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Abstract—With the rapid deployment of cellular net-
works, modern mobile devices are now equipped with
at least two interfaces (WiFi and 3G/4G). As multi-path
TCP (MPTCP) has been standardized by the IETF, mobile
users running MPTCP can access the Internet via multiple
interfaces simultaneously to provide robust data transport
and better throughput. However, as cellular networks
exhibit large RTTs compared to WiFi, for small data
transfers, the delayed startup of additional flows in the
current MPTCP design can limit the use of MPTCP. For
large data transfers, when exploiting both the WiFi and
cellular networks, the inflated and varying RTTs of the
cellular flow together with the small and stable RTTs of
the WiFi flow can lead to performance degradation. In
this paper, we seek to investigate the causes of MPTCP
performance issues in wireless environments and will
provide analyses and a solution for better performance.

I. INTRODUCTION

In recent years, demand to access the Internet by
mobile users has soared dramatically. With the popu-
larity of mobile devices and the ubiquitous deployment
of cellular networks, modern mobile devices are now
equipped with at least two wireless interfaces: WiFi and
cellular. As multi-path TCP (MPTCP) has being stan-
dardized by the IETF [7], mobile users can now access
the Internet using both wireless interfaces simultane-
ously to provide robust data transport. Although WiFi
and cellular networks are pervasive and extensively
used, we observe that cellular networks exhibit very
different characteristics from WiFi networks: cellular
networks usually show large and varying RTTs with
low loss rates while WiFi networks normally exhibit
higher loss rates but stable RTTs [5]. When leveraging
these two networks simultaneously using MPTCP, this
heterogeneity results in some performance issues, which
eventually degrade MPTCP performance.

In this paper, we study two issues: the impact of
the delay startup of additional flows in the current
MPTCP design, and the effect of cellular bufferbloat

on MPTCP performance. Since Internet traffic is mostly
dominated by small downloads (although the tail dis-
tributions might be skewed), the delayed startup of
additional flows in the current MPTCP implementation
can limit the benefits of using MPTCP for small file
transfers. To understand when one can start to utilize
MPTCP’s additional flows, we model the amount of
data received from the first flow before the second flow
starts and validate the model through measurements.
Furthermore, as we observe large and varying RTTs in
cellular networks, referred to as bufferbloat, we model
and analyze the root cause of this phenomenon. We
show how bufferbloat can affect the performance of
MPTCP when using both WiFi and cellular networks.
Last, we show that, on occasions when bufferbloat is
prominent, MPTCP suffers even more because of flow
starvation. We provide a solution that can effectively
mitigate this performance degradation.

The remainder of this paper is organized as follows:
Sec. II provides background about MPTCP and Sec.
III describes our experimental setup. Sec. IV models
the impact of the delayed startup of additional MPTCP
flows. We investigate MPTCP performance issues re-
lated to cellular networks in Sec. V. Related works are
discussed in Sec. VI and Sec. VII concludes this paper.

II. BACKGROUND

Consider a scenario where a download proceeds
between two multi-homed hosts using MPTCP. MPTCP
establishes a connection that utilizes the paths defined
by all end-to-end interface pairs. The traffic transferred
over each path is referred to as a flow or a subflow.
As a standard procedure in running MPTCP, a TCP
3-way handshake is initiated by the client over one
path, with MPTCP-CAPABLE information placed in the
option field of the SYN packet. If the server also runs
MPTCP, it then returns corresponding information in
the option field of SYN/ACK. The first MPTCP flow
is established after the 3-way handshake completes.
Information regarding additional interfaces at both hosts
is then exchanged through this existing flow. AdditionalISBN 978-3-901882-58-6 © 2014 IFIP



flows can be created afterwards via additional 3-way
handshakes with MP-JOIN in the option field [7]. Fig.
1 illustrates the MPTCP flow setup and packet exchange
diagram of a 2-flow MPTCP connection.

Each MPTCP flow maintains its own congestion
window and retransmission scheme during data trans-
fer, and begins with slow-start followed by congestion
avoidance. We briefly describe the joint congestion
control algorithm that has been proposed as the default
congestion controller in MPTCP [18]. Let us denote the
congestion window size and round trip time of flow i
by wi and Ri, and the aggregate window size over all
the flows by w, where w =

P
wi.

