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Abstract— Traffic between an edge network and the

rest of the Internet can be represented as a dynamic

loop-free graph. Understanding in depth the dynamics

in time and space (spatial structure, topological breadth,

destination persistency, traffic dominating paths) of this

graph provides significant insight on the Internet internal

architecture and capabilities. This paper analyzes inter-

domain traffic from a large campus network based on one

month by way of Netflow measurements. Our analysis

reveals the topological properties and structure of the

traffic graph (breadth, depth, volume), the stability of

contacted destinations and the relationship between their

popularity and their path length. Based on the observed

traffic, we explore the suitability of a simple mathematical

model to describe the structure of the outgoing traffic

graph.

I. INTRODUCTION

Achieving a complete understanding of the Internet

properties, dynamics and behavior is a highly challeng-

ing task. This is due to the huge size of the Internet as a

complex system, on one side, and its continuous growth

and rapid, decentralized evolution, on the other. It is

however necessary to gain insight about the way that

data flows across the Internet, information is demanded

by final users and provided by content providers.

In the last years, a significant amount of research has

been performed to describe and model the key aspects

of the Internet topology at different levels, and to

characterize the structure and volume of Internet traffic.

Less research efforts, to the best of our knowledge,

have been dedicated to measure, understand and model

the topology of the interdomain traffic graph and its

evolution, more in particular between edge networks

and the Internet.

The goal of the present paper is to contribute to

the latter objective. We focus on the traffic exchanged

between an edge campus network, connected to the

Internet by means of a border router (BR), and the rest

of the Internet. We propose a simple methodology to

capture the evolution of the traffic graph at the router

level. We present in this paper the first, preliminary

observations from one month measurements of interdo-

main traffic, and describe the main research worklines

to be followed in the future.

Literature provides several examples of analysis of

traffic in the Internet or in edge networks connected to

the Internet. Paxson (1994) performs an extensive anal-

ysis of TCP wide-area traces and characterizes analyti-

cally different applications running on top of TCP [5].

Thompson [7] and Fraleigh [14] analyze the structure,

main applications and transport properties of wide-

area Internet traffic through commercial backbones

of MCI and Sprint, respectively. Other studies focus

on the analysis of application-specific traffic (such as

Youtube [19] [24]) in campus networks, mobility, link-

layer aspects and traffic structure in wireless campus

networks [16] or traffic structure in broadband Internet

traffic [25]. More recently, Mikians et al. [31] [32] have

studied the statistical properties of Interdomain Traffic

Matrices (ITMs) measured from transit networks, and

proposed a modeling tool for them. While most of these

studies address Internet traffic from the edge, none of

them explores the topology and graph characteristics of

the edge-to-Internet traffic.

In parallel, many research efforts have been deployed

to describe the Internet topology – mostly at AS and

IP router level. Govindan et al. [8] draw AS-level

conclusions on the topology and growth of the global

Internet (diameter, sparsity, inter-AS route stability)

based on BGP traces. Faloutsos et al. [9] proposed

a power laws model for characterizing AS-level in-

terdomain topology in the Internet. Uhlig et al. [12],

[15] explored the interaction of Internet traffic and AS-

level topology, and examines the distribution of traffic,

stability and topological properties of interdomain paths

towards destination ASes: presented results show that a

relatively small number of destination ASes concentrate

most of the observed traffic, confirming previous find-



ings, but this traffic traversed a significant number of

intermediate ASes. Later interdomain topology studies

such as Gill et al. [20], Dhamdere et al. [29] and

Labovitz [27] reported a shift in the structure of in-

terdomain Internet from a hierarchical architecture to a

more horizontal and “flat” Internet in which more traffic

is sent from content providers to consumer networks.

These AS-level studies are complemented with

router-level topology analysis. One of the main tools

for performing such analysis is traceroute [4],

extended in 2006 to the paris-traceroute tool.

Paxson [6] was the first to examine properties of end-

to-end inter-domain paths (stability, routing conditions,

etc.) by using traceroute. Later, CAIDA’s Archipelago

project has collected and maintained topology infor-

mation about the Internet via traceroute-like tools; the

resulting traces have been used, among other purposes,

for comparing the different traceroute methods [21].

The contribution of this paper is two-fold. First,

it presents a new, simple methodology for measur-

ing inter-domain traffic from an edge network, based

on the combination of Netflow measurements and

paris-traceroute to reconstruct the outgoing IP-

level traffic graph. Second, it presents a preliminary

analysis of the traffic collected with this methodology at

the Border Router of a large campus network during 31

days. The paper focuses on two aspects of interdomain

network traffic: the study of destinations characteristics

and evolution (popularity, dynamics, interdomain paths)

and the properties and structure of the network outgoing

traffic graph.

