out-of-sequence rates. BitTorrent flows see a mean

out-of-sequence rate of more than 5%. In particular, BitTor-

rent sees excessive mean out-of-sequence rates beyond 8%

and sometimes even 10% between 5pm and 8pm. Similar

observations hold for the upstream direction. However, for

the upstream direction, the high out-of-sequence rates occur

during the night and sometimes even exceed 12%.

HTTP traffic on the other hand experiences significantly

smaller rates of out-of-sequence packets in both directions.

In the downstream direction, HTTP flows see a mean rate of

1.1% out-of-sequence packets, slightly lower than the overall

average across all traffic. Even lower are the mean out-of-

sequence rates for the classes Well-known and SSL. This is

a general observation not specific to the MAR10 data set. It

also holds for AUG08 and AUG09 in both directions.

The very small out-of-sequence rates for HTTP and well-

known, for the DSL upstream traces, stand out. These appli-

cations mainly send application requests and TCP ACKs in

the upstream direction. Thus, the overall potential of being

affected by out-of-order segments is relatively small. It is

therefore not surprising to see larger out-of-sequence rates

for other applications. The difference between eDonkey and

BitTorrent is surprising. Although these are both P2P applica-

tions, they seem to impose a different load onto the network,

resulting in the different out-of-sequence rates.

We conclude that out-of-sequence packets are not evenly

distributed across time, nor across application types - P2P and

un-classified traffic suffer the most.

B. Flow size—Application type

Since BitTorrent flows experience higher out-of-sequence

rates compared to HTTP flows, we now take a look at

how the out-of-sequence rates for these applications vary

across flow sizes. Figures 3(a) and 3(d) show the mean per-

flow out-of-sequence rates across flow-classes, by application

type. The upstream and the downstream graphs visually look
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(a) Avg. out-of-seq. rate (MAR10 down).
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(e) HTTP (MAR10 upstream).

%
 f

lo
w

s
 w

it
h

 o
u

t−
o

f−
s
e

q
. 

ra
te

 [
X

%
]

0
2
0

4
0

6
0

8
0

1
0
0

1
k

2
k

4
k

8
k

1
6
k

3
2
k

6
4
k

1
2
8
k

2
5
6
k

5
1
2
k

1
M

2
M

4
M

8
M

1
6
M

3
2
M

6
4
M

1
2
8
M

2
5
6
M

5
1
2
M

1
G

1
9
.3

6
8
.5

8
0
.4

8
7

9
0
.6

8
2
.1

8
5
.5

8
9
.7

9
2
.6

9
5
.2

9
7
.2

9
7
.9

9
8
.9

9
9
.5

9
9
.7

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

Flow size [Bytes]

(f) BitTorrent (MAR10 upstream).

Fig. 3. Out-of-sequence packet rate per application for 24h duration. (Fig. (c) and (f) use same legend as Fig. (b))

significantly different for some applications and rather similar

for others. BitTorrent, eDonkey, and un-classified dominate

the top parts of both graphs with high out-of-sequence rates.

HTTP and the other applications are at the bottom for the

downstream direction and for some parts of the upstream.

We also see that both for eDonkey as well as for BitTorrent,

the out-of-sequence rate first increases with flow size and

then decreases. The decrease happens earlier for eDonkey,

which is why eDonkey overall sees lower out-of-sequence

rates. Our explanation is that, as the duration of a flow

increases, the likelihood of terminating a large flow, that does

not perform well enough, increases with the duration of the

flow. Large flows should therefore perform better on average

than their smaller counterparts. We will show evidence for this

in Section V-D.

We conclude that even at the level of specific applications,

out-of-sequence packets are not evenly distributed across flow-

classes. On average, larger P2P flows experience fewer out-of-

sequence packets than medium sized ones. Moreover, there are

again significant differences with respect to traffic direction.

C. Flow size—HTTP and BitTorrent

Next, we take a closer look at the ranges of out-of-sequence

rates for both HTTP and BitTorrent using the same kind of

stacked bar plots as before (e.g., Figure 2). Figure 3 shows

plots for HTTP and BitTorrent for the DSL MAR10 data

set and both directions. From comparing Figure 2(b) for

the whole trace to Figure 3(b) for only HTTP shows little

visible difference. We observe that HTTP flows experience

smaller out-of-sequences rates than one would expect from

the results for the overall trace. Similar observations hold

for the upstream direction, i.e., when comparing Figures 3(e)

for HTTP and 2(a) for the full trace. However, this time the

differences are larger.

From the comparison of the two upstream directions we

find that the out-of-sequence rates are better for HTTP than

for the overall—even though worse than for the downstream

direction; a small percentage of HTTP flows across most flow

sizes (except the smallest and largest) experience very high

out-of-sequence rates. One of the reason for higher mean out-

of-sequence rates are uploads of user generated content: when

users upload relatively large (1MB-16MB) files such as large

images or short videos, they are restricted by the limited DSL

upstream capacity.