Coupled congestion algorithm was introduced in
[21] and is the default congestion controller of MPTCP
[18]. It couples the increase phase but does not change
the behavior of TCP in the case of a loss.

• ACK on flow i: wi = wi +min(↵/w, 1/wi)

• Each loss on flow i: wi =
wi
2

where ↵ is an aggressiveness parameter that controls the
speed of the increase phase to achieve fairness (details
in Sec. V-B). Note that a revised version of the coupled
algorithm was proposed in [12], which aims for better
congestion balancing. In this paper, we will only focus
on the coupled controller as it is the default congestion
controller of the current MPTCP implementation [14].

III. EXPERIMENTAL SETUP AND PERFORMANCE
METRICS

In this paper, we evaluate MPTCP performance
through measurements in WiFi and cellular networks.
Since the current MPTCP implementation delays the
startup of additional flows, this delay can limit
MPTCP’s performance when downloading small files.
Moreover, as WiFi and cellular network exhibit different
characteristics, when leveraging these two networks
simultaneously using MPTCP, this heterogeneity can
result in MPTCP performance degradation. Thus, we
first describe our experimental setup followed by the
performance metrics of interest.

Our experiment setup consists of an MPTCP-capable
server with one Intel Gigabit Ethernet interface con-
necting the server to the UMass network. The mobile
client is a Lenovo X220 laptop and has a built-in
802.11 a/b/g/n WiFi interface. Both the server and the
client have 8 GB of memory. The WiFi network is
accessed by associating the WiFi interface to a D-Link
WBR-1310 wireless router connected to a private home
network in a residential area. For different configura-
tions, an additional cellular 3G/4G device from one
of the three carriers (i.e., AT&T 4G LTE, Verizon 4G
LTE, and Sprint 3G EVDO) can be connected to the
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Fig. 1. MPTCP flow establishment diagram.

laptop through a USB cable, and no more than two
wireless interfaces (including the WiFi interface) are
used simultaneously. Both the server and the client run
Ubuntu Linux 12.10 with kernel version 3.11.3 using
the MPTCP kernel implementation [14] version v0.88,
and the default coupled congestion controller is used.

The UMass server is configured as an HTTP server
running Apache2 on port 8080. The client uses wget
to retrieve Web objects of different sizes (8 KB to 32
MB) via all available paths. We randomize the order of
each configuration (i.e., single/multi-path, file sizes, and
cellular carriers) when performing measurements. The
measurements were conducted every hour over multiple
days and the traces are collected at both the server and
client side with tcpdump.

We focus on a simple 2-flow MPTCP scenario (i.e.,
the client has one WiFi and one cellular interface)
and are interested particularly in the MPTCP download
times for different file sizes, and the round trip times
(RTTs) of each MPTCP flow. We define the download
time as the duration from when the client sends out the
first SYN to the server to the time it receives the last
data packet from the server. RTTs are measured on a
per-flow basis and are defined as the time differences
between when packets are sent by the server and the
reception times of the ACKs for those packets such that
the ACK numbers are one larger than the last sequence
numbers of the packets (i.e., not retransmitted packets).

IV. MODELING MPTCP DELAYED STARTUP OF
ADDITIONAL FLOWS

As Internet traffic is dominated by downloads of
small files, the current MPTCP’s delayed startup of
additional flows can limit the benefits of using MPTCP.
To understand when the second flow is utilized, we
model the amount of data that a user receives from the



Parameter Description
I
w

initial congestion window size
� inter-arrival time of 1st data pkts
R

i

packet RTT of flow i
d
ss

pkts sent in slow start
d
ca

pkts sent in congestion avoidance
b delayed ACK parameter
 exponential growth rate: 1 + 1/b
� flow RTT ratio: R2/R1

� congestion window ratio: w2/w1

↵ MPTCP window increase parameter
F network storage capacity
B network buffer size
µ network bandwidth
⌧ minimum round trip latency

TABLE I. PARAMETER DESCRIPTION

first flow before the second flow starts based on the RTT
ratio of the WiFi and the cellular networks.

As described in Sec. II, additional MPTCP flows can
be created only after the first flow is established. In this
paper, we focus on the case of 2-flow MPTCP and Fig.
1 illustrates the period of time of interest to us in the 2-
flow MPTCP flow establishment diagram. It starts with
a SYN packet sent over the first path (t0) to the arrival
of the first data packet received on the second path (t4).