The remainder of this paper is organized as follows.

Section II describes the analyzed internetwork, the tools

and the methodology used to measure interdomain traf-

fic. Section III examines some relevant characteristics

of contacted destinations, in particular their persistency

in time and the relationship between path length and

destination popularity. Section IV studies the topologi-

cal structure of the outgoing traffic graph and its daily

evolution, and studies the similarity of the obtained

graphs with a tree. Section V concludes the paper.

II. METHODOLOGY AND SETTING

This section describes the methodology and tools

used to collect and analyze information from the mea-

sured inter-domain traffic (section II-A); and describes

the main characteristics of the examined edge network

and the extracted dataset (section II-B).

A. Methodology

Netflow v7 was enabled on the campus border

router (BR) to collect traffic statistics. We used the

flow-tools collector [11] to aggregate Netflow re-

ports in 5min periods. Each Netflow record corresponds

to one transport-level flow. It contains the source and

destination addresses and port numbers, as well as the

flow duration and the number of bytes and packets

transmitted and received [26]. We combine the Netflow

collector with a script that analyzes the external IP

addresses reported inside each report.

The Netflow collector is combined with two dae-

mons: retriever and merge30. retriever

parses the Netflow report every 5min to detect new

external destinations. For each IP address belonging to

a new /24 prefix, retriever performs a traceroute

to collect the path towards this prefix. We run the

exhaustive algorithm of paris-traceroute with

ICMP [17] for computing IP paths from the cam-

pus network to the destination. Each 5min interval is

thus represented by a list of IP external destinations

(hereafter, iplist) and a list of IP paths towards these

destinations (pathlist). This tool is an extension of stan-

dard ICMP-based traceroute tool; the use of the

exhaustive algorithm with ICMP enables it to identify

load-balancers along the path and has proven to achieve

a good performance in terms of destination discovery

[30].

merge30 enables offline measurements over the

extracted iplist and pathlist files. It operates on 30min

intervals, that is, it waits until 6 consecutive Netflow

iplist/pathlist reports are ready, merges the correspond-

ing files, generates the traffic graph from the BR to the

rest of Internet and computes other parameters related

to the destination prefix (contacting sources, traffic

exchanged, hop distance...). Rationale for this 30min

merging is related to the Netflow recording behavior:

as flows have a maximum duration of 30min and are

recorded only at their end [11], using finer-grained

reports (i.e., with intervals smaller than 30min) for

analysis may be misleading.

B. Campus Network Characteristics and Trace Sum-

mary

The UCL campus internetwork is assigned the

130.104.0.0/16 prefix. The internetwork contains a

set of fixed wired prefixes with around 13k machine

connections available (hosts and servers), and a set of

wireless prefixes (see Table I), available via Wifi.



Wi-fi prefixes

130.104.88.0/24

130.104.120.0/22

130.104.124.0/22

130.104.160.0/20

130.104.202.128/25

130.104.203.0/25

TABLE I

UCL WI-FI NETWORK PREFIXES [1].

This study only considers traffic exchanged with

the Internet. Traffic from wired networks is dominant

during weekdays (Fig. 1), but wireless traffic is always

significant. A priori, particularities of the observed

network (e.g., the fact that a substantial part of the

network, mostly in its wired region, is used for sci-

entific and research purposes) are expected to have an

impact in the examined traffic that needs to be taken

into account; note however that traffic through the wifi

network (accessible to students and university staff)

is likely to show a less specific profile. As in many

campus networks, traffic is asymmetrical with more

incoming than outcoming (Fig. 2), but since TCP is the

dominant protocol, most external destinations appear

in both the incoming and the outgoing traffic. In the

following, the term source will refer to IP addresses

in the local campus internetwork, and destination to IP

addresses in the rest of the Internet. The terminology is

used to indicate the main sense of the traffic, although

both directions of traffic are considered together.
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Traces analyzed in this paper were collected between
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31 days. Figs. 1 and 2 show the amount of traffic

monitored in the measurement interval. There are three

periods in which no data was collected via Netflow:

between 2h and 2h30 on 2013/03/31 (2 timeslots),

between 16h30 on 2013/04/03 and 11h on 2013/04/04

(38 timeslots), and between 14h and 16h on 2013/04/16

(5 timeslots). These empty periods correspond to fail-

ures at the netflow router due to external events

(electricity shortages, network breakdowns).