Turning to BitTorrent, we observe from Figure 3(c) and 3(f)

that, as for HTTP in the DSL upstream direction, some Bit-

Torrent flows experience severe out-of-sequence rates, across

all flow sizes. In the DSL downstream direction, more than

20% of flows from the classes 4KB-128MB experience out-

of-sequence rates larger than 5%. In the DSL downstream

direction, this is the case for more than 60% of the flows.

We now return to the comparison of HTTP and BitTorrent.

Comparing Figure 3(c) with Figure 3(b) and Figure 3(f) with

Figure 3(e), we see major differences, both in terms of overall

ranges of out-of-sequence rates as well as different distribution

across flow-classes. Part of the reason for this larger fraction
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(a) HTTP (MAR10 downstream).
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(b) BitTorrent (MAR10 downstream).
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Fig. 4. Per flow retransmission rate by applications for peak hour and RTT (24h). (Fig. (b) uses same legend as Fig (a)).

of out-of-sequence packets is that P2P applications put more

demand on both the uplink as well as the downlink. This can

cause congestion either on the DSL link, the home network,

or the remote network, leading to packet losses which trigger

retransmissions. We have further investigated the burstiness

behavior of the flows of different sizes through simulations

and we found that mid-sized flows show high burstiness due

to aggressive congestion window growth. For detailed results,

we refer to our other paper [27].

We conclude that congestion is one of the main factors

responsible for the striking difference in terms of out-of-

sequence rates for P2P flows and HTTP flows.

D. Retransmissions—Across flow sizes

Now, we focus on retransmissions rather than “only” out-

of-sequence packets. Our main motivation for focusing on

out-of-sequence packets so far is that these are unambiguous.

The identification of retransmissions is more challenging due

to (a) the multitude of different OSs and different network

stacks and (b) the need to estimate some network parameters.

Nevertheless, using the methodology outlined in Section II, we

can classify which of the out-of-sequence packets are packet

retransmissions. Overall, this fraction depends on the trace

but is about 92.6%/85.03% for the DSL downstream/upstream

environment. This indicates that out-of-sequence packets are

for our purposes a good approximation for retransmitted

packets. This agrees with the results of Hurtig et al. [28] that

estimate that about 5.2% of all out-of-sequence packets are

due to reordering.

Figure 4(b) shows the stacked barplot of retransmission rates

per flow for only BitTorrent flows in the downstream direction

of MAR10. The observation are again consistent with those

from Sections V-A–V-C. Moreover, the per flow retransmission

rates in the upstream direction are again larger (not shown).

Returning to Figures 4(a) and 4(b)—the differences highlight

the widely different ways in which TCP is used by various

applications.

We conclude that the out-of-sequence rate is a reasonable

approximation of the retransmission rate. Moreover P2P and

un-classified traffic dominate in terms relative number of

retransmissions.

E. Throughput/RTT—Across flow sizes

One important question we have not yet answered is if

large retransmissions, resp., out-of-sequence rates negatively

impact flow performance. In principle, if all TCP mechanisms

are well utilized, each retransmission should have a negligible

performance impact.

Throughput and round-trip-times are among the most rele-

vant metrics to understand TCP flow performance. Throughput

can be seen as a measure of raw performance for large flows,

as it will measure how well TCP is able to use the available

end-to-end capacity. Round trip times on the other hand is very

important for short flows, as their limited lifetime requires low

RTTs to ensure that the limited amount of data is exchanged

within a small enough period of time. In this section, we rely

on both metrics to shed light on the individual flow behavior

exposed earlier in the paper.

In Figure 5(a), we compare the throughput achieved by

different flows for the DSL MAR10 (24h) period and the CDN

data sets. The throughput of DSL flows is shown as a boxplot

along with the 1st, median, and 3rd quartiles of the CDN

flows. Just for comparison, the overall median throughput of

DSL flows is 10kbps. We observe that the throughput for

small and large flows differ multiple orders of magnitude.

When computing summaries of the flow throughput for each

flow-class, we find that the performance for flows, e.g., the

median, mean, 1st, 3rd quartile, steadily increases roughly

exponentially until flow-class 2MB. Then the increase slows

down, due to the limited DSL capacity. Compared to the DSL

environment, we observe a lower throughput in the CDN data

set for short flows. One of the reason is that CDN flows are

requested from multiple access technologies, such as mobile,

DSL, Cable, that have sometimes limited access capacity. On

the other hand, the throughput of large CDN flows (>8MB)

show higher median throughput as compare to their DSL

counterparts. Indeed, the CDN is optimized to deliver fast large

content from close-by servers.
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Fig. 5. Throughput and RTT for DSL (24h) and CDN data across different applications

In Figure 5(c), we present different quantiles of the RTTs

across different flow-classes. The CDN flows exhibit very

high values of the 95th quantile of the RTTs for short flows.