Let � denote the time between the arrivals of the
first data packets in the two flows (i.e., � = t4 � t2).
Let R1 and R2 denote the RTTs of the first and the
second flow, and R2 = �R1, where � > 0. Note that in
the current MPTCP setting, the inter-arrival time of the
first data packets in both flows is:

� = t4 � t2 = 2 ·R2 = 2� ·R1. (1)

An MPTCP flow starts with a slow start phase where the
sender sends as many packets as its congestion window
(cwnd) allows, and Linux TCP uses delayed ACK [4]
(i.e., the receiver sends one ACK to the sender for every
b-th received data segment), during each packet round
trip, the sender will receive approximately cwnd/b
ACKs, where wi is the window size of flow i. We use  
to denote the exponential growth rate of the congestion
window during slow start such that  = (1+1/b). The
sender leaves slow start and enters congestion avoidance
when a loss occurs. Last we denote the initial congestion
window size by Iw.

We begin with the case where no packet loss occurs
in [t2, t4], henceforth referred to as �, and Table I lists
the associated parameters. We first denote the number
of packets received from the first flow during the ith

round trip in slow start by dss(i),

dss(i) = Iw ·  i�1. (2)

When the slow start threshold is infinity1, the first flow
can send the following number of packets before the
receiver begins to receive packets from the delayed
second flow,

d =

�X

i=1

dss(i) = Iw ·  
2� � 1

 � 1

. (3)

Fig. 2 shows measurement results for the number of
packets received from the first flow during � as a
function of RTT ratio2. Each dot represents an MPTCP
measurement with WiFi and one cellular carrier. Note
that in our measurement setting, WiFi is the primary
flow, and hence � > 1. The dashed line depicts the loss-
free case presented in Eq. (3), and only a few samples
match the dashed prediction line. The majority of the
measurements are not captured by the loss-free model.

Since WiFi exhibits a higher loss rate (0.9± 0.2%)
than cellular (< 0.03% for all carriers) from our mea-
surements, in the following we calculate the expected
number of packets that an MPTCP user can receive from
the first flow when at most one loss occurs during �.
We look at the case of one packet loss mainly because
the loss rate is generally smaller than 1% and there are
only several packet round trips in �. Since SACK is
used in MPTCP, multiple losses within the same round
trip only account for one loss event that leads to only
one congestion window reduction, we regard multiple
losses in one round trip as a single loss event.

For simplicity, we assume each packet is dropped
with probability p, independently of each other, and the
receiver receives dss(i) packets during the ith round
trip in slow start. We denote by dca(j | k) the number
of packets received during the jth round trip of � (in
congestion avoidance) given a loss event occurs during
the kth round trip,

dca(j | k) =

dss(k)

2

+ j � (k + 1), j > k. (4)

Let S(k) denote the probability that no packet loss
occurs during slow start before the kth round trip in
�, and C(k) denote the probability that no packet loss
occurs during congestion avoidance to the end of �

1Current TCP does not have a default initial slow start threshold [6].
TCP enters congestion avoidance when a loss event occurs, and caches
this updated slow start threshold for the subsequent connections to the
same destination IP address.

2RTT ratio is calculated from the traces. R2 is the RTT of the
first data packet of flow-2, while R1 is the average RTT of packets
received during �. Since RTTs vary from time to time, the RTT ratios
presented here are therefore estimates made from our measurements.



given a loss occurs at the kth round trip; it is

S(k) = p(1� p)dss(k)�1
k�1Y

i=1

(1� p)dss(i), (5)

C(k) =

�Y

j=k+1

(1� p)dca(j|k). (6)

We define C(0) = C(�) = 1, S(0) = (1 � p)d, and
the conditional probability that a loss occurs at the kth

round trip to be:

P(k) =

S(k) · C(k)

Q
, k = 0, 1, 2, . . .� (7)

where Q =

P�
i=0 S(k) · C(k), and P(0) represents the

case of no loss event during �.

Denote by d(k) the number of total packets received
by the end of � from the first flow given a loss occurs
at the kth round trip; we have:

d(k) =

8
>>>><

>>>>:

�X

i=1

dss(i) , if k = 0.

kX

i=1

dss(i)� 1 +

�X

j=k+1

dca(j | k) , otherwise.

