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Abstract—Virtual network embedding algorithms that opti-
mize the mapping of virtual network (VN) topologies onto a
substrate network usually do not comply with the policies of
substrate providers which may prefer to identify and embed the
most profitable subset of a VN request. Such policy-based VN
embedding (VNE) is required by distributed VNE architectures,
such as PolyVine, or by auction-based VNE environments.

In this paper, we introduce a policy dimension to VNE
by proposing a new VNE algorithm that aims at maximizing
the revenue without violating the provider’s policy. In contrast
to the greedy nature of most VNE techniques, our algorithm
allows a provider to trade short-term revenue gains for higher
revenue in the long term and cope better with evolving demands.
Our simulation results corroborate the efficiency of our VNE
algorithm and show the impact of diverse policy adjustments on
resource utilization and generated revenue.

I. INTRODUCTION

Network virtualization has been seen as a viable path
towards a diversified Internet that supports a variety of net-
work services [1], [11]. Network virtualization carries signif-
icant benefits to service providers and Physical Infrastructure
Providers (InP). More precisely, a service provider can deploy
a network service within a customized virtual network (VN)
that provides performance and reliability guarantees. Further-
more, the elastic provisioning in virtualized infrastructures
allows existing VN allocations to be expanded on demand,
obviating the need for large investment costs in advance.
Network virtualization also creates new opportunities for InPs
to increase their revenue, while the separation between the
operations and the physical infrastructures can result in sig-
nificant operational cost savings.

Recently, there has been an increasing interest in wide-
area VN provisioning [11], [16], [2], [6], [4]. Wide-area
VN deployments typically span multiple InPs, due to the
limited geographic footprint of most network providers. Multi-
provider VN provisioning entails significant challenges, pri-
marily due to InP policies that restrict the disclosure of de-
tailed network topology and resource information, and hinder
interoperability with other parties [4]. To address this issue,
network virtualization architectures have taken two different
approaches. The architectures in [11], [16] rely on a layer of
indirection, usually known as a VN provider, which partitions
VN requests among InPs and subsequently, each InP maps
his corresponding VN segment to his own substrate network.
The other approach consists in relaying VN requests across
InPs till the completion of VN embedding, as exemplified in
PolyVine [2]. Essentially, each InP embeds the subset of the

VN request which is more profitable and relays the remaining
request to a neighboring InP.

Distributed VN embedding architectures, such as PolyVine,
raise the requirement for policy-compliant VN embedding,
i.e., algorithms that identify and embed the most profitable
subset of a VN request. This is also a prerequisite for auction-
based VNE architectures [14], in which each InP bids for the
VN request subset whose mapping yields higher efficiency.
Existing VNE techniques [3], [5], [9], [13], [15] do not fulfill
this requirement, as they seek to compute the embedding of a
complete VN topology, and eventually reject the VN request
when this is not feasible.

In this paper, we introduce a policy dimension to the VNE
problem, allowing only profitable VN embeddings according
to the InP’s policy. Such policy can express the balance
between the generated revenue and resource efficiency as well
as specific constraints that the provider wants to apply. In
particular, we use the embedding cost to revenue ratio (CRR)
in order to express the profit that a provider generates from the
embedding of a VN request. In this respect, an InP can set an
upper bound to CRR, adjusting the trade-off between revenue
generation rate and resource efficiency. This CRR threshold
can be adjusted dynamically based on the substrate network
resource utilization and VN request arrival rate. Relying on
CRR bounds for expressing VNE policies, we present a VNE
algorithm that embeds the most profitable subset of a VN
request according to the InP’s policy. Our simulation results
show that our algorithm can increase the generated revenue
by a large margin depending on the policy adjustment. Our
algorithm also enables an InP to trade short-term revenue
gains for higher revenue in the long term and cope better with
evolving demands. The proposed algorithm can comprise an
essential component of any multi-provider VNE architecture
that relies on VN request relaying across providers or employs
auction mechanisms.

The remainder of the paper is organized as follows. In
Section II, we define our network models and VNE metrics.
In Section III, we introduce a policy dimension to VNE.
Section IV exemplifies our algorithm for policy-based VNE.
In Section V, we present our simulation results and discuss
the efficiency of our algorithm. Section VI discusses related
work. Finally, in Section VII, we highlight our conclusions.