However, this 95th quantile decreases with increasing flow

size, consistently with the higher throughput for the large flows

of the CDN. We observe that the median RTTs of the CDN

are low and similar across flow sizes, though the median for

the CDN is slightly lower than for the DSL.

Going back to the observation that retransmissions are not

distributed evenly across applications, we ask if the same holds

for the per flow throughput. Figure 5(b) plots the median

throughput as received by each application protocol by flow

size. Our first observation is that throughput varies drastically

across application protocols. BitTorrent, eDonkey, and un-

classified flows experience by far a worse performance than

HTTP flows of the same size. This is a first indication that

these flows may suffer from retransmissions.

The low throughput observed for some applications could

be due to large RTTs. Figure 4(c) thus plots the median

RTT per application across flow-classes. We again see notable

differences for P2P and HTTP. The RTTs sampled by HTTP

do not differ drastically by flow class. The opposite is observed

for P2P. P2P sees increases of the mean RTT well in excess

of 200ms. This indicates that either the network distances

are significantly larger for P2P traffic than HTTP, or there

are significant queues (buffer bloat) in the network and that

the queues are contributing to the delay. Verification of the

geolocation of the addresses shows that the P2P end-points are

a bit further away but not in such a way as to justify an increase

in the median RTT from roughly 60ms to more than 200ms.

Thus, we conclude that buffering is partially responsible for

the RTT increase.

Another observation from Figures 5(b) and 4(c) is that

the difference between the applications—in throughput and

in RTT— decreases as we consider larger and larger flow

sizes. This indicates that the large P2P flows receive reasonable

performance which is consistent with our observation that their

retransmission rates are lower. We presume that there is some

amount of self-selection. Almost all P2P protocols include a

mechanism to prefer well performing peers over those that are

not, ensuring reasonable performance for the large flows.

We conclude that neither throughput nor RTTs are dis-

tributed evenly across flow-classes or application types. More-

over, as the flow size increases, the performance of P2P is

approaching that of HTTP (measured in terms of throughput

and RTT).

VI. RELATED WORK

Much work in the past has tried to better understand Internet

properties, for example packet loss [29], [30], [31]. Akella et

al. [32] studied Internet bottlenecks, and found that they occur

equally within ISPs as well as across peering links. Aikat et

al. [33] studied the variability of TCP round-trip times within

a connection, and found that the RTT values vary widely. But

et al. [34] presented an algorithm to estimate RTT and jitter

characteristics of TCP streams monitored at the midpoint of a

TCP flow.

Qian et al. [35], in particular, exposed the prevalence of

irregular retransmissions across different flow sizes in the

Internet. Hurtig et al. [28] have also reported that packet

reordering has reduced and is in the order of 5.2% of all

out-of-sequence packets. Zhang et al. [36] have found that

flow size and flow rate are two highly correlated metrics. The

relationship between short flows and application performance

has also been studied by Hafsaoui et al. [37].

Lar et al. [14] provide a very comprehensive review of

TCP congestion control mechanisms. Siekkinen et al. [38]

proposed a TCP toolkit, able to find the primary cause of

throughput limitations of TCP flows. Wang et al. [39] studied

packet reordering in the Internet and proposed a approach to

infer reorder-generating spots in the Internet. Mellia et al. [40]

proposed a new heuristic to classify TCP anomalies, including

out-of-sequence and duplicate segments.

Recently, Dukkipati et al. [41] has proposed to increase the

initial congestion window to 10 to save round trip times for

better response times. Similarly, another work from Dukkipati

et al. [11] has found that the fast recovery mechanism behaves

in a bursty manner and fast recovery should be done using a

proportional rate. The behavior of large flows spanning days

is discussed in Quan et al. [42]. Similarly, Lee et al. [43] have

studied the performance of a congested academic link but have



not focused on the short flow performance. They found mean

loss rates of 5.77%, consistent with our results.

In the context of applications and losses, Izal et al. [44]

have studied the behavior and performance of BitTorrent over

a period of multiple months. Pouwelse et al. [45] studied

multiple performance aspects of the BitTorrent protocol.

VII. SUMMARY

In this paper, we study the flow-level performance with

the help of measurements collected at a large DSL access

network and a large CDN provider. Our metrics to gauge flow

performance include out-of-sequence packets, retransmissions,

throughput, and round-trip times. Our data sets allow us to

compare flow performance for the most popular applications

(HTTP and P2P) as well as up/downstream directions.

We find that flow performance varies significantly across

flow sizes. Small flows, that make up a majority of the

flows, experience significant retransmission rates, across all

applications. Large flows on the other hand, although fewer in

number, can experience limited retransmissions or even none.

We observe a marked contrast between HTTP and P2P flows.

We highlight the aggressive nature of BitTorrent/eDonkey

flows which suffer from continuously high retransmissions

due to limited DSL upstream bandwidth that result in low

throughput compared to HTTP.

In future work, we will further investigate the relationship

between different factors that affect flow performance, such

as the interactions between specific applications, the network

conditions, and user experience.
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