(8)
The expected number of packets received from the first
flow before the delayed second flow starts is

E[ received packets ] =

�X

k=0

P(k) · d(k). (9)

With Linux’s initial window default setting Iw = 10

and delayed ACK parameter b = 2 (thus  = 1.5), we
measure the average WiFi loss rate (p = 0.009) and
the RTT ratio from each of the 2-flow MPTCP connec-
tions with all cellular carriers. The expected number of
packets received before the delayed second flow starts
is depicted as the solid line in Fig. 2. By fitting the
empirical averages of different � to the expected values
derived from our model, the regression statistics show
R2

= 0.8758, indicating a good fit to our model.

When WiFi’s loss rate is about 0.9%, before the
delayed cellular flow starts, a user can receive an
average number of 67, 88, and 130 packets respectively
from the WiFi flow while the cellular flow is AT&T,
Verizon, and Sprint with a median RTT ratio � of
3.9, 4.4, and 6.0, respectively. That is, for small file
transfers, the MPTCP’s delayed startup of additional
cellular flows results in low utilization of these flows. In
the following section, we focus on larger file transfers
and investigate MPTCP performance issues affected by
cellular network’s over-buffering.
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Fig. 2. Approximation of the expected number of received packets
from the first flow as a function of RTT ratio. Samples are MPTCP
measurements for different carriers of file sizes 1MB to 32MB.

V. MPTCP PERFORMANCE EVALUATION WITH
CELLULAR NETWORKS

We investigate the fact that cellular networks exhibit
inflated and varying RTTs, also known as bufferbloat.
As we have observed such phenomenon through mea-
surements, we model and analyze how this phenomenon
occurs as well as what is the outcome of this in
terms of RTTs and loss rates. Last, we show that
severe bufferbloat can lead to low flow utilization and
eventually degrade MPTCP performance.

A. Understanding Bufferbloat and RTT Variation

The phenomenon of large and varying RTTs in
cellular networks has been recently observed and termed
bufferbloat [8], which occurs due to the existence of
large buffers in the networks. Results from our earlier
measurement study [5] are consistent with previous
studies by Allman [1] and Jiang et al. [10], which show
that bufferbloat is less prominent in most wired/WiFi
networks (i.e., public/home WiFi networks), and can be
severe in 3G/4G cellular networks. However, in addition
to the severe RTT inflation of the cellular networks,
we also observe that cellular networks exhibit loss-free
environments. Our measurements of downloads of file
sizes 8 KB to 32 MB among all the cellular carriers
indicate loss rates less than 0.03%, which are much
smaller than those of WiFi, approximately 0.9%.

Fig. 3 presents the measurement results of average
connection RTT as a function of file size. Throughout
the measurements, WiFi exhibits a stable average con-
nection RTT of approximately 30 ms while AT&T LTE
exhibits an average RTT that ranges from 60 ms to
180 ms as file size increases. Sprint 3G exhibits the
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Fig. 3. Average connection RTT as a function of file sizes for
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greatest RTT variability among all the carriers, with
averages ranging from 160 ms to 1.2 second. Verizon
LTE, although using the same 4G technology as AT&T
LTE, also exhibits high variability in its RTTs, and the
averages range from 60 ms to 900 ms as the transferred
file size increases. That is, � can quickly rise from 2 to
40, and in some cases up to 80.

In the following we seek to understand how RTT
inflation occurs due to network over-buffering. Let us
denote by µ the network bandwidth, by ⌧ the minimum
packet RTT, and the minimum bandwidth-delay product
(BDP) is thus denoted by µ⌧ . We denote the size of
network buffer by B, and the network storage capacity
by F , which is the maximum amount of in-flight packets
that can be stored in the network, including one BDP
and the size of the network buffer, and hence F = dB+

µ⌧e. Although early works suggested network buffer
sizes to be much smaller than the average BDP [2] [3],
recent studies on bufferbloat [8] [10] report the opposite
in modern network systems. Therefore, to understand
the root cause of bufferbloat in cellular networks, we
assume the network buffer B to be larger than one BDP
in the following analysis.