For fairness, results about graph topology daily evo-

lution are restricted to the 27 days for which complete

data is available. The study of load-balancers (LB) im-

pact in paths towards IP destinations is not addressed:

reported LB subpaths towards the same destination

prefix are collapsed into a single IP path class for

which length is the length of the longest LB subpath.

III. DESTINATIONS AND PATHS

This section studies the paths from the border router

to external destinations (that is, Internet prefixes outside

the edge network). Section III-A discusses a notion

of destination popularity and examines the relation-

ship between popularity and path length. Section III-

B introduces and discusses the Persistency Index (PI)

of destinations, which describes the presence of a

destination in the traffic graph; this section also uses

the PI parameter to characterize the variability of the

set of contacted destinations during the measured time

interval.

A. Destination Popularity and Path Length

Recent studies [20] [27] [29] indicate that the Inter-

net is suffering in the last years a fundamental change



in the users traffic demands and the interdomain ar-

chitecture. Traffic exchanged with consumer networks

is increasingly dominated by a few content providers

(e.g. Google, Youtube or Akamai [28]). Moreover,

deployment and co-location of CDNs [13] close to

ASes from service providers, may be in the origin of

a shift towards a “flatter” Internet, in which growing

portions of the traffic are not necessarily carried by

transit AS, as in the standard hierarchical Internet, but

directly from content providers to consumer networks

[20] [29]. From the consumer point of view, such a

trend implies that popular content is reachable closer

from the edge.

This section examines this trend from the observed

campus network. We measure the destination popular-

ity during a time interval as the number of sources

that contacted the destination within the considered

interval. Figs. 3 and 4 show the relationship between

the popularity of external IP destinations and the length

of the IP paths towards them, for a sample day (point

cloud, Fig. 3) and for traffic exchanged during the

whole measurement interval (histogram, Fig. 4). The

sample day (2013/03/22) is the first day with complete

measures; it was selected for illustration purposes, as

the shape of the displayed point cloud is representative

of other daily samples. According to these definition,

and not surprisingly (even in a partly research-oriented

campus network) the most daily-popular destination

prefixes correspond to Autonomous Systems belonging

to Google (AS15169), Facebook (AS32934) or CDNs

such as Akamai (AS20940).

Note that each single source requesting a destination

at different times in the day (different 30min intervals,

given the granularity of the processed Netflow reports)

is counted several times, once for each 30min period in

which the destination was contacted. This corresponds

to a notion of popularity not only based on the absolute

number of users contacting a destination, but also the

frequency of contacts – a destination contacted many

times a day by the same source is more popular than

another destination contacted only once per day by a

source.

The histogram in Fig. 4 shows the average length of

the IP path towards destinations with respect to desti-

nations’ popularity. Ten histogram classes are defined;

the bounds of those including destinations with several

number of sources are selected so that the number

of destinations per histogram class is as similar as

possible (see Table II). The i-th histogram class, with

bounds xmin(i) and xmax(i), contains all destinations
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with number of sources |S| satisfying xmin(i) ≤ |S| <
xmax(i); the height of the corresponding bar is the

average path length towards all contained destinations.

Results are presented with the 95% confidence interval.

Correlation shown in Fig. 4 between destination

popularity, in number of contacting sources, and IP

path length clearly indicates that more popular destina-

tions are typically reachable through a smaller number

of hops. This is consistent and provides additional

evidence to support the trends described in previous

studies [20] [27].

B. Persistency Index of Destinations

Let Dn be the set of destinations contacted at times-

lot n (n = 0 corresponds to 2013/03/22, 0h, time

difference between two consecutive timeslots is 30min),

and let Ipn be the set of destinations that are contacted

in (at least) p consecutive slots starting (and including)



Sources Destinations

1 18898

2 5181

3 1961

4 1140

[5,7) 1088

[7,10) 756

[10,17) 697

[17,47) 666

[47,351) 667

[351,50000) 497

TABLE II

DESTINATIONS per HISTOGRAM CLASS.

n, that is, n, n+ 1, ..., n+ p. That is:

Ipn = Dn ∩Dn+1 ∩ ... ∩Dn+p =

n+p
⋂

i=n

Di

Then, the topological p-Persistency Index (PI) is

defined with the following quotient:

(

PI t
)

n,p
=
|Ipn|

|Dn|

This corresponds to the fraction of destination pre-

fixes (with respect to the number of destination prefixes

at timeslot n) contacted at timeslot n and also contacted

at timeslots (n+1), ..., (n+ p). The definition extends

in the obvious way to the traffic-weigthed PI.