II. NETWORK MODEL AND VNE METRICS

In this section, we introduce the substrate and virtual
network models, and define metrics for VNE.ISBN 978-3-901882-58-6 c© 2014 IFIP



A. Network Model
Substrate Network Model. The substrate network is repre-
sented as a weighted directed graph Gs = ((Ns∪P),Ls), where
Ns is the set of the substrate nodes and Ls is the set of
substrate links between these nodes. The set P comprises all
the nodes of the substrate network where peering has been
established with other network providers. Each substrate node
u ∈ Ns is associated with the residual capacity ru ∈ RN . Each
substrate link (u,v) ∈ Ls between two substrate nodes u and v
is associated with the residual capacity denoted by ruv ∈ RL.
VN Request Model. A VN request consists of a combined
set of the virtual nodes Nv and the used peering nodes
P′ ⊂ P, and a set of bandwidth demands di j ∈ DL between
any pair of virtual nodes i, j ∈ Nv and between any virtual
node i ∈ Nv and peering node j ∈ P′. We use a traffic matrix
to express all bandwidth demands. Compared to topology-
based VN requests that are typically used by the majority of
VNE algorithms, traffic-matrix based VN requests allow more
flexibility in VNE and a higher level of abstraction which can
simplify the specification of network service requirements [4],
[12]. We include the peering nodes P′ in order to accumulate
the bandwidth demands between virtual nodes assigned to
different InPs, as shown in Fig. 1. Furthermore, each virtual
node i ∈ Nv is associated with the requested capacity denoted
by gi ∈ DN .
The mapping of the virtual nodes to the substrate nodes is
expressed as MNv : Nv→ Ns.

B. VNE Metrics
We initially define the revenue of a VN request as:

R= ∑
i∈Nv

gi +α ∑
i, j∈Nv
(i 6= j)

di j +

α

2 ∑
i∈Nv, j∈P′

(di j +d ji)

 (1)

Revenue essentially accumulates all the node and link capacity
units of the VN request. The revenue generated from peering
links is split between the two InPs. Similar to [13], the
parameter α is used as a weight in the sum of the computing
and the bandwidth revenues. For the purpose of revenue-based
node reordering, as required by our algorithm, we further
define the revenue of the virtual node i ∈ Nv, as follows:

R(i) = gi +
α

2 ∑
j∈Nv∪P′
(i 6= j)

di j +d ji (2)

The VN embedding cost is defined as follows:

C= ∑
i∈Nv

gi +α ∑
i, j∈Nv∪P′

(i6= j)

di j ·dist(ui,u j) (3)

ui,u j ∈MNv(Nv)∪P′

The VN embedding cost accumulates all node and link costs.
An InP will seek to increase his revenue while maintaining

a low embedding cost. As such, we use the Cost-to-Revenue
ratio (CRR) = C/R to express VNE efficiency and eventually,
how much profit an InP gains by embedding a VN request.
Based on the preceding definitions, a CRR of 1.0 yields the
highest profit.

Fig. 1. VN request example.

III. PROBLEM DESCRIPTION

VNE consists in mapping VN topologies onto a shared
substrate network. Existing VNE algorithms optimize VN
assignment based on objectives, such as maximizing VN
acceptance rate, minimizing VN embedding cost, maximining
revenue for the InP or achieving load balancing across the
substrate network [3], [5], [9], [13], [15]. A common feature
among these VNE algorithms is that they embed complete
VNs, exactly as requested, as long as there are sufficient
substrate network resources. Complete VN request embedding
is more appropriate for small VNs that can be mapped onto
a single substrate provider with a relatively low embedding
cost. Larger VN requests that possibly exceed the geographic
footprint of a substrate provider have to be partitioned across
multiple InPs.

One approach to multi-provider VN embedding is to allow
the InPs to embed the subset of a VN request that generates
more profit. More precisely, in auction-based VNE environ-
ments the InP will seek to place a higher bid for the most
profitable subset of a VN request [14], while in a distributed
VNE framework the InP will seek to identify and embed the
profitable VN subset and subsequently relay the rest of the VN
request to a neighboring InP, as exemplified by PolyVine [2].
Both VNE frameworks raise the requirement for embedding
only the profitable subset of a VN request, which is not
fulfilled by any of the existing VNE algorithms, according to
our knowledge. We note that the profit gained by embedding a
particular VN request subset may vary among different InPs,
and consequently, unprofitable VN subsets relayed from a
certain InP can be efficiently embedded onto other neighboring
InPs.