When more than µ⌧ packets are in-flight, the net-
work buffer gradually fills up. The queueing delay hence
increases as does the RTT. Since the congestion window
advances by one packet in the congestion avoidance
phase, the RTT always increments by 1/µ (i.e., addi-
tional queueing delay in the buffer) and, hence, is a step-
wise increasing function that can be approximated by a
linear function [20]. Fig. 4 depicts the RTT evolution in
a complete congestion avoidance cycle (0 < t < Tfr).
When a packet loss is detected, TCP enters fast recov-
ery, and the congestion window is then halved. The
sender resumes its transmission after the number of
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Fig. 4. RTT evolution: one congestion avoidance cycle

unACKed packets reduces to half of its previous size
(the new window size). During this pause period (in Fig
4, where Tca < t < Tfr), the buffer drains and since
the sending rate is halved, the maximum RTT is also
reduced by half. After fast recovery, a new congestion
avoidance cycle starts.

From [13], when the sender starts to fill the network
buffer, its congestion window, w(t), is

w(t) =

r
1

4

(F + 1)

2
+

2µt

b
(10)

where b is the delayed ACK parameter such that an
ACK is generated on reception of every b packets. When
w(t) reaches the network storage capacity F at time Tca

(the end of the congestion avoidance phase), by solving
Eq. (10) for w(Tca) = F , we obtain Tca =

3b
8µ (F +1)

2.

That is, during one congestion avoidance cycle,
µTca packets are transmitted, and then one additional
window of packets are sent before the lost packet is
detected. Therefore, the number of packets sent during
a congestion avoidance cycle is N ⇡ d 3b

8 (F +1)

2
+F e

(excluding the retransmitted packet). If we assume pack-
ets are dropped only due to the filled network buffer,
then within one congestion avoidance cycle, the loss
rate is 1/N .

Fig. 5 depicts the network loss rate, 1/N , as a func-
tion of network storage capacity F . Given a network
bandwidth µ = 10 Mbps and ⌧ = 15 ms, with the TCP
delayed ACK parameter b = 2, the minimum BDP is
roughly 12 packets. By setting a buffer size equal to the
minimum BDP (B = µ⌧ ), the loss rate drops from 0.7%
to 0.2%. When the buffer size increases 8-fold, the loss
rate drops to 0.01%. Hence, if we assume the minimum
BDP does not change in each cycle, and packets are
dropped only due to the filled network buffer, increasing
the buffer size reduces the loss rate dramatically.

Since the network over-buffering issue has been
recently reported by [8] and is termed as bufferbloat,
our analyses above shed light on how bufferbloat can
result in extremely small loss rates while exhibiting the
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large RTT variations observed in our measurements.
When flow RTTs are small and stable, ACKs return to
the sender quickly and the RTT estimates are precise.
However, when one of the MPTCP flows exhibits small
and stable RTT values while the other experiences
severe RTT inflation without packet losses, the joint
congestion controller can be misguided by TCP’s con-
gestion inference from packet losses, and lose its ability
to quickly balance congestion across the flows. In the
following, we investigate how inflated cellular RTTs can
affect MPTCP performance.

B. Idle Spins of the Joint Congestion Controller

The coupled congestion controller increases the con-
gestion window of flow i upon reception of each ACK
with wi = wi + min(↵/w, 1/wi), where w =

P
i wi.

Since this controller does not couple the decrease phase,
it relies on ↵ to respond to changes in flow windows
and RTTs, and ↵ is defined in [18] as:

↵ =

max{wi

R2
i
}

(

P
i
wi
Ri

)

2
· w (11)

As ↵ is updated whenever there is a packet drop or once
per RTT rather than once per ACK to reduce compu-
tational cost [18], this results in slow responsiveness of
↵. Moreover, since ACKs are used at the sender for
RTT estimations and TCP uses delayed ACK, when the
network is over-buffered, the sender fails to estimate
the RTT in a timely manner. Also, the RTT values
used in Eq. (11) are smoothed values (SRTT) with the
consequence that they lag behind the true RTTs when
they are rapidly increasing. As a result, the coupled
congestion controller underestimates ↵, and hence the
MPTCP increase rate.

For a simple 2-flow MPTCP with congestion win-
dow ratio � = w2/w1 and RTT ratio � = R2/R1, if we
assume in Eq. (11), the numerator has w1/R

2
1 � w2/R
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Fig. 6. MPTCP flow increment efficiency as a function of �.

