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Abstract—We propose a model to analyze the decisions taken

by an Autonomous System (AS) when joining the Internet.

We first define a realistic model for the interconnection costs

incurred and then we use this cost model to perform a game

theoretic analysis of the decisions related to the creation of new

links in the Internet. The proposed model doesn’t fall into the

standard category of routing games, hence we devise new tools

to solve it by exploiting peculiar properties of our game. We

prove analytically the existence of multiple equilibria for specific

cases, and provide an algorithm to compute the stable ones. The

analysis of the model’s outcome highlights the existence of a

Price of Anarchy (PoA) and a Price of Stability (PoS), originated

by the non-cooperative behavior of the ASes, which optimize

their cost function in a selfish and decentralized manner. We

further observe the presence of competition between the facilities

providing either transit or peering connectivity, caused by the

cost differences between these two interconnection strategies.

Index Terms—Internet Modeling, Complex Networks, Game

Theory, AS-level Internet Topology, Supermodular Games

I. INTRODUCTION

The Internet ecosystem is made of tens of thousands Au-
tonomous Systems, interconnected together in a complex and
dynamic manner. Roughly speaking, an Autonomous System
is a network under a single administrative control. ASes can
be grouped in different tiers and categories, depending on the
service they offer and the organization they belong to: content
providers, access providers, transit providers and so on [1].

The late twentieth-century Internet ecosystem was largely
dominated by transit links, where the relationship between the
connecting ASes was of “customer to provider” type. This kind
of relationship produces a hierarchical pricing scheme, where
the customer AS pays its provider for the traffic flowing on the
link, both incoming and outgoing; in return, the latter provides
a default gateway to reach all Internet’s routes. For example,
an access provider AS wishing to grant Internet access to the
eyeballs (i.e. its end users), needs to establish a link with a
transit provider, and pay for the traffic flowing on this link.
Transit providers are also known as Network Service Providers
(NSP) [2] and their pricing strategy is typically volume-based,
metered using the 95th percentile traffic sampling technique
(this allows customer ASes to burst, for a limited time period,
beyond their committed base rate) [3].

This work has been partially supported by the European Commission within
the framework of the CONGAS project FP7-ICT-2011-8-317672.

The beginning of twenty-first century brought a new
paradigm into the environment, since more and more ASes
found it beneficial to establish peering links between them
[4]. This kind of relationship is “settlement-free”, meaning
that the two ASes mutually agree to exchange traffic for free
between them, and the only cost they incur is that of laying
out the physical interconnection. Peers must agree to each
other’s policy, which is used to avoid abuse of the peering
relationship. Typical clauses include prohibition of using the
peer as default gateway (therefore peers cannot be used
to reach other Internet’s routes) and traffic ratio balancing,
meaning that the ratio between incoming and outgoing traffic
over the link must not exceed some value (e.g. 2:1) [5].

The exponential growth of peering links was made possible
mainly thanks to the deployment of Internet Exchange Points
(IXPs) [6]. These interconnection points are facilities through
which ASes can exchange traffic, typically by settlement-free
(i.e. peering) relationships. The growth of IXPs, in number and
in size, made it easy to establish more and more public peering
relationships. In fact, by joining an IXP, an AS can potentially
peer with all (usually a subset) of the other ASes connected to
the same IXP. The pricing strategy of an IXP, with respect to its
customers, is typically flat. Each one of them pays a monthly-
based fee, depending on the size (speed) of the port they are
using and the cost of maintaining the equipment. Thanks to
this mechanism, the IXP can share maintenance costs among
all its participants [7]. It is worth noting that this pricing
strategy doesn’t allow standard cost function modelization
(like in [8]), since the addition of new participants potentially
brings down the costs of an IXP customer.