Fig. 5 shows the evolution of (PI t)n,p along the mea-

sured month, for different values of p. The proportion

of persistent destinations oscillates on a daily basis (and

reaches minimums in the early morning). Beyond this

daily oscillation, around 40% of the destination prefixes

are 1-persistent, that is, they are contacted at (n + 1)
if they were contacted at n; this percentage decreases

as persistency is larger (that is, bigger values of p are

considered).

The Traffic-weighted PI at Fig. 6 shows the frac-

tion of the total traffic in each timeslot that is ex-

changed with 1-persistent destinations. It turns out that,

while around 40% of destination prefixes are renewed

between two consecutive timeslots (1-persistent, see

Topological PI in Fig. 5), these destination prefixes are

“responsible” for the majority (above 70%, in average)

of exchanged traffic of the considered timeslot. In other

words, the set of destination prefixes is highly volatile,

meaning that most of them are not present in two

consecutive timeslots. This volatility, however, only

affects a reduced fraction of exchanged traffic: the 40%
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1-persistent destinations are “responsible” for most of

the exchanged traffic in each timeslot.

IV. TRAFFIC GRAPH

This section examines the structure of the interdo-

main traffic graph. Section IV-A describes the depth

and breadth of the traffic graph and its daily evolution.

Section IV-B introduces and motivates the Tree Simi-

larity Index (TSI) of a traffic graph, and discusses the

tree similarity of the measured traffic graphs.

In the following, let Gn = (Vn, En) be the traffic

graph for timeslot n, where Vn is the set of vertices

and En is the set of edges, and let w : E −→ N be

the weight function that maps an edge e ∈ E to the

traffic w(e) (in bytes) traversing e. Figure 7 shows a

simplified graphical representation of this traffic graph

at a particular date and time.



Fig. 7. Simplified representation of the (directed) traffic graph

on March 3rd, 2013, at 16h (edges weigthed according to amount

of exchanged traffic, in bytes; the initial vertex corresponds to the

border router).

A. Graph Depth and Breadth

Fig. 8 shows the daily evolution of average topologic

breadth and length of the traffic graph. The length

of the graph is the maximum number of consecutive

IP hops towards a destination present in the graph.

The breadth of the graph is the maximum number of

different routers (vertices) at the same distance of the

BR.
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Results are collected for particular times of the day,

averaged over 27 days. Two typical traffic topology

patterns are observed during the day:

1) during the central hours of the day (12pm-4pm),

the graph breadth reaches its maximum, with

345 simultaneous branches (different paths to

different IP destination prefixes), 5 hops away

from the BR;
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2) during the late evening, night and early morning,

the figure shows the background traffic graph

shape, with a minimum router breadth of 117

simultaneous branches, on average, 6 hops away

from BR.

Two regions are clearly distinguished in Fig. 8 along

the x axis. In region I, the number of simultaneous

routers keeps increasing until it reaches a maximum,

5 or 6 hops away from the BR. The traffic graph

is there dominated by the underlying Internet topol-

ogy, meaning that the number of destinations to be

reached through the graph is smaller than the number

of available links towards these destinations. As traffic

moves away from the BR, the number of available links

increases dramatically. In region II (beyond 5-6 hops

from BR), this is no longer a dominating factor on the

graph structure.

B. “Treerization” and Tree Similarity

We explore the topological characteristics of the

measured traffic graph. In particular, we focus on the

similarity of obtained traffic graphs to trees (that is,

graphs in which there is only a single path between

any pair of vertices) with root in the border router (BR).

Motivation for measuring tree similarity is two-fold.

Firstly: in ideal conditions, a traffic graph having a

tree structure would indicate a fully consistent routing

policy (at the IP level) in the Internet. In practice,

uncoordinated routing policies, routing transitions, load

balancing and other phenomena may lead to redundant

or partly-overlapping IP-level routes. Hence, the tree

similarity brings an indicator of router-level routing

inconsistencies perceived in the Internet. Secondly,

tree-structured graphs are tractable objects that can be



used for modeling purposes – in particular, modeling of

inter-domain traffic dynamics. Determining the similar-

ity of real traffic graphs and trees allows to assess the

ability of tree-based models (e.g., stochastic branching

processes such as Galton-Watson [2], [3]) to capture

key aspects of real edge-Internet inter-domain traffic

graphs and their dynamics.