(i.e., flow 1 is currently the better flow [21]), the
MPTCP window increase rate can be rewritten as

↵

w
=

w1

R2
1

(

w1
R1

+

�w1

�R1
)

2
=

1

(1 + �/�)2
· 1

w1
. (12)

Upon reception of each ACK, flow 1 increases w1 by
1

(1+�/�)2 ·
1
w1

. We define flow increment efficiency as the
ratio of a flow’s increase rate when running MPTCP to
that of running single-path TCP (i.e., 1/(1+�/�)2). Fig.
6 shows flow 1’s increment efficiency as a function of
RTT ratio � for different window ratios �.

Since cellular networks exhibit loss rates typically
lower than 0.03% [5], the cellular flow’s window is
often larger than that of the WiFi flow. For a 2-flow
MPTCP connection (e.g., WiFi the first and cellular the
second) with � = 2, when the cellular RTT inflates, �
can ramp up quickly from 2 to 8 as more packets are
in-flight (as shown in Fig. 3). As depicted in Fig. 6, if
we assume the window ratio � remains fixed at 2, and
the inflated RTTs can be correctly estimated during the
cellular RTT inflation period while � increases from
2 to 8, the WiFi flow’s increment efficiency should
increase from 0.25 to 0.65. However, due to the slow
responsiveness of ↵ and the cellular flow’s lagged RTT
estimates, the WiFi flow’s increment efficiency remains
at 0.25 for at least one RTT. Thus, the WiFi flow’s
increase rate is underestimated by 61% during this
cellular RTT inflation period.

This issue becomes more critical when the cellular
flow, henceforth referred to as flow 2, fails to receive
new ACKs from the client even after the sender per-
forms fast retransmit (within R2), and eventually its
timeout timer expires after one retransmission timeout
(RTO)3. The idle period that flow 2 does not send any

3RTO = SRTT +max{G, 4⇥RTTV AR}, where RTTV AR
is the RTT variance, and the initial value of RTO is 1 sec [17]. Note
that G is the clock granularity set to 0.2 sec in modern Linux systems.



packets, Tidle, is thus Tidle ⇡ RTO�R2, and the period
can be longer when bufferbloat is more prominent.
During Tidle, the aggregate window, w, still remains
large as flow 2’s congestion window, w2, will only be
reset to two after the timeout event. The WiFi flow’s
(flow 1) increase rate, ↵/w, is therefore very small due
to this large w. Moreover, during Tidle, packets are only
delivered over flow 1. Flow 1’s bandwidth, as we have
observed, is severely underestimated and its increase
rate should have been raised to 1/w1 as that of a single-
path TCP.

Ideally when an MPTCP connection includes differ-
ent flows characterized by diverse but stable RTTs, ↵
can be set to respond network changes quickly and the
coupled congestion controller should achieve MPTCP’s
desired throughput. However, since cellular networks
exhibit bufferbloat, which in turn results in large con-
gestion windows and unstable RTTs, these properties
eventually lead to MPTCP performance issues.

C. Flow Starvation and TCP Idle Restart

MPTCP maintains a connection-level shared send
queue for all the packets scheduled to be sent, while
each flow manages its own subflow-level send buffer.
When a flow has available space in its congestion
window, the MPTCP packet scheduler clones the first
segment at the head of the shared send queue into the
flow send buffer4.

When all previously sent packets over
a particular flow are ACKed (subflow-level ACK),
the data in the subflow-level send buffer can be
removed. The original segment, however, will remain
in the connection-level shared send queue until all older
packets are correctly received and ACKed (connection-
level ACK) via any of the available flows. That is,
when a packet in the shared send queue is ACKed at
the subflow level and the connection level, it can still
be retained in the connection-level send queue if any
older packets with smaller connection-level sequence
numbers have not yet been reported as received. Once
those older packets are received and ACKed, the
connection-level ACKed packets are dequeued, and
new packets from the application are appended to the
tail of the connection-level send queue.

When one of the MPTCP flows suffers severe
bufferbloat and the transmission latency quickly in-
creases, packets may take unexpectedly longer to reach
the receiver. Suppose the connection-level send queue
has capacity M , and the first i packets are currently
scheduled on the cellular flow, experiencing severe
bufferbloat, while the i+ 1

th to jth packets are sched-
uled to the WiFi flow. Since WiFi has a much smaller

4This is true when no packet is in the connection-level retranmis-
sion queue.