Fig. 2 illustrates the evolution of CRR during the iterative
embedding of VN requests with 10, 15, and 20 nodes. Irre-
spective of the VN size, CRR increases as a larger subset of
the VN is being mapped. We observe a more severe increase in
the CRR for larger VNs (i.e., 20 nodes). As such, embedding
complete VN requests of large size incurs a penalty in terms
of resource efficiency. This penalty stems from the increasing
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Fig. 2. CRR evolution.
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Fig. 3. CRR vs. generated revenue.

hop count of virtual links, which counterbalances the extra
revenue generated by embedding additional virtual nodes and
links. Fig. 3 also corroborates this observation, uncovering a
correlation between the CRR and the VN revenue.

Based on these observations, we rely on CRR to identify the
most profitable subset of a VN request. As such, we seek the
embedding of the largest subset of a VN request that does not
violate a predefined CRR threshold. In principle, this threshold
should be adjusted by the InP according to its policy. The CRR
threshold represents a trade-off between revenue and resource
efficiency. More precisely, a low CRR threshold is expected
to yield higher resource efficiency but will generate revenue
at lower rate, since only small subsets of VN requests will be
embedded. Conversely, a high CRR threshold will generate
revenue faster but may impair resource efficiency. To this
end, in the following section we present a new algorithm that
enables the embedding of subsets of VN requests according
to an adjustable CRR threshold. The impact of CRR threshold
adjustment on resource efficiency and generated revenue is
further discussed in Section V-B.

IV. POLICY-COMPLIANT VNE ALGORITHM

In this section, we describe the proposed policy-compliant
VNE algorithm. In the following, we give an overview of
the algorithm (Section IV-A), present an exemplary VN em-
bedding (Section IV-B), and provide further details about the
algorithm (Section IV-C).

A. Algorithm Overview

The main objective of this algorithm is to identify and
embed the subset of a VN request that generates the highest
revenue without violating a predefined CRR threshold. To
this end, the algorithm seeks feasible solutions by iteratively
embedding virtual nodes and their adjacent links. In order
to maximize the generated revenue, the algorithm uses the
virtual node revenue, as defined in Eq. 2, to sort the nodes of
the VN request in terms of revenue in decreasing order. As
such, the embedding starts with the virtual node that generates
the highest revenue (called root node). Since virtual links
spanning multiple hops increase the CRR, the assignment of
each virtual node aims at minimizing the hop count of the
adjacent virtual links. Therefore, for the assignment of the
root node, among the substrate nodes with sufficient capacity
the algorithm selects the one with the minimum total distance
from the peering nodes (e.g., P1 and P2 for InP 2 in Fig. 4(a)).
Similarly, the remaining virtual nodes are assigned iteratively.
Each iteration comprises an evaluation of candidates for virtual
node mapping by computing the shortest paths for each virtual
link connecting the candidate node with every assigned virtual
and peering node. The candidate with the minimum additional
embedding cost is selected and its respective node and link
mappings are taken into account when the remaining virtual
nodes are mapped onto the substrate network. We reduce the
solution space by defining a substrate network region that
contains all nodes with a maximum distance from the substrate
node on which the root node was mapped.

The algorithm keeps track of the evolution of CRR, after
each virtual node has been assigned, and checks the feasibility
of the current solution. In the case that the complete VN
request can be embedded without violating the CRR threshold,
the algorithm returns this solution and terminates its execution.
Otherwise, the algorithm computes and stores the largest
subset of the VN request that can be embedded without
exceeding the threshold for all possible assignments of the root
node. To speed up the algorithm execution, we do not consider
solutions whose root node mapping is very distant from the
peering nodes, since this incurs a significant penalty in terms
of CRR. Finally, among all feasible solutions, the algorithm
returns the VN subset that generates the highest revenue.

