
On the Scalability of Interdomain Path Computations

Onur Ascigil and Kenneth L. Calvert and James N. Griffioen

Department of Computer Science

University of Kentucky

Lexington, KY 40506

Abstract—Recent research has considered various architec-
tural approaches in which route determination occurs separately
from forwarding. Such offers many advantages, but also brings
a number of challenges, not least of which is scalability. In this
paper we consider the problem of computing domain-level end-to-
end routes in the Internet. We describe a system architecture and
a prototype route computation service that provides performance
information along with paths. The results of our experiments,
which involve updating billions of routes and serving thousands
of requests per second, suggest that the resource requirements
for a single-domain end-to-end path service (i.e., a service that
provides paths from one access domain to all others) are fairly
modest.

I. INTRODUCTION

Interdomain routing involves two main challenges: scaling
and policy enforcement. Today’s Internet comprises tens of
thousands of autonomous systems (AS’s), interconnected by
hundreds of thousands of channels, resulting in a vast number
of possible end-to-end paths. At the same time, the economic
viability of the interdomain ecosystem depends on autonomous
systems’ ability to ensure that they only forward traffic for
which they are compensated in some way (i.e., their ability to
enforce their policies).

The Border Gateway Protocol (BGP) is the sole mechanism
controlling interdomain routing in the Internet today. BGP
addresses both challenges in the same way: by controlling
information flow. Specifically, each AS filters the set of paths
it receives before it propagates them. Thus, the processes of
path discovery and path selection are mingled in BGP. This
approach has some well-known disadvantages, including:

• AS policies with non-local dependencies can lead
to oscillation and prevent convergence of routes to
particular destinations [8].

• Transient topology changes require that unused (non-
preferred) paths be re-discovered and knowledge of
their existence be re-propagated throughout the routing
system. This leads to slow convergence times, even
without pathological policies [3].

• The protocol’s filtering mechanism (needed for scala-
bility) allows only a single path to a destination to
be propagated by an AS. This precludes multipath
transmission, which offers many advantages. (There
are hacks to allow multipath when an endpoint has
more than one IP address, but they do not work in the
general case.)

In this paper we consider a radically different approach to
interdomain routing, in which interdomain paths are computed

This work was supported by the National Science Foundation under grants
CNS-0626918 and CNS-1111040.

in a semi-centralized manner and are selected prior to forward-
ing. More precisely, we consider the design of an interdomain
path service, which discovers and computes domain-level paths
between source and destination domains. Before sending, a
source requests a set of paths to the given destination from its
local path server. The resulting paths (or some subset thereof)
are then used for forwarding. Forwarding could be achieved
in various ways, for example by placing a (loose) source
route in the packets, or by installing state in the AS border
switches (a la SDN). Such a system seems to offer a number
of architectural advantages, including (i) native support for
multipath forwarding; (ii) the ability to apply different path-
selection policies for different applications or user classes; and
(iii) guaranteed convergence. Other advantages are described
and discussed later in the paper.

Our main focus in this paper is scalability. We show that
an interdomain path service can be practically implemented
using relatively modest resources, even when the domain-level
graph contains on the order of trillions of paths. We emphasize
here that the proposed system has been developed as part of
a “clean-slate” re-imagining of the Internet architecture [9]
and ecosystem [14]; as such, backward compatibility with the
existing Internet is not necessarily a goal. While we believe he
approach described here could eventually be deployed in the
Internet, that would necessarily involve many challenges that
are beyond the scope of this paper.

Our path service is intended for use with a network layer
that, like IP, provides a best-effort datagram delivery service.
Obviously such an arrangement is only practical when there
is substantial opportunity for re-use of paths, so that the cost
of obtaining paths from a path service can be amortized over
many transmitted datagrams. We observe that this requirement
is satisfied in the Internet today, with most packets belonging
to flows that contain many packets traveling between the
same source and destination, and others generally travelling
to destinations that change slowly (e.g., DNS servers). Also,
as was noted above, refactoring the routing architecture implies
a requirement to enforce provider policies and ensure that
compensation flows from those who use infrastructure to
those who provide it. We briefly describe some alternative
mechanisms for this in the next section.

The rest of this paper is organized as follows. In the next
section we describe our model of the network ecosystem,
which differs in some respects from the current Internet. We
give a more precise problem statement, describe the operation
of the path service, and describe two approaches to enforc-
ing provider policies—that is, of ensuring that providers are
compensated for the traffic they forward. In Section III we
describe the design of the path service. Section IV describes
the experiments we ran to measure the performance of our

ISBN 978-3-901882-58-6 c� 2014 IFIP

implementation, and presents the results of those experiments.
Section V discussed related work. We present conclusions in
Section VI.

II. SYSTEM OVERVIEW

After describing the entities that make up our network
ecosystem, we describe its typical operation and state the
problem more precisely. We then discuss the economic rela-
tionships among the participants and compare them to those in
the current Internet. (Economic incentives are a key factor in
the viability of any future Internet technology [14].) We then
discuss some possible solutions to the problem of enforcing
policies; such a mechanism is crucial to the economic model,
but depends on the way forwarding is implemented, which is
beyond the scope of this paper. Finally, we point out some
advantages of our system compared with today’s Internet.

A. Players

We consider a network made up of separately-administered
domains, which correspond roughly to the autonomous systems
of today’s Internet. Abusing terminology slightly, we will use
provider and domain interchangeably.1 We avoid the term
“AS” because of its connection with BGP and today’s routing
and forwarding system. We classify domains as either transit
(also called relay), or access. Access domains exist to provide
service to users. Transit domains exist only to interconnect
access domains. (Contrast this with today’s Internet, in which
AS’s can play both access and transit roles.) Thus, every packet
originates from and is destined for, an access domain. (In
reality, packets will travel between finer-grained entities; the
architecture can be applied recursively [9]. Also, some means
is required to transform endpoint identifiers into destination
channel IDs. However, we abstract from that problem for the
purposes of this paper.)