The Tree Similarity Index (TSI) of Gn measures

the difference between the graph (not considering LB

subpaths) and the maximal tree contained in Gn. This

maximal tree, denoted by T (Gn) ⊆ Gn, corresponds

to the subgraph tree with maximum traffic weight.

Computation of the maximal tree of a given traffic

graph is sketched in Algorithm 1.

Algorithm 1 “Treerization” algorithm.

Require: Gn = (Vn, En)
Ensure: T (Gn) = (VT , ET )

ET ←− En; VT ←− Vn

for k = 1 to 30 do

Vk = {v ∈ VT : d(v,BR) = k}
find S ∈ Vk : nparents(S) = n > 1
parents(S) = {P1, ..., Pn} ⊲ sorted by

increasing traffic

for i = 1 to n− 1 do

R←− Pi ; X ←− S
if nparents(R) = 1 then

if nchildren(parent(R)) > 1 then

Break

else

X ←− R; R←− parent(R)

ET ←− ET \ {R̄X} ; VT ←− VT \ {X}

Fig. 9 shows an estimation for the tree similarity

of measured traffic graphs. Two values of TSI are

displayed: the estimated Topological TSI, TSI t(Gn),
which indicates the proportion of edges of Gn that are

kept in T (Gn); and the estimated Traffic-weigthed TSI,

TSI tw(Gn), which indicates the proportion of traffic

(in bytes) carried by edges kept at T (Gn). Due to

limitations in the algorithm implementation and the

traceroute output (mostly related to routers unrespon-

siveness), estimations are conservative, meaning that

examined traffic graphs are at least as similar to a tree

(not considering LB subpaths) as indicated in the TSI

estimation.

TSI t =
|E(T (Gn))|

|E(Gn)|

TSI tw =

∑

e′∈E(T (Gn))
w(e′)

∑

e∈En

w(e)

It can be observed that the maximal tree contains

between a 60% and a 70% of edges of the complete

graph, but it carries more than 90% of the total traffic

exchanged between the campus network and the In-

ternet. Since examined traffic graphs are computed on

a 30min basis, and result from merging 6 individual

5min traffic graphs, some routing inconsistencies may

be due to the presence of different routes towards the

same destination prefix valid on different times within

the corresponding 30min timeslot. According to our

observations, though, this is a relatively rare case; more

likely to occur for low impact (in number of contacts

and in exchanged traffic) prefix destinations.

In this context, the tree approximation preserves most

of the exchanged traffic. From a topological perspec-

tive, however, the tree reduction implies the exclusion

of a significant amount of edges from the original traffic

graph.

V. CONCLUSION AND FUTURE WORK

The study of interdomain traffic dynamics in the edge

of the Internet is essential to understand the situation

and leading trends of Internet evolution. The paper de-

scribes a new methodology for edge interdomain traffic

measurements based on the combination of Netflow and

traceroute. This is used to measure the interdomain

traffic at the Université catholique de Louvain during

one month.

Based on these measurements, this paper presents

a characterization of the observed interdomain traffic

based on three observations. First, the relationship

between IP path length and different measures of

destination popularity is examined: our study shows

that IP paths are smaller towards destinations contacted

more frequently, which provides additional evidence

supporting the notion of “Internet flattening” already

suggested in previous work. Second, the observed

interdomain traffic is topologically volatile in time,

meaning that most destination prefixes are not present

in the graph in consecutime timeslots; traffic exchanged

with persistent prefixes is however dominant. Third, the

paper examines the structure of the traffic graph and its

similarity to a tree: first results indicate that, although

topology does not correspond to a tree, the reduction



to a maximal tree graph (denoted as “treerization”)

preserves most of the exchanged traffic; the graph can

thus be modeled as a tree carrying most interdomain

traffic combined with additional edges with limited

traffic significance. This preliminary result suggests

that the tree approximation is reasonable and traffic

modeling based on stochastic branching processes [3]

can be explored in further work.

Described methodology and results enable several

other directions for future research related to Internet

inter-domain traffic characterization. LB impact is not

addressed, but should be taken into account in finer

analysis. Presented results correspond to observations

over the total amount of exchanged traffic. Topology,

load distribution and dynamics of the observed graph

may however show important differences for specific

types of traffic; for instance, depending on the involved

application (Web, mail, etc.) or depending on the type

of local network (wireless or fixed wired inside the edge

internetwork).
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