B. An Example

Hereby, we illustrate an exemplary VN embedding with our
algorithm. Fig. 4(a) shows three InPs and a VN request being
submitted to InP 2. Assume that 3 virtual nodes (i.e., e, f ,
g) previously belonging to this VN request have been already
assigned to InP 1. The VN request consists of virtual node
demands (i.e., expressed in terms of compute units) and virtual
link demands (i.e., expressed in terms of bandwidth units)
formulated as a symmetric traffic matrix1 (Fig. 4(a)). Besides
the bandwidth demands between each pair of virtual nodes, the
traffic matrix also includes the bandwidth demand between

1A symmetric traffic matrix is shown for simplicity. Our algorithm can
process and embed VN requests expressed with asymmetric traffic matrices.



(a) VN request arrival at InP2. (b) Root node assignment. (c) Initial candidate set.

(d) Second virtual node assignment. (e) Third virtual node assignment – CRR
threshold violation.

(f) VN subset embedding.

Fig. 4. Exemplary policy-compliant VN embedding.

each virtual node and the peering node P1. This essentially
expresses the sum of bandwidth demands between the virtual
nodes assigned to InP 1 (i.e., e, f , g) and the nodes of this
request (i.e., a, b, c, d). Note that InP 2 does not have any
information about the substrate topology and the virtual node
mappings on InP 1. In this example, we assume that any
subset of the VN request that cannot be embedded (because its
mapping is either infeasible or unprofitable) will be relayed to
InP 3. Since the peering link P2−P4 can be potentially used,
the set of peering nodes within InP 2 consists of P1 and P2.

Based on this example, Figs. 4(b) to 4(e) illustrate the
steps followed by our algorithm for the embedding of this
request onto InP 2. Table I shows VN embedding statistics,
including the CRR value, after the completion of each step.
In this example, we consider that InP 2 has adjusted the CRR
threshold to 1.3. The algorithm starts with the assignment of
the root node, which is virtual node a as it generates the
highest revenue (Fig. 4(b)). Two candidate substrate nodes
(i.e., C, F) are being identified for a, based on the total distance
from the peering nodes. Since only F satisfies the capacity
requirement of a, the root node is assigned to F . Subsequently,
the virtual link between P1 and a is mapped to the substrate
network.

Since the current CRR value (i.e., 1.14) does not violate the
threshold, the algorithm proceeds with the mapping of the vir-
tual node with the 2nd largest revenue, i.e., virtual node b. To

TABLE I
VNE STATISTICS FOR THE EXAMPLE IN FIG. 4

Fig. Nv→ Ns R C CRR CRR≤CRRmax
4(b) a→F 10.5 12.0 1.14 true
4(d) a→F, b→C 23.5 26.0 1.11 true
4(e) a→F, b→C, c→D 43.5 59.0 1.36 false

this end, the algorithm defines a region containing all substrate
nodes with a maximum distance from the root node (set to 2
in our example). This designates the following candidate set
S := {B,C,D,E,G,H}, from which all the previously assigned
substrate nodes (to the same VN request) are removed (Fig.
4(c)). In addition, the following nodes are eliminated from
this set: G and H due to insufficient node capacity, and E due
to insufficient link capacity, as the total residual capacity of
all links attached to E (i.e., 20 bandwidth units) cannot fulfill
the total bandwidth demand of 21 units for b. The algorithm
eventually selects the substrate node C, since it incurs the
lowest embedding cost.

Since there is no CRR threshold violation, the algorithm
examines the assignment of the virtual node c, as depicted in
Fig. 4(e). The candidate node set is S = {B,D}. Assigning
c to either B or D violates the CRR threshold, and since
there is no other candidate node, the VN subset comprising
nodes a and b is identified as the most profitable. Thereby, the
algorithm returns the mapping computed for this VN subset.



The remaining VN request (i.e., consisting of nodes c and d)
is relayed to InP 3, as shown in Fig. 4(f).

C. Algorithm Details

Algorithms 1, 2, and 3 illustrate the pseudocode of the
policy-compliant VNE algorithm. Algorithm 1 performs the
VNE computation, while Algorithms 2 and 3 include auxiliary
functions to identify candidate nodes with sufficient residual
capacity and low link embedding cost.

Hereby, we explain Algorithm 1 in detail. In the lines 1–8,
an initialization phase takes place. All virtual nodes are sorted
in terms of revenue and subsequently, the set of candidate
substrate nodes for the root node is being identified using the
function Candidate Substrate Node Preselection in Algorithm
2. Any candidate node exceeding a maximum distance from all
the peering nodes (computed based on the minimum distance
and a relative threshold θ, which is adjusted to 0.1 by default)
is removed from the candidate set and is no longer considered
for the placement of the root node.