Domains are connected via named channels. A channel
is created between a pair of domains if and only if both
deem it mutually beneficial. In general, multiple channels will
connect a pair of domains (Fig. 1). In general, one domain
connects to another for the same reason AS’s connect in
the Internet today: to get access to a greater portion of the
Internet. However, in our model there are no customer-provider
relationships between transit domains; all relationships are
peering. Moreover, all transit policies are strictly local: a transit
provider makes money by relaying packets between its incident
channels, period. Thus, transit providers have no say over what
happens to traffic once it leaves their domain.

The collection of transit domains forms a switching net-
work that provides at least one path between every pair of ac-
cess domains. Transit domains form the “switching elements”
of this network; they simply relay packets between ingress and
egress channels. Our scheme is thus agnostic regarding the
internal structure of a transit domain, and the mechanism(s)
used to convey packets between ingress and egress points
of domains, is opaque to our scheme; a domain might use
MPLS [13], SDN [10], IP tunneling, or regular intradomain
(IP) routing.

Access domains can peer with any number of transit
domains for only the cost of the connecting channel(s)—that
is, multihoming comes “for free”. Indeed, in our experiments
we assume that each access domain connects to at least four

1The reader is cautioned not to interpret our term “provider” as meaning
“current ISP” in this context.

transit domains for path diversity and competition. Each packet
is forwarded from a source access domain, through zero or
more transit domains, to a destination access domain.

One other type of entity is present in the ecosystem.
Path providers collect information from transit domains about
connectivity between their ingress and egress channels, and use
that information to compute paths between access domains. To
send a packet, a user requests some number of paths to the
destination domain from its local path provider. Fig. 1 shows
all these entities and the information flow among them.

It is quite possible that brokers (which act as intermediaries
among users, access domains, and path providers) or other
kinds of “middlemen” would arise in this ecosystem. We do
not consider them here, although they are quite compatible
with our model.

PP

Provider
Access

Transit Provider

Transit Provider

PP

Provider
Access

PP

Provider
Access

PP

Provider
Access

PP

Provider
Access

PP

Provider
Access

PP

Provider
Access

Transit Provider

Sender

Transit Advertisements

PP Path Provider Service (Distributed)

Path Query

List of Ranked Paths

Fig. 1: Entities and Information Flow

B. Model of Operation

Each transit provider periodically emits a set of relay
advertisements, each of which is an offer to relay packets
from one of its channels (the ingress channel) to another (the
egress channel). Each relay advertisement includes the offering
provider, the ingress and egress channels, plus performance
information and other parameters (e.g., the capacity of each
channel, the recent and long-term average utilization of each
channel, histogram(s) indicating the distribution of ingress-to-
egress delays over some specified period).

Each path provider collects relay advertisements and uses
them to construct a database of possible paths from a source
domain to other access domains. Each path is an alternating
sequence of channels and transit providers. Along with in-
formation about the channels making up the path, the path
provider also keeps information about the performance of the
path, which is derived from the performance information from
the individual relay advertisements. The path provider keeps
each path’s performance updated as it receives new information
about relays. It also updates the path database when new relays
are advertised or existing ones are withdrawn.

To initiate an inter-domain flow, a source transmits a path
query to a path provider, which may be local or in another
domain. (Each source is configured with paths to one or
more path providers at enrollment time, via a DHCP-analogue
protocol.) The path query contains: the source and destination
domains, the number of paths requested, and (optional) policy
“hints”, i.e., characteristics of the paths desired. Such hints

could include, for example, a “white list” of providers to
be used if possible, a “black list” of providers to avoid,
advice about the application characteristics (e.g., streaming,
interactive, or bulk transfer), or desired performance levels.
These hints are used to filter the set of paths returned in
response to the query. The number of paths returned is the
number that satisfied the policy hints, or the number requested
(bounded by some system maximum), whichever is smaller.

Although the path service is “centralized” (in the sense that
each source sends queries to a specific place), the global path
service can be distributed, since each access domain only needs
paths from itself to other access domains. In our experimental
evaluation, we assume that a path service computes paths
from one access domain to all others. Note that this does
not preclude larger services, which provide paths for multiple
source domains, or multiple (possibly competing) services per
access domain.

C. Problem Statement

Given the above model, our goal is to build a service
that can provide, on demand, multiple paths from a single
access domain to any given destination access domain. It must
perform this function in a graph at least the scale of today’s
Internet AS graph (105–106 nodes), with latency comparable
to an Internet round-trip time (a few tens of milliseconds). The
service should be implementable on commodity hardware, and
should scale through parallelism.

In addition, we want the service to provide the most recent
available information about the performance characteristics of
any returned paths, to help the application or access domain
choose among them. This might include, for example, utiliza-
tion of the bottleneck channel(s) in recent time intervals, or
the distribution of delays recently experienced by packets along
that path; such information can be derived from the information
for the individual relays making up the path.

D. Economic Considerations

The flow of compensation in our system is as follows: Ac-
cess domains make money by charging users to connect to the
network. Transit domains make money by charging for transit
service. Path providers make money by charging users—either
directly, or indirectly by charging their access providers—
for providing paths, and access to the transit services that
implement those paths. Thus, users pay access providers and
path providers; path providers pay transit providers for the
use of their relay services. Transit providers must receive
compensation (directly or indirectly) from any users or access
domains whose traffic they forward. One thing that makes this
feasible is that the path providers acts as a clearinghouse for
payments from users to transit providers.

Such payments might occur on various time scales. In the
limit, a path provider might charge for each individual request
fulfilled. More plausible, however, would be a subscription-
type service, in which users (or their access domains) contract
with a path provider for path service over a longer time
interval; the path provider in turn pays transit providers for
service.