RTT than cellular, the WiFi flow packets are quickly
ACKed, and removed from their flow send buffer. The
WiFi flow then has space in its congestion window and
requests more packets from the connection-level send
buffer (the j + 1

th to M th). Note that at this point in
time, packets traversing cellular are experiencing high
latency due to bufferbloat, and the first i packets are still
en-route while the WiFi flow has successfully received
ACKs for the i + 1

th to M th packets. Up until this
point, those M � i packets sent over WiFi are ACKed
at the subflow level, and hence no data is retained in the
WiFi flow send buffer. On the other hand, their original
copies still remain in the connection-level send buffer,
waiting for the first i packets sent over cellular to reach
the receiver. Before the oldest i packets in the queue
are correctly received and ACKed, the connection-level
send queue fills up (the first i packets over the cellular
flow, and M � i ACKed packets waiting for the oldest
i packets to be ACKed).

This leads to flow starvation. The WiFi flow has
now removed all the ACKed data from its send buffer
(subflow-level ACKed), and requested new packets from
the shared send queue. The shared send queue, on the
other hand, has no available packets to allocate to the
WiFi flow. Moreover, it can not request any new packets
from the application layer, as currently the shared send
queue is full. This dilemma ends when the oldest
packets in the queue are correctly received and ACKed,
the application places new data in the connection-level
send queue, and the WiFi flow resumes.

The consequence of an idle MPTCP flow has far
more impact than above. When the WiFi flow’s idle
period is longer than the current estimated flow re-
tranmission timeout (RTO) with window size w1, the
TCP’s congestion window validation mechanism [9]
is triggered and calculates a restart window, wr =

min(w1, Iw), for the idle WiFi flow. For each RTO
event, w1 is halved until wr is reached5. After the WiFi
flow resumes and its window is reset to a new value, it
is then forced to re-probe the network with slow start.

Fig. 7 illustrates a time series of the WiFi flow’s
congestion window and the cellular flow’s RTT. Note
that the cellular flow here suffers severe bufferbloat
with periodic RTT inflation as illustrated Fig. 4. At the
beginning of the connection, the cellular RTT inflates
quickly from 80 ms to 800 ms, and hence produces the
WiFi flow’s first idle period soon after it enters conges-
tion avoidance. The WiFi flow’s congestion window is
halved before the next slow start because it experiences
an idle period of one RTO. Note that this behavior is not
due to loss events, as the congestion window is often
reset to wr rather than two as in a timeout event.

5Details please refer to the procedure tcp_cwnd_restart() in
tcp_output.c in the Linux kernel.
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Fig. 7. Severe bufferbloat: periodic RTT inflation of the cellular flow
results in idle restarts of the WiFi flow.

For the subsequent idle restarts in Fig. 7, WiFi’s
congestion window is often reset to Iw (i.e., the ini-
tial window of 10 packets). This phenomenon is very
prominent during time interval 20 to 32 seconds, where
the cellular RTTs inflate dramatically up to 3.5 sec-
onds, and the WiFi idle period is much longer than
its current RTO. The phenomenon of RTT inflation
is less pronounced after 35 seconds when the RTT
drops from 2 sec to 400 ms. After this point in time,
the receiver receives packets from the cellular flow
more quickly, and the corresponding ACKs to those
packets arrive at the sender in a timely fashion without
blocking the shared send queue. Hence, the WiFi flow
successfully completes slow start and enter congestion
avoidance. During these idle periods, not only does
the WiFi flow starve, but the cellular flow exhibits
a low increment efficiency. This occurs for the same
reason described in Sec. V-B when one of the flows
experiences a long idle period, the coupled controller
underestimates the increase rate and eventually degrade
MPTCP’s performance.

To avoid unnecessary performance degradation due
to bufferbloat, we propose to disable the default idle
restart functionality [9] when using MPTCP with cel-
lular. The benefit of doing so is two-fold. First, allowing
an idle MPTCP flow to quickly restore its original
congestion window reduces network resource waste
and saves download time by not having to probe for
the network capacity again. Second, as the coupled
controller couples all flows at the increase phase, each
flow’s increase rate is much slower than its single-path
counterpart. Therefore, after an idle restart, it takes
much longer for the restarted flow to reach the same
sending rate before the restart event.