When an Autonomous System joins the Internet, he needs to
decide the connections to lay out with other ASes. While in the
last century, as shown above, the decision space for ASes was
substantially small, today they have many alternatives: transit
or peering, joining one or more IXPs, dealing with distance
and geographic issues. In principle, the best strategy for an
AS is the one yielding the lowest cost. However, the outcome
of its strategy also depends on that of other ASes dealing with
the same problem, thus we find it straightforward to analyze
the problem in a game-theoretical framework. We propose a
model keeping into account the above factors, which can be
used to compute the outcome of this problem and the strategy
of the players. Realistic modeling of the whole decision spaceISBN 978-3-901882-58-6 c
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of an AS is an extremely difficult task, therefore in our work
we restrict our analysis to the problem of peering versus
transit. Nevertheless, a proper understanding of this problem
is fundamental to get insight on the behavior of ASes in the
Internet environment, as shown by the results of the analysis.

This work brings contributions both from a game theoretic
perspective and an engineering perspective. First of all this is,
to the best of our knowledge, a novel model to analyze the
strategic choices of ASes living in an Internet environment
with both technological and economic constraints. The mod-
elization takes into account many realistic elements, which
do not fall into standard frameworks, yet tries to keep the
problem mathematically manageable. From a game-theoretic
perspective, we prove that our game falls in a specific category
for which we both demonstrate the existence of equilibria and
provide an algorithm for computing stable solutions. From
an engineering perspective, the outcome of the analysis is
highly insightful as it shows both the suboptimality of the
decentralized solution and the emerging competition, first
observed in [9], between the two facilities enabling either
transit or peering connectivity: Network Service Providers and
Internet Exchange Points.

The remainder of this paper is organized as follows: in
Section II we describe the related work, Section III defines the
general model, in Section IV we analyze a simplified model,
derive the existence of equilibria and the algorithm to compute
them, in Section V we show inefficiencies of the decentralized
solution, Section VI shows simulative results for more general
scenarios, then we conclude in Section VII.

II. RELATED WORK

This work relates to the characterization and modeling of the
Internet AS-level topology. In this field the majority of graph
theoretic models try to reproduce observed Internet topological
properties, such as its power-law degree distribution [10], the
small-world property [11] and other structural properties (com-
munities, cliques, etc..) [12]. The graph can be reconstructed
[13] by either defining some attachment criteria, as in [11],
[14], [15], [16] or solving constrained optimization problems
for the different nodes, like in [17], [18].

In our paper we rather try to understand network formation
as the result of a game between ASes. In this context, it
relates to game-theoretic network formation models, which
populate both computer science and economics literature (see
books [19], [20]). This research branch focuses on proving
the existence of equilibria in networks with a fixed number
of agents, where links are formed taking into account their
preferences in the form of utility functions. The need for
mathematical tractability requires simplifications that make
these models unrealistic and unable to study real life networks
such as the Internet. Other models simulating the dynamics
of network formation are agent-based computational models
such as GENESIS [21]. In this case authors can include more
realistic considerations by skipping the analytical part and
simulating the behavior of each agent, hoping to find one of
the possibly many equilibria.

In order to keep the problem analytically tractable we do
not aim at modeling the whole network formation process. We
rather study the interaction between ASes which connect to an
existing network in order to serve some demands. A possible
modelization of a network where access providers need to
select a subset of content providers and fetch traffic from them
in a cost-efficient manner is given in [22]. However, the aim
of this work is quite different from ours, as it concentrates on
the economic analysis of neutral/non-neutral network features,
without taking into account the difference between traffic and
peering agreements. In [23], authors perform an interesting
analysis on network pricing and analyse the economics of
private internet exchanges. This kind of peering, known as
private peering, has different rules and costs compared with
public peering. As explained in the introduction, nowadays
Internet is largely dominated by public peering, occuring
at IXPs, therefore in our work we concentrate on this last
phenomenon, which allows us to give different insights on the
present difference between transit and peering.

III. GENERAL SCENARIO

In the following we describe the general scenario under
investigation and derive the cost function.
A. Description

As said earlier, ASes can be grouped in different categories.
Throughout the paper we will use the following categorization,
closely resembling the one provided by PeeringDB [2]:

Internet Service Provider (ISP)1: this node gives eyeballs
access to the Internet and its contents. Each service provider
has a traffic demand, hereafter demand, which represents the
amount of traffic (uplink+downlink) that it handles.