One of the features of this system is that money follows
traffic flow, while traffic flow is only weakly constrained.2

2Certain path providers might contract with a limited subset of transit
providers to get relay information and collect for transit usage for reasons of
scalability or business relationships. This is fine, provided the subset ensures
adequate path diversity to every destination domain.

This is in contrast to the current Internet ecosystem, in which
traffic is (mostly) constrained to flow between customer AS’s
and their providers. In other words, in the current Internet
ecosystem, traffic flow follows money flow. Because the money
flow changes very slowly, competition based on service quality
is effectively inhibited.

E. Policy Enforcement

It remains to show that transit providers can enforce their
policies—that is, control access to their resources. If all path
services receive all relay advertisements, and a path service
constructs many possible paths (up to some maximum path
length), in principle any access domain can send packets via
any of a large set of transit providers. However, a transit
domain should only carry traffic that it knows it has been (or
will be) compensated for. The problem is that once a source
knows a path it can continue to use it forever (including after
it stops paying the path provider), unless some access control
mechanism is provided.

The form of such a mechanism will depend on the way
forwarding is implemented. Here we discuss two possibilities,
which correspond to an SDN-based forwarding approach and
a source-routed approach to forwarding.

a) Stateful, SDN-based enforcement.: In this method,
when a path provider returns a path to a user, it informs
an SDN controller for each transit domain in the path. Each
controller then installs state in its domain, which causes
packets arriving on the specified ingress channel that match
a specified pattern—say, source and destination IP address (or
prefix) and/or flow ID—to be forwarded through the network to
the specified egress channel. The transaction between the user
and the path provider gives the user access to the returned paths
for some period of time, after which the switch state is removed
from the transit domains, revoking that user’s access. Note
that—in contrast to prior work on using GMPLS to establish
inter-domain paths [5]—no co-ordination is required between
either the switches or the controllers for the different domains.
The advantage of this approach is that it can probably be made
backward-compatible, using existing protocol headers, thanks
to SDN. It has the usual disadvantages of stateful forwarding
in networks, and also increases the pretransmission latency.

b) Stateless, in-band enforcement.: In this approach,
packets carry an explicit representation of the path in the
packet, along with a proof of policy compliance for each
domain in the path. Such a proof could take the form of
a cryptographically-derived token, based on a secret shared
between the path provider and the transit domain, and con-
taining an expiration time. Such a scheme for verifying policy-
compliance of source-routed packets is described in Platypus,
for example [12]. The ingress switch in each transit domain
verifies compliance, then simply forwards the packet toward
the indicated egress channel. (As with the stateful approach,
the intra-domain portion of the path is completely up to
the provider.) This approach has the advantage of greatly
simplifying the state requirements of transit domains. It has
the disadvantage of adding to the computational load on the
data plane, and significantly increasing the overhead in the
packet. Both of these costs can be amortized over multiple
uses, for example by verifying packets at random intervals.

F. Features of the Approach

In this section we point out some advantages and chal-
lenges of our proposed approach, compared to the current

Internet.

• Application-specific path selection. The ability to
select paths with different characteristics for different
classes of applications—without building application
knowledge into the infrastructure—is a key benefit of
our approach.

• Performance Differentiation. Our system allows per-
formance information to be computed for paths and
conveyed to the application, thus enabling applications
to manage their own quality of service.

• Transparency. In our system the scope of each
provider’s (access or transit) responsibility is clear and
well-defined. Contrast this with the current Internet,
in which customers pay ISPs for Internet access, but
no ISP can provide this service by itself, because it
controls only a small fraction of end-to-end paths. In
particular, a customer cannot hold a provider respon-
sible for downstream service failures.

• Competition. Because providers are paid for well-
defined services, they have an incentive to innovate
and compete based on service quality.

• Efficiency. In today’s Internet, the routing system
amortizes the cost of computing routes to all possible
destinations over all packets; every node has a route
to every destination at all times. Our system admits
a much wider range of amortization schedules. For
example, paths to certain destinations might be com-
puted on demand, if latency is not important for the
users. Paths that are frequently used can have their
performance information updated more often.

These advantages are not without cost. In particular, our
scheme adds latency (to obtain paths) before a first packet
can be sent. If paths are unidirectional, a similar delay will
be required before any reply packet can be sent. One goal of
this paper is to give evidence that a well-engineered system
can keep these delays within acceptable range. The policy-
enforcement mechanism (see Section II-E) adds additional
overhead, in the form of either signaling delay or significant
packet header expansion.

Finally, before presenting our system design, we consider
the time scales of events of interest to the global routing
system.

• The set of possible paths is defined by the set of access
and transit domains and the channels that interconnect
them. This set changes only when new providers and
channels come into existence or existing ones go
out of service permanently. It is therefore reasonable
to perform an expensive computation to construct a
long-lived database of possible paths up front, and
thereafter update it on a relatively slow timescale
(hours to days) as the underlying graph changes.

• The medium-to-long-term performance of a relay, or
of a path, changes on a timescale of seconds to
minutes. It makes sense for transit providers to provide
periodic updates to relay performance information—
say, a histogram of measurements observed over the
past minute, and a EWMA-filtered history of such
measurements. A path service can then update a path’s
performance information the next time a path using
that relay is returned to a user.

• The users of a path are in the best position to observe

Slow

Changing

Routing

Information

Repository

Fast
Joiner

Routing

Information

Collector

Slow

Joiner

Information

Repository

Fast

Changing

Routing

Path

Sorter

Path

Index
Table

Cache Path Query

Indexer

Partitions of

Slow−Changing Path Records

Partitions of

Fast−Changing Path Records

Query Handler

Fig. 2: Path Service Architecture

the instantaneous status of a path—whether it is up
or down, and its current performance. Given adequate
path diversity, the knowledge and ability to select from
multiple paths enables a source to quickly detect and
react to temporary outages and recoveries—generally
on the scale of a round-trip-time, i.e., tens to hundreds
of milliseconds. In contrast, today’s global routing
system converges on the timescale of minutes.