In the lines 10–15, the algorithm checks whether the root
node can be assigned to a substrate node within the candi-
date set based on the availability of substrate network paths
(between this node and the peering nodes) satisfying the
bandwidth demands. If this is feasible, the algorithm proceeds
with the assignment of the following nodes of the VN requests
as long as the CRR threshold is not violated (i.e., lines 16–
37); otherwise, the assignment of the root node to the next
candidate node is being checked (i.e., lines 9–12). The first
step for the assignment of each additional virtual node is to
identify the substrate node with the minimum embedding cost
of all adjacent links, including the links attached to the peering
nodes, (i.e., line 17) using the function Candidate Substrate
Node Selection in Algorithm 3. The assignment is restricted to
the substrate nodes whose distance (i.e., number of hops) from
the root node does not exceed a predefined threshold denoted
by ζ. This essentially eliminates all inefficient solutions, i.e.,
substrate nodes that would significantly increase the CRR.
We discuss the adjustment of the threshold ζ in Section V-B.
Furthermore, we take into account the link embedding cost
by computing the corresponding capacity-constrained shortest
path. Eventually, the most cost-efficient candidate node is
being selected.

Upon the assignment of each virtual node j, the algorithm
updates the CRR value and checks for any CRR threshold
violations. Instead of making decisions based only on the
current CRR value (i.e., CRR(j)), we further take into account
the CRR value of the previous virtual node (i.e., CRR(j-1))
in order to capture any trends in the CRR evolution. Fig. 5
illustrates the decision-making process with an example of
a CRR curve, similar to Fig. 2. In particular, although j = 1
exceeds the CRR threshold, there is a decreasing trend in CRR,
and therefore, the algorithm permits the assignment of this
virtual node. A case of CRR threshold violation is represented
by j = 6, where the current CRR value exceeds the threshold
with an increasing trend. The conditions for the CRR threshold
violation are shown in the line 19.

Algorithm 1 Policy-Compliant VNE
Input: Ns,P,Ls,RN ,RL,Nv,P′,DN ,DL,dist

1: jmax←−1, MNv sol ← /0

2: CRR = {c0, ...,c|Nv|−1|ci = ∞}, CRRsol ←CRR
3: RN,rollback← RN , RL,rollback← RL

4: Sort the nodes i ∈ Nv by descending revenue R(i)
5: C← Candidate Substrate Node Preselection (0)
6: distP,min← minu∈C(∑p∈P distp,u)
7: distP,max← distP,min · (1+θ)
8: C←C \{u ∈C|∑p∈P distp,u > distP,max}

9: while C 6= /0 and jmax < |Nv|−1 do
10: MNv← /0

11: uroot ← arg minu∈C( ∑
p∈P

distp,u)

12: if Shortest paths with sufficient capacity exist between
uroot and all u ∈ P′ then

13: MNv,0← uroot

14: Update residual capacity for node uroot and for all
links used between uroot and all u ∈ P′

15: Compute CRR(0)
16: for j := 1..|Nv|−1 do
17: ucand← Candidate Substrate Node Selection ( j)
18: Compute CRR( j)
19: if ucand 6= /0 and

(CRR( j) ≤ CRRmax or CRR( j − 1) > CRRmax)
then

20: MNv, j← ucand

21: Update residual capacity for all links between
ucand and all nodes u ∈ {MNv,P′}

22: if j = |Nv|−1 then
23: if CRR( j)<CRRsol( j) then
24: jmax← j
25: MNv sol ←MNv
26: CRRsol ←CRR
27: end if
28: end if
29: else
30: if CRR( j−1)≤CRRmax and

( j− 1 > jmax or CRR( j− 1) < CRRsol( j− 1))
then

31: jmax← j−1
32: MNv sol ←MNv
33: CRRsol ←CRR
34: end if
35: break: exit the for loop
36: end if
37: end for
38: end if
39: C←C \uroot
40: RN ← RN,rollback, RL← RL,rollback
41: end while
42: return MNv sol



Algorithm 2 Candidate Substrate Node Preselection
Input: i global: Ns,RN ,RL,Nv,DN ,DL,MNv

Find for the mapping of virtual node i all nodes out
of Ns with sufficient node capacity. Exclude all nodes
definitively having not sufficient link capacity and nodes
that have already been used for mapping.