To showcase how our proposed approach can ef-
fectively mitigate the impact of flow starvation, Fig. 8

no RST (w/  penl.)

RST (w/  penl.)

no RST (w/o penl.)

RST (w/o penl.)
16 M

B

10 15 20
Download Time (sec)

Fig. 8. Download time comparison: MPTCP with idle restart (RST)
and penalization (penl.) enabled/disabled.

showcases the results of MPTCP download times when
TCP idle restart (RST) is enabled/disabled. Moreover, as
the penalizing scheme proposed in [19] aims to optimize
receive memory usage by reducing the window size of
flows that contribute too many out-of-order packets, we
also show the results of MPTCP with (w/ penl.) and
without penalization (w/o penl.). Note that the MPTCP’s
receive buffer is set to the default maximum size of 6
MB, which is much larger than the targeted scenario in
[19]. We do not disable TCP auto-tuning as proposed
in [16] as our goal is to understand bufferbloat’s impact
on MPTCP shared send buffer rather than the efficiency
of utilizing the receive buffer at the beginning of each
connection.

We chose one cellular carrier that exhibits prominent
bufferbloat during the day and performed file downloads
of 16 MB files with 2-flow MPTCP connections. For
each configuration, we performed 40 rounds of measure-
ments and randomized the order of the configurations to
reduce possible correlations during our measurements.
When the cellular flow experiences bufferbloat and
idle restarts occur frequently, we observe that MPTCP
suffers severe performance degradation. The penalizing
scheme helps in this case by throttling the WiFi flow’s
sending rate, and hence delays the occurrences of the
idle restarts. This delay to the idle restart, on the other
hand, provides an opportunity for those connection-level
ACKs of the late received packets sent over cellular to
arrive at the sender and unblock the shared send buffer.

When the TCP idle restart is disabled, the download
time (both mean and variance) reduces for both vanilla
MPTCP (no RST w/o penl.) and the MPTCP with
penalization (no RST w/ penl.). We show that, when
bufferbloat is evident, by disabling the TCP idle restart,
on average the performance of MPTCP download time
improves by 30% (no RST w/ penl.).



VI. RELATED WORK

To the best of our knowledge, this is the first
paper that models the impact of MPTCP’s flow de-
layed startup to understand when a user can start to
leverage the additional flows. It is also the first work
that investigates the impact of bufferbloat on MPTCP
performance. Since the root cause of MPTCP perfor-
mance problems of flow starvation and idle restart is
bufferbloat in the cellular networks, if cellular operators
can size their router buffers properly as suggested in
[2] [3], the bufferbloat issues can be mitigated. The
associated MPTCP performance issues can hence be
resolved. Several works have recently aimed to tackle
this issue based on existing infrastructure. Jiang et al.
[10] proposed a receiver-based rate limiting approach
to mitigate the RTT inflation by tracking down the RTT
evolution. Nichols and Jacobson proposed a scheduling
algorithm, CoDel [15], to control network delay through
managing router buffers. These approaches require ad-
ditional changes and management at the receivers and
at the buffers within the network, and might directly
affect the performance of MPTCP from different per-
spectives. If MPTCP can wisely select available paths
and flows to leverage [11] without being hampered by
bufferbloat, and the joint congestion controller can be
more responsive to the rapid variation of RTTs, the
benefits of MPTCP will be more pronounced. As these
require further study and more careful examination in
the networks, we leave these as future works.

VII. CONCLUSION

In this paper, we study the performance of a simple
scenario of 2-flow MPTCP with WiFi and cellular
networks. We show that for small downloads, the current
MPTCP’s delayed startup of additional flows limits
MPTCP’s performance. Based on the RTT ratio of
the WiFi and cellular networks, we demonstrate that
the additional flows can be underutilized for small file
transfers by modeling the number of packets received
before the second flow starts. Second, as we have
observed bufferbloat in the cellular networks, we in-
vestigate the root cause of large and varying cellular
RTTs by modeling and analyzing bufferbloat. Further-
more, we show how MPTCP might suffer from cellular
bufferbloat when coupling with another WiFi flow for
large file transfers. Last, we show how flow starvation
occurs when bufferbloat is prominent and can eventually
harm MPTCP’s performance. By disabling the TCP idle
restart for congestion window validation, we show that
this is an efficient approach to mitigate the MPTCP
performance degradation.
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