III. PATH SERVICE DESIGN

In this section we describe the conceptual design of the
path service described in the foregoing sections. Our goal is
to show that the resource requirements to provide adequate
service are rather modest. Obviously this is only one point in
a large design space; we evaluate its effectiveness in the next
section.

Fig. 2 is a high-level overview of the design, which
comprises the routing information collector (RIC), slow-joiner,
fast-joiner, sorter, query-handler, and indexer. Arrows between
components in Fig. 2 indicate the flow of information. Ovals
represent threads or processes; the number of times each is
instantiated can be varied as resources permit.

RIC is a distributed component that receives periodic
relay advertisements from transit domains. Each RIC com-
ponent collects information from a different set of providers
in parallel. The collected routing information consists of
“slow-changing” and “fast-changing” components. The slow-
changing part comprises connectivity information and load-
independent properties of relays such as capacity and propaga-
tion delay. Fast-changing information includes load-dependent
properties like delay distribution and utilization. The received
information goes into databases of slow-changing and fast-
changing path attributes, respectively. In the implementation
evaluated in Section IV, the fast-changing information consists
of packet delay and available bandwidth distributions, both

 0

 0.2

 0.4

 0.6

 0.8

 1

Hist1 Hist2 Hist3 Hist4 Hist5

0-20msec
20-40msec
40-60msec
60-80msec

Fig. 3: Latency histograms of five paths sorted from left to
right according to their likelihood of satisfying delay ≤ 20

represented as simple histograms. All relay advertisements are
assumed to contain histograms of the same size.

The slow-changing routing information is used by the slow-
joiner to generate partitions of slow-changing path records. A
path record contains the sequence of relays that make up the
path, along with the aggregated path performance attributes
derived from the attributes of the relays in the path.

The fast-joiner computes the performance information (de-
lay and available bandwidth distributions) of a path by per-
forming join operations on the relay distributions. In the case
of delay distributions, the fast-joiner performs (approximate)
convolution on the relay distributions. Convolution on two
histograms with n bins has a complexity of O(n2). We use
a quantizing approximation described by Nahrstadt et al [15],
which treats histograms as if each measurement’s value is
equal to the midpoint of the bin. Thus, if the bin boundaries are
0 and 20, the operation assumes each observed value (packet
delay) counted in the bin was actually 10. This introduces a
(bounded) error, but maintains uniformity of the data structure.
In the case of available bandwidth distributions, the join
operation involves a simple min operation on the distributions
with a complexity of O(n).

The sorter produces a ranking of paths (i.e., path records)
according to their likelihood of satisfying the end-system’s
constraints. For each query that specifies constraints, the
sorter first computes each path’s probability of satisfying the
constraints, ten performs the sorting operation.

Consider a path query that requests k paths from s to
d, with delay bound c. The sorter first uses the histogram
associated with each s-d path to compute the probability that
delay is less than c for that path. That probability is computed
as the fraction of the packets in the histogram that are not to
the right of the bin containing c; in other words, c is rounded
up to the nearest bin boundary, and the fraction of packets
in that bin or to the left of it is computed. Fig. 3 shows an
example with delay histograms for five paths, where the bin
boundaries are at 0, 20, 40, 60, and 80 msecs. The histograms
are sorted from left to right in order of decreasing likelihood
of satisfying the delay constraint delay ≤ 20.

Each sorter deals with a separate part of the fast-changing
path info database and sorts its own assigned partition. Con-
sider again the above query that requests k paths from domain
s to domain d, with delay not greater than c. The query-handler
receives the query and forwards it to the sorter, which carries
out the following steps:

1) Each copy of the sorter retrieves all path records with

source domain s and destination domain d from its
partition. (A pre-computed path index table is used
for fast access to paths by source-destination.)

2) Each sorter computes the likelihood each of its paths
satisfies the delay constraint, as described above. This
computation requires a single pass through the entire
list, which produces the k paths in the partition with
the highest likelihood of satisfying the constraint are
obtained.

3) Each node in the cluster reports its top k paths to a
master node.

4) The master node merges and filters the lists to obtain
the k overall best paths.

When each partition of path records contains roughly the same
number of paths for a given source-destination pair, each sorter
node has roughly the same computational load.

Path queries that include additional hints will, of course,
require additional processing steps, for example to filter out
paths that use providers on a blacklist or not on a whitelist.
The path index table contains pre-computed mappings to locate
path records by the providers that they traverse. The indexer
periodically updates the table only when the list of path
records change as a result of changes in slow-changing routing
information (infrequently).

IV. EVALUATION

In this section we describe an implementation of our path
service and present results of our evaluation of its performance.
We first describe the input topology that we use in our exper-
iments and also explain how we generate paths; Section IV-B
presents details of the implementation and results.

A. Topology

The input to our experiments is an Internet AS-level
topology that is constructed using CAIDA’s AS relationship
dataset [1]. The CAIDA AS relationship dataset consists of AS
adjacencies along with annotated relationships (e.g., customer-
provider).

The current Internet topology, having domains that act both
as access and transit at the same time (e.g. tier-1 domain
hosting content), does not map directly to our model, where
each domain is transit or access but not both. We therefore
transform the CAIDA AS topology to a slightly different
domain-level topology that may emerge as a result of sep-
arating access and transit roles of domains. The first step
is to identify AS’s in the CAIDA topology that have mixed
roles; the second step is to split them into an access and a
transit domain, connected to each other by channels. In order
to identify domains with mixed roles, we first classify each
domain in the CAIDA topology as either i) primarily transit
or ii) primarily access. A method suggested by Dhamdhere
et al [4] infers the primary business of each domain (based
on the size of its customers, providers and peers) and clas-
sifies each domain into one of three categories: (i) transit
providers (TPs) (ii) Content/Access/Hosting providers (CAHP)
or (iii) Enterprise Customers (ECs), corresponding to various
companies, universities and organizations. Applying the above
classification method resulted in 35,287 primarily EC, 4,646
primarily TP and 1,755 primarily CAHP domains. Given these
results, we further classify EC and CAHP domains as primarily
access and the TP domains as primarily transit domains.