1: Ncand ← /0

2: d f rom← 0, dto← 0

3: for all j ∈ Nv do
4: if MNv, j = /0 then
5: d f rom← d f rom +di j

6: dto← dto +d ji

7: end if
8: end for
9: for all u′ ∈ Ns do

10: if u′ /∈MNv then
11: if gi ≤ r′u then

12: r f rom = ∑
{u,v}∈Ls,u=u′

ruv

13: rto = ∑
{u,v}∈Ls,v=u′

ruv

14: if d f rom ≤ r f rom and dto ≤ rto then
15: Ncand ← Ncand ∪u
16: end if
17: end if
18: end if
19: end for
20: return Ncand

If the last node of the VN request is reached and the
corresponding mapping of this node is successful then the
current mapping will replace any previous solutions with
higher CRR value (i.e., lines 22–28). The else branch (i.e.,
lines 29–36) is reached after the VN embedding becomes
either unprofitable or infeasible with virtual node j. In this
case, the VN subset of iteration j− 1 can be considered as
as a solution. The current mapping is considered as a better
solution only if it is associated with a larger VN subset or if
it yields a lower CRR compared to the previous solution. The
final VNE solution is returned in Msol Nv.

V. EVALUATION

In this section, we evaluate the efficiency of the proposed
VNE algorithm against a variant of our algorithm that embeds
only full VN requests. We further shed light into VNE policy
configuration by investigating the impact of diverse CRR
threshold adjustments on revenue and VN request acceptance
rate. In Section V-A, we present our simulation environment
and in Section V-B we discuss our simulation results.

A. Evaluation Environment

We have implemented a C/C++ based simulation envi-
ronment for VN embedding. Our implementation comprises

Algorithm 3 Candidate Substrate Node Selection
Input: j global: Ns,RL,Nv,P′,DL,MNv,uroot

Find for the mapping of virtual node j the substrate
node out of Ns which requires minimum additional link
embedding cost.

1: ucand ← /0

2: S← Candidate Substrate Node Preselection ( j)

3: for all u ∈ S do
4: if disturoot ,u ≤ ζ then
5: costu← 0
6: for all i ∈ {Nv,P′} do
7: if i ∈ P′ then
8: v← i
9: else

10: v←MNv,i
11: end if
12: if v 6= /0 then
13: if Shortest path with sufficient capacity exists

between u and v then

14: costu← costu +distu,v ·di j

15: costu← costu +distv,u ·d ji

16: else
17: costu← ∞

18: break: exit the for loop
19: end if
20: end if
21: end for
22: end if
23: end for
24: if minu∈S(costu) 6= ∞ then
25: ucand ← arg minu∈S(costu)
26: end if
27: return ucand

Fig. 5. Decisions for CRR threshold violation.



TABLE II
NOTATION FOR THE PSEUDOCODE

Symbol Description
C set of candidate substrate nodes for root node assignment
cost set of virtual link embedding costs for all candidate substrate

nodes
CRR set of CRR values computed after the assignment of each

virtual node
CRRmax CRR threshold
CRRsol set of CRR values for the best solution for each VN subset
d f rom,dto inbound / outbound bandwidth demand at a substrate node
dist hop-count of shortest-paths between each pair of substrate

nodes
distP,min minimum distance (number of hops) to all peering nodes
distP,max maximum allowable distance (number of hops) to all peer-

ing nodes
DL bandwidth demands for each pair of virtual nodes
DN set of CPU demands for each virtual node
Ls set of substrate links
MNv temporary VN mappings
MNv sol final VN mapping
Ncand set of candidate substrate nodes
Ns set of substrate nodes
Nv set of virtual nodes
P set of peering nodes
P′ set of peering nodes specified in a VN request
r f rom,rto available inbound / outbound bandwidth at a substrate node
RL residual link capacity (bandwidth units)
RL,rollback link capacity stored for rolling back incomplete mappings
RN residual node capacity / CPU units
RN,rollback node capacity stored for rolling back incomplete mappings
S set of candidate substrate nodes
ucand candidate for virtual node mapping
uroot candidate for root node mapping
θ distance tolerance to all peering nodes in relation to distP,min
ζ maximum number of hops from the root node