Content Provider (CP)1: this node has physical access to
the contents users are looking after, therefore an ISP with a
demand for his specific content, has to connect to it in order
to serve this demand.

Internet Exchange Point (IXP)1: this is a facility that
provides peering connection to all its participants. This means
that all the nodes connected to a given IXP can potentially
communicate with each other.

Network Service Provider (NSP)1: this node is located
at the highest hierarchical level of the network, meaning that
each CP can be reached through it. ISPs can reach CPs by
establishing a transit connection with an NSP.

We consider a network with i 2 {1, ..., I} ISPs, n 2
{1, ..., N} CPs and l 2 {1, ..., L} transmit facilities (TF), that
can be either the NSPs or the IXPs. Without loss of generality,
we impose that TFs j1 2 {1, ..., l1} are NSPs, while TFs
j2 2 {l1 + 1, ..., L} are IXPs.

The main difference between transmit facilities is that while
links to NSPs are established through transit connections, links
to IXPs are established through peering connections.

In a transit connection, or customer-to-provider (C2P) con-
nection, the cost to the customer is a function of the amount
of traffic that crosses the link (typically expressed as $/Mbps).

1ISPs, NSPs and CPs are typically ASes. IXPs are not ASes, even if their
infrastructure is under a single administrative control.
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Figure 1: General Model

In a peering connection, the price is generally flat and
depends on the size of the port the customer buys. Moreover,
when peering connections are maintained by an IXP, the costs
are shared among all the participants.

Each ISP i has a demand for a CP n, which we indicate
as �

n

i

. The players of our game are the ISPs, which need to
decide how to split their demand among all possible transmit
facilities. Figure 1 depicts our network scenario.

We indicate with x

n

i,l

the flow from ISP i to CP n via
TF l. The strategy of ISP i is given by the vector x

i

=

(x

1
i,1, ..., x

n

i,l

, ..., x

N

i,L

) 2 RL⇥N , while the strategy of all the
other players is expressed as x�i

2 R(I�1)⇥L⇥N . The goal
of each player is to serve, at the minimum possible cost, his
demand �

i

= (�

1
i

, ...,�

N

i

) 2 RN by splitting it into several
flows x

n

i,l

. We also indicate as:
• x

i,l

=

P
N

n=1 x
n

i,l

the total flow from ISP i to TF l

• x

l

=

P
I

i=1

P
N

n=1 x
n

i,l

the total flow at TF l

Each player, say i, for each transmit facility (NSP or IXP) it
connects to, incurs some costs:

TF usage cost : this cost depends on the transmit facility
used. If it is an NSP, then it is a function of x

i,l

, the flow from
the player to the NSP. Otherwise the TF is an IXP and the cost
is shared among all the participants, therefore it also depends
on the other players, in the form of x

l

, the total flow at the
IXP. Consequently, this cost can be written as a function:

t

l

(x

i,l

, x

l

) (1)

TF capacity cost : each link between an ISP and a TF has
a fixed capacity c

i,l

; this means that we have a constraint of the
form x

i,l

 c

i,l

. While we may introduce it in the problem “as
is”, this would make the model less manageable. Moreover,
due to performance and congestion issues, network operators
typically avoid reaching the capacity limit and keep a margin
for traffic fluctuations. We can think of this performance
degradation as a “virtual cost” for the ISP, and therefore model
the constraint as a cost, that increases as the flow over the
link approaches the capacity limit (as is typically done in the
literature for M/G/1 Processor Sharing queues [8]):

1

c

i,l

� x

i,l

x

i,l

(2)

We are aware that, in reality, network operators adjust this
capacity when there is more demand for it, and the inter-
connection cost grows accordingly. However, this situation

can be avoided as long as our working region is sufficiently
far away from the saturation point. We will always assume
that capacities are symmetric w.r.t. the players, therefore
c

i,l

= c

l

8i. Typically the capacity of the NSP can be assumed
to be much larger than that of IXPs: c

NSP

� c

IXP

(see [3]
and [7]).

CP reachability cost : let’s indicate with b