We used a day’s worth of unsampled NetFlow traces
collected at the egress point of a large University campus
network to identify domains classified as TP that also had
secondary hosting or content provider roles. More precisely,
2700 of the 4,646 original transit domains were destinations
for a significant number of flows (i.e. 10% of all the flows)
in the trace set, and so were identified as “mixed role” TPs. In
addition to TPs with mixed roles, a subset of the domains clas-
sified as primarily access (ECs and CAHPs) have customers,
according to CAIDA data, which means they provide transit
service to other domains. In order to reflect the secondary
roles of these domains in the topology, we split them into
two, one transit and one access domain, connected by multile
channels; all channels of the original domain were connected
to the transit component. The resulting topology has 37,987
access domains and 6,401 transit domains.

In the Internet today, there are typically multiple channels
between large transit providers. To reflect that in our experi-
mental topology, we added 20,000 additional edges between
transit providers, placing them randomly between pairs of
adjacent transit domains, with higher-degree domains favored.
Also, we added a total of 18,694 new edges between access and
transit providers in order for access domains to have an average
multi-homing degree of 4. When adding these multi-homing
edges, we selected access providers uniformly at random. The
resulting graph used in our evaluation has 302,148 (symmetric
uni-directional) channels.

Using this topology, we compute the following paths from a
random source domain s: for each destination (access) domain
d, we compute all shortest paths from each egress channel se
of s to each ingress channel di of d. We also compute all
paths from se to di of length L+ 1, where L is the length of
the shortest path from se to di. This resulted in approximately
1.65 billion unique paths from a source domain (a university
campus network) with four egress channels to all destination
access providers.

In generating these paths, we made certain assumptions
about the transit routing policies of transit domains. Specifi-
cally, we distinguish between those transit providers (TPsec)
that resulted from splitting CAHPs or ECs (i.e., for which
transit is a secondary function), and those (TPpri) that are
primarily or exclusively a transit provider. For the latter we
assumed an unconstrained policy: they offer relays between
any two of their channels. This policy makes it more chal-
lenging to scale the service. On the other hand, the TPsec

transit providers are assumed to have a more constrained
policy, viz., they only forward packets between neighbors that
CAIDA identifies as their peers and customers and neighbors
identified as providers and customers. With these two types of
transit policies, the total number of relays offered is around
180 million. However, the computed paths from the random
source s to all destinations uses only about 12 million relays.

The topology that we used in our experiments is designed
to approximate the structure of the current Internet topology.
Future Internet topologies may differ in terms of size and
connectivity properties. Because our approach scales through
parallelism, future Internet topologies with more potential
paths than the current Internet can be accommodated by adding
additional instances of components that take part in both the
on-demand (search) computations (e.g. path sorters) and the
pre-computation of paths (e.g. slow-joiners).

B. Implementation Details and Results

1) Setup: We implemented a distributed path provider
and ran experiments on a single server with 4 Intel Xeon
X5650 processors containing a total of 24 cores and 128GB
of memory. The path provider implementation consists of S
searchers, U updaters (i.e. Routing Information Collectors
(RICs)), a query-handler and a cache-controller. The routing
information updates and path queries are fed into the path
service system using update-generator and query-generator
processes respectively.

A searcher in the implementation corresponds to a com-
bined fast-joiner and path-sorter in Fig. 2 and it is responsible
for computing the top-k paths within a partition of all path
records using the most recent routing information. Path records
are partitioned onto searchers so that each searcher is assigned
about the same number of paths to each destination; this leads
to a more balanced workload among searchers. Updaters are re-
sponsible for updating the routing information repository upon
receiving new routing information from the update-generator.
The unit of routing information is a relay record that consists
of the relay (i.e., ingress and egress channel identifier pair) and
the relay’s attributes (i.e. performance characteristics). In our
experiments, we used latency and available bandwidth as the
two attributes of relays. Both of the attributes are represented
in the form of histograms, each containing 5 bins.

The query-handler is responsible for relaying path queries
to the searchers, collecting and merging the individual top-k
results obtained from the searchers to obtain the final top-k re-
sults. The query-handler is also responsible for sending search
and insertion requests to the path cache, which is maintained
by a separate process called cache-controller. Upon collecting
the individual top-k results from the searchers and merging
them to get the final top-k results, the query-handler sends a
request to the cache-controller to store the final results to the
query. In our experiments we use a query-generating process,
which is separate from the path service. Query-generator sends
path queries to the query-handler at a sufficiently high rate to
keep the incoming request queue (with size 10) of the query-
handler full at all times. The update-generator periodically
broadcasts the changes in routing information to the updaters.

In all of our experiments, we used unsampled Netflow
traffic traces collected at the egress point of an access network
to generate realistic path queries. The IP flows in the Netflow
traces are pre-processed to map each destination IP address to
a destination domain. In the Netflow traffic traces, we observed
a significant locality of reference in the destination domains
contacted by the outgoing flows. This increases the importance
of the path caching mechanism, which significantly improves
the scalability of path computations. The path-cache is flushed
when new updates arrive periodically; thus the effectiveness
of caching also depends on the frequency of updates.