a set of modules for VN request generation, VN request
processing, VNE logging, and substrate network configuration
and management. We conducted our VNE evaluation on a
server with two Intel Xeon quad-core CPUs at 2.53 GHz and
12 GB of main memory.
Substrate network. We used IGen [7] to generate synthetic
substrate network topologies for our simulations. We partic-
ularly ran our tests on a substrate network with 200 nodes
and 400 links which are distributed based on the two-trees
method [8]. We also designated 8 substrate nodes for peering
with other substrate providers. Initially, all substrate network
resources are unutilized. The residual capacity of substrate
nodes and links is updated after the embedding of a VN
request.
VN request. A VN request consists of the CPU requirements
for each virtual node and the bandwidth demands between all
pairs of virtual nodes, represented as a traffic matrix (TM).
The TM further contains the bandwidth requirements between
each virtual node and each peering node (i.e., 3 peering nodes
are randomly assigned among the 8 available nodes designated
for peering). As such, we take into account the embedding
cost of virtual links spanning multiple substrate providers.
The number of virtual nodes per VN request is randomly
sampled from a uniform distribution, between 10 and 30. In
each simulation run, we generate and process a sequence of
1000 non-expiring VN requests, which gradually utilize most

of the substrate network resources and allow to assess VNE
efficiency under various network utilization levels. Each of the
following evaluation results is based on 50 simulation runs.

B. Evaluation Results

Initially, we discuss the efficiency of our VNE algorithm.
Fig. 6 illustrates the CRR versus the generated revenue with
three CRR threshold adjustments (i.e., 1.8, 2.0, and 2.2). This
scatter plot validates the operation of our algorithm, as in
each case the CRR does not exceed the predefined threshold.
We observe a correlation between the CRR and the generated
revenue, i.e., embedding larger VNs incurs a penalty in terms
of resource efficiency. More precisely, setting the CRR to 1.8
allows the embedding of a VN subset with revenue up to 180.
Adjusting the CRR to 2.0 or 2.2 permits the embedding of
VNs with larger revenue (i.e., up to 220). Furthermore, Fig.
7 depicts the proportion of the embedded VN size over the
VN request size with these CRR threshold adjustments. The
results are classified into 5 different groups of VN request
sizes. In many cases, small VN requests (i.e., 10-13 nodes)
are fully embedded, especially for a CRR threshold of 1.8. For
larger VN requests, only a subset is usually being embedded,
and the relative subset size decreases as the VN request size
becomes larger. As shown in the figure, lower CRR threshold
adjustments result in embedding smaller VN subsets.

Fig. 8 illustrates the generated revenue with a wide range of
adjustments for the maximum distance of the root node from
the peering nodes (i.e., parameter θ). As shown in the plot,
adjusting θ to a value greater than 10% does not lead to notable
revenue gains, while it increases the solver runtime. As such,
we use 10% as the default value for θ. We further identified
based on simulations that the adjustment ζ = 5 generates the
highest revenue.

Next, we evaluate the efficiency of embedding subsets of
VN requests. Fig. 9 depicts the cumulative revenue generated
by embedding full requests and the most profitable subset of a
VN request according to the CRR threshold adjustment. Our
VNE algorithm generates much higher revenue compared to
full VN embedding, since it embeds the VN request subsets
that exhibits higher efficiency. In contrast, full VN embedding
results in low revenue due to inefficient resource utilization,
as shown in Fig. 10. According to this plot, for a given level
of resource utilization, subset VN embedding generates more
revenue, although it may require to process a larger number of
requests compared to full VN embedding. Among the various
CRR threshold adjustments, 1.8 achieves higher revenue, since
it exhibits less tolerance to resource inefficiencies.

Furthermore, Fig. 11 shows the VN request acceptance rate
with full and subset VN embedding. The acceptance rate of
full VN requests drops quickly, due to the inefficient resource
utilization. Depending on the CRR threshold adjustment, our
algorithm rejects the VN requests that are not profitable, even
if the substrate network is not saturated. However, in the long
run, embedding VN subsets leads to a higher acceptance rate.