A path query consists of a destination domain, a traffic
class and k. Each traffic class is statically mapped to a list
of constraints on bandwidth and latency. In our experiments,
we used five traffic classes: i) Low latency (e.g. interactive
traffic) class ii) high bandwidth (e.g. bulk transfer traffic)
class, iii) Medium bandwidth and low latency class (e.g. video
conference traffic), iv) high bandwidth and low latency class
(e.g. real-time, high quality video streaming traffic) and v)
best-effort (e.g. email traffic) class. In our experiments, we
generated queries with random traffic classes and also with

traffic classes that is unique for each destination domain. Upon
receiving a query, the path service computes top-k (k ≤ 10)
paths that are most likely to satisfy the requirements of the
given traffic class.

We are interested in the resources required to serve a stream
of path requests with acceptable latency, while concurrently
processing state updates. The performance metric of interest
is the average query processing time, which we measure as
the time from when the query is received until the response is
ready to send (In a real system there will also be latency to
transmit the query and response, but if the service is located
in the source access domain, we expect this to be small—
comparable to DNS lookups today). The parameters varied
include the number of searchers threads and the frequency of
routing information updates.

Upon receiving a query from the query-handler, a searcher
first locates the path records in its partition with source s and
destination d using its pre-computed index. Then, the searcher
goes through each path record and determines whether the
attributes of the relays that form the path have changed since
the path attributes were last computed. The searcher computes
the attributes (i.e., latency histogram) of each stale path and
the probability of each path’s satisfying the constraints that
is associated with the traffic class specified in the query.
The searcher then sorts the path records according to their
probabilities and returns the top-k paths. Because the searchers
read from relay records that are periodically written by the
updaters, locking mechanisms are implemented to protect the
integrity of the relay records.

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200

F
re

q
u

e
n

c
y

Query Processing Time

(a) 12 Searchers

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200

F
re

q
u

e
n

c
y

Query Processing Time

(b) 14 Searchers

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200

F
re

q
u

e
n

c
y

Query Processing Time

(c) 16 Searchers

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000 1200

F
re

q
u

e
n

c
y

Query Processing Time

(d) 18 Searchers

Fig. 4: Distribution of query processing times for different
number of searcher threads.

2) Experiments: To evaluate the scalability of our design,
we measured the distribution of query processing times with
varying number of searchers. The query processing time is
the amount of time between the submission of a query to a
query-handler until the query-handler collects workers’ top-k
results and merges them to produce the final top-k result. In
Figures 4(a), 4(b), 4(c) and 4(d), the distribution of query
processing times with various numbers of searcher threads are
shown. As one would expect, the average query processing
times decrease as the number of searcher increase. The average
processing times corresponding to 12, 14, 16, and 18 searchers
are 39.79, 35.12, 31.22 and 28.01 milliseconds per query,
respectively. In these experiments the total number of queries

that are processed is set to 10, 000, the traffic class values of
the queries are selected randomly and updates arrive every 10
seconds each with 100, 000 relay records. We have also tested
our approach with larger updates with sizes up to 500, 000
relay records and did not observe significant changes in terms
of query processing time. On the other hand, the frequency of
query arrivals have significant impact on the query processing
times (as shown in Fig. 6(b)) because of their impact on the
efficiency of caching as we explain in detail later.

Despite the random selection of traffic classes in the
queries, the cache hit rates for the experiments in Figure 4,
with 12, 14, 16 and 18 searcher threads are 32.64%, 33, 08%,
34.02%, and 34.97%, respectively. The high cache hit rates in
these experiments is the result of the high locality of reference
in the set of destinations contacted by the flows in the Netflow
traces. We also performed experiments where we assigned a
static traffic class to each destination so that the queries to the
same destination have the same traffic class. Space constraints
preclude us from presenting the distributions of processing
times for those experiments; as expected, however, using static
traffic class values in queries leads to even higher cache hit
rates of around 60%, which in turn leads to lower average
query processing times for the path service. On the other hand,
in the absence of caching, the average query processing times
for 12, 14, 16, and 18 searchers grows to to 69.74, 64.94,
59.96, and 55.6 milliseconds respectively.

The large processing times in the above results in Figures 4
correspond to queries that request paths to destinations that
have very large number of paths. To destinations with large
degrees, there are a large number of paths because the number
of paths for each source egress and destination ingress com-
bination adds up. We observed a strong correlation between
a destination’s popularity and its multi-homing degree in the
network traces, which is logical because popular destinations
tend to receive large volume of traffic and as a result require
large multihoming degrees to handle the traffic. Therefore,
the path-cache effectively reduces the occurence of expensive
calculations for the popular destinations.

In the real deployment scenario, the destination domains
are not expected to allow paths through any ingress channel
to their network. Instead, destination domains have strong
incentive to perform ingress traffic engineering, which involves
selecting a set of ingress channels and provide this selection
as an additional hint to the path service. Similarly, the source
domains are likely to select few of their egress channels to
influence the outgoing traffic. In order to test our path service
under the traffic engineering scenario, we first limited each
destination and source to choose 1 ingress channels. The query
processing times for 1 egress and 1 ingress channels are given
in Fig. 5(a) and Fig. 5(b) for 12 and 18 searcher threads,
respectively.

In a subsequent experiment, we tested with sources and
destinations picking 2 incident channels given that they have
at least 2 incident channels. The query processing time dis-
tributions for up to 2 incident channels are given in Fig. 5(c)
and Fig. 5(d) for again 12 and 18 searcher threads, respec-
tively. The average query processing times differ significantly
between the tests with 1 and up to 2 incident channels. For
the case with 1 incident channels, the average query processing
times for 12 and 18 searchers are 8.2 and 6.45 milliseconds,
respectively. On the other hand, the average query processing

times for the case with 2 egress and up to 2 ingress channels
are 26.12 and 19.32 for 12 and 18 searchers, respectively.
The difference between the results of the two cases is due
to the approximately 4 folds increase in the number of paths
considered during the search operations. These results suggest
that it may be a good practice to divide the path computation
between two domains into individual source and destination
channel pairs and perform these computations in parallel in
different servers.

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600

F
re

q
u

e
n

c
y

Query Processing Time

(a) 12 searchers, 1 ingress channel

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600

F
re

q
u

e
n

c
y

Query Processing Time

(b) 18 searchers, 1 ingress channel

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000

F
re

q
u

e
n

c
y

Query Processing Time

(c) 12 searchers, 2 ingress channels

 1

 10

 100

 1000

 10000

 0 200 400 600 800 1000

F
re

q
u

e
n

c
y

Query Processing Time

(d) 18 searchers, 2 ingress channels

Fig. 5: Distribution of query processing times for different
number of searcher threads with ingress traffic engineering.

In the above experiments, we hold the routing information
update rate constant at 100, 000 relay records arriving every 10
seconds. In order to understand the impact of update arrival
frequency on the query processing times, we measured the
performance of the path service as the update arrival interval
varies for a fixed number of 18 workers, with random traffic
classes in each query. The average query processing times and
the caching hit rates are shown in Fig. 6 for update intervals of
10, 15, 20, 25, and 30 seconds. As expected, the average query
processing times increase as the update frequency decreases
(i.e. increasing intervals), due to the increasing effectiveness
of caching. The cache hit rate increases when updates arrive
less frequently because the path query results can be reused
for a longer time period; between comitting of the updates to
the routing repository by the updaters and the arrival of the
next update.

While the updaters apply changes to the routing informa-
tion repository, caching is disabled to prevent stale data from
being returned. Once the updaters are done with processing
a routing update, an “update-complete” signal is sent to the
cache-controller to resume caching of query results until the
next update arrival. The rate at which updates are completed
is important because it constrains the effectiveness of caching,
as well as the quality (i.e. freshness) of the results. Therefore,
a number of updaters simultaneously apply the necessary
changes to the routing information repository containing the
relay records. In all of our experiments, we used 2 updater
threads that simultaneously update the relay records. Using 2
updaters, the processing of 100, 000 relay updates takes around
0.025 seconds on average. For larger update sizes, it may be
necessary to increase the number of updaters.

It is also worth pointing out that the overhead of relay
updates on the network is fairly small especially because the

majority of the relay updates consists of only updates on
fast-changing attributes of relays, and only a small portion
of updates need to carry both the slow-changing and fast-
changing attributes (i.e. only upon changes in slow-changing
attributes, which happen infrequently). Assuming that the bin
boundaries of histograms are static and are not communicated
in each update, a single relay update, which carries only fast-
changing attributes of a relay is only around 20 bytes and
contains a globally unique relay identifier and the value of
each individual bin (ranging between 0 and 100) in the two
histograms corresponding to delay and available bandwidth.
A globally unique relay identifier can be assigned to each
relay either based on the relay’s ingress and egress channel
identifiers or some other method known to both the path
service and the domains. The overhead of an update containing
100, 000 relays with only fast-changing attributes that is sent
every 10 seconds is only around 1.52 Mbits/sec. Relay updates
with slow-changing information contains identifiers of ingress,
egress channels, and the various slow changing relay attributes
such as bandwidth capacities, propagation delays and so on in
addition to fast-changing attributes.

In our results, we emphasized responsiveness of the service
rather than the quality (i.e. freshness of routing information
used to compute paths) of results. Hardware constraints pre-
vented us from testing other computational strategies that
require additional computational components or storage. For
instance, we only considered a fully on-demand approach to
computing path attributes (e.g. convolutions), while a mix
of on-demand and pre-computational approaches may lead to
better results; for instance by pre-computing the attributes of
a subset of popular paths (i.e. using additional processes that
work in parallel) before the arrival of queries in addition to
query-time path attribute computations. Also, one can use pro-
active caching mechanisms to update popular cache entries
rather than simply flushing all the entries upon the arrival of
new updates; however this requires additional computational
components that are dedicated to this task. Another strategy to
possibly speed-up the path attribute computations significantly
is to cache the aggregate attributes of the subsections of
paths that are common to many paths (e.g. sequence of relays
from source domain to a tier-1 domain). Caching subsections
of paths; however, require significant amount of additional
storage space that needed to be used conservatively on a single
server. We leave to future work the implementations of the
above strategies possibly in a truly distributed setting such
as a high-performance cluster (HPC), where computation and
storage constraints are not as limiting.

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 10 15 20 25 30

A
v
e

ra
g

e
 t

im
e

 (
m

s
e

c
/q

u
e

ry
)

Update Interval (seconds)

(a) Average Query Processing
Times

 35

 40

 45

 50

 55

 60

 65

 10 15 20 25 30

H
it
 R

a
te

 (
%

)

Update Interval (seconds)

(b) Cache Hit Rates

Fig. 6: Average query processing times and the cache hit rates
for different update intervals

V. RELATED WORK

A variety of emerging future internet architectures have
embraced the idea of separating the routing decision from the
forwarding decision, thereby enabling a wider range of routing
policies than is possible in the current Internet. Typically
this manifests itself as a form of source routing in which
each packet carries the path to be travelled. Packets in the
Platypus [12] overlay source routing system are stamped using
capabilities for the paths they traverse. The stamps enable
providers to ensure packets follow policy-compliant paths, via
a data-plane check. This approach allows routing to be sepa-
rated from forwarding, although Platypus does not explicitly
define how routes should be computed. Another example is
Nebula’s ICING [11] protocol where packets identify the set of
“realms” along a path and also include explicit proofs of con-
sent to traverse those realms. Routes (i.e., consent for paths)
are obtained using an up/down approach similar to that used in
NIRA [16] where up-paths are combined with down-paths to
create end-to-end paths. The SCION [17] routing protocol in
the XIA [2] architecture takes a similar approach, using path
construction beacons from a trust domain’s core to discover
up/down paths and their intersections that then form an end-
to-end path. The Pathlet architecture [7] uses source routing
over a virtual topology and allows providers to use a rich set of
routing policies when declaring services. While many of these
emerging architectures provide the ability to separate routing
from forwarding, they are largely focused on the forwarding
mechanisms that make the separation possible, rather than ex-
ploring new, efficient, and scalable ways to advertise topology
and compute routes. Unlike our approach, these approaches are
not designed to offer timely information about current delays,
available bandwidth, or other metrics that change frequently
on small timescales. Douville etal. [5] proposes an automated
method to compose connection-oriented inter-domain transit
services that is built on top of the PCE (path computation
element) architecture [6], which separates forwarding and
routing by introducing a centralized path computation element
within a domain. The automated method discovers AS-level
paths that satisfy various constraints using a simple breadth-
first search like approach and it is not designed with the goal
of responding to a stream of queries from users in a timely
manner.