We also present the revenue generation rate in Fig. 12. Full
VN embedding initially generates revenue at higher rate, but
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Fig. 11. VN request acceptance rate.
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Fig. 12. Revenue generation rate with 200
substrate nodes.
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Fig. 13. Revenue generation rate with 50
substrate nodes.
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Fig. 14. Revenue generation rate with 100
substrate nodes.

after the first 150 VN requests VN subset embedding with
high CRR threshold values (i.e., 2.0 and 2.2) yields a higher
revenue generation rate. Comparing among the CRR threshold
values, low threshold adjustments restrict the revenue gener-
ation rates when the substrate network is underutilized, but
achieve slightly higher rates for medium and high utilization
levels and eventually generate more revenue for the provider
in the long run (Fig. 9). Essentially, a high CRR threshold
value results in a greedier behavior, generating revenue faster
which may be suited to providers that do not anticipate a
large number of VN requests. On the other hand, a low CRR
threshold value is deemed more beneficial for smaller substrate
networks, in which the computing resources can be saturated

with a smaller number of VN requests.
In this respect, Figs. 13 and 14 illustrate the revenue

generation rate with a substrate network of 50 and 100
nodes, respectively. In the smaller substrate network (i.e., 50
nodes), the revenue generation rates with the different CRR
thresholds converge after 100 VN requests, i.e., much sooner
compared to the 200-node substrate network. Although in our
simulations we used static CRR threshold values, providers
are envisaged to apply policies that require the dynamic
adjustment of the CRR threshold depending on the network
utilization and resource demand. The insights gained from our
simulation results can be useful for the specification of such
VNE policies.



VI. RELATED WORK

We briefly discuss related work on VNE with single and
multiple substrate providers.

Single-Provider VNE. There is a large body of work on
embedding VN requests onto a substrate network [3], [5], [9],
[13], [15]. Existing VNE solutions mainly rely on heuristic
algorithms (e.g., [15], [13]) or linear programs (e.g., [3]),
while attention has been also given to path splitting [13] and
VNE distribution [5]. These VNE techniques aim at optimizing
the mapping of VN topologies and always embed full VN
requests when this is feasible. As opposed to these techniques
that ignore the policies of substrate providers, we take a
different approach by tailoring VNE to the provider’s policy.
In particular, our VNE algorithm restricts the solution space
according to the policy.

Multiple-Provider VNE. VNE across multiple substrate
providers is more challenging, due to limited information
disclosure from the providers [4]. The VNE architectures in
[6], [4] rely on a centralized coordinator for VN request par-
titioning among the substrate providers. In contrast, PolyVine
[2] carries out VN embedding in a distributed manner, where
each provider embeds the subset of the VN request which
yields higher profit and subsequently relays the remaining part
to one of its peers. V-Mart [14] uses a two-stage Vickrey
auction model to enable resource trading between clients and
providers for VN embedding. Both PolyVine and V-Mart
can benefit from our work. In PolyVine, a substrate provider
can use our VNE algorithm to identify and embed the most
profitable subset of a VN request. Similarly, in auction-based
VNE environments such as V-Mart, our algorithm can assist a
provider in adjusting his bid for the embedding of VN requests.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we tackled the VNE problem from a different
angle, tailoring VNE to the InP’s policy. In this respect,
we developed a new policy-compliant VNE algorithm that
seeks to maximize the revenue of an InP without violating
his policy. We express this policy as an upper bound to
CRR. An InP can adjust the CRR threshold performing a
balancing act between short-term revenue gains (i.e., using
a high threshold value) and more revenue in the long term
(i.e., using a low threshold value), taking into account the
network utilization and the anticipated resource demand. Since
virtualized network infrastructures constitute highly dynamic
environments, the CRR threshold can be dynamically adjusted.
For example, an InP can perform a downward adjustment to
the threshold value when network utilization increases and
resource efficiency becomes critical. Certainly, VNE policies
are not limited to CRR upper bounds, but they may represent
various restrictions that an InP wants to apply depending on
the substrate network size, level of utilization, infrastructure
(e.g., OpenFlow-enabled network devices [10]), or particular
topology abstractions exposed to tenants.

Our simulation results show that embedding the most prof-
itable subsets of VN requests generates much higher revenue
compared to full VN request embedding. Besides the revenue
gains, our algorithm can be used for bidding decisions in
auction-based VNE environments. In future work, we plan
to integrate our algorithm into distributed VNE architectures
(e.g., PolyVine) and auction-based environments, and investi-
gate potential gains that our algorithm could bring.
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