VI. CONCLUSION

We have proposed a system in which end-to-end in-
terdomain paths are computed offline, and investigated the
scalability of such “centralized” path computation in a graph
resembling the current Internet. The performance results are
encouraging: using commodity hardware, with a flow dis-
tribution derived from campus traffic traces, we can return
multiple paths with associated performance information, while
maintaining average latencies comparable to Internet round-
trip times (a few tens of milliseconds). Our implementation
scales easily through parallelism and admits various additional
optimizations; we expect that with modest resources it should
be possible to handle almost all queries in at most a few
milliseconds. Our scheme does not rely on any particular
addressing or naming scheme, and specifically does not rely
on hierarchical, topology-based identifiers.

Our factored routing system allows access to a larger
portion of the routing/forwarding design space than is possible
in today’s Internet. We have shown how it can be used with

different forwarding schemes, including one based on SDN
which we believe can be made backward-compatible, and
another based on source routing with in-band policy compli-
ance checks. We believe our proposed system, combined with
suitable forwarding and policy enforcement mechanisms offers
a number of advantages. The importance of our performance
results is that they debunk the conventional wisdom that
centralized routing computations do not scale.

REFERENCES

[1] The CAIDA AS Relationships Dataset, June-August 2013,
http://www.caida.org/data/active/as-relationships/.

[2] Ashok Anand, Fahad Dogar, Dongsu Han, Boyan Li, Hyeontaek Lim,
Michel Machado, Wenfei Wu, Aditya Akella, David Andersen, John
Byers, Srinivasan Seshan, and Peter Steenkiste. XIA: An Architecture
for an Evolvable and Trustworthy Internet. In The Tenth ACM Workshop

on Hot Topics in Networks (HotNets-X), November 2011.

[3] Danny McPherson Jon Oberheide Craig Labovitz, Scott Iekel-Johnson
and Farnam Jahanian. Internet inter-domain traffic. In Proceedings of

SIGCOMM, pages 75–86, 2010.

[4] A. Dhamdhere and C. Dovrolis. Twelve Years in the Evolution
of the Internet Ecosystem. IEEE/ACM Transactions on Networking,
19(5):1420–1433, Sep 2011.

[5] Richard Douville, Jean-Louis Le Roux, Jean-Louis Rougier, and Stefano
Secci. A Service Plane over the PCE Architecture for Automatic
Multidomain Connection-Oriented services. IEEE Communications

Magazine, 46(6):94–102, June 2008.

[6] A. Farrel, J. P. Vasseur, and J. Ash. A Path Computation Element
(PCE)-Based Architecture. RFC 4655, August 2006.

[7] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica.
Pathlet routing. In Proceedings of ACM SIGCOMM, pages 111–122,
2009.

[8] Timothy G. Griffin and Gordon Wilfong. An analysis of bgp conver-
gence properties. In Proceedings of the Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communica-

tion, SIGCOMM ’99, pages 277–288, New York, NY, USA, 1999.
ACM.

[9] Onur Ascigil James Griffioen, Kenneth L. Calvert and Song Yuan.
Separating routing policy from mechanism in the network layer. In G.
Rouskas B. Ramamurthy and K. Sivalingam, editors, Next-Generation
Internet Architectures and Protocols. Cambridge University Press, 2011.

[10] Hyojoon Kim and Nick Feamster. Improving network management
with software defined networking. IEEE Communications Magazine,
51(2):114–119, 2013.

[11] Jad Naous, Michael Walfish, Antonio Nicolosi, David Mazires, Michael
Miller, and Arun Seehra. Verifying and Enforcing Network Paths with
ICING. In Proceedings of the ACM CoNEXT Conference, December
2011.

[12] B. Raghavan, P. Verkaik, and A. Snoeren. Secure and Policy-Compliant
Source Routing. IEEE/ACM Transactions on Networking, 17(3):764–
777, June 2009.

[13] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label
Switching Architecture. RFC 3031, January 2001.

[14] George N Rouskas, Ilia Baldine, Kenneth L Calvert, Rudra Dutta,
Jim Griffioen, Anna Nagurney, and Tilman Wolf. Choicenet: Network
Innovation through Choice. In Proceedings of the Optical Network

Design and Modeling (ONDM), 2013.

[15] Li Xiao, Jun Wang, King-Shan Lui, and Klara Nahrstedt. Advertising
interdomain qos routing information. IEEE Journal on Selected Areas

in Communications, 22(10), 2004.

[16] X. Yang. NIRA: A New Internet Routing Architecture. In Proceedings

of ACM SIGCOMM 2003 Workshop on Future Directions in Network

Architecture (FDNA), Karlsruhe, Germany, pages 301–312, August
2003.

[17] Xin Zhang, Hsu-Chun Hsiao, Geoffrey Hasker, Haowen Chan, Adrian
Perrig, and David Andersen. SCION: Scalability, Control, and Isolation
On Next-Generation Networks. In IEEE Symposium on Security and

Privacy, May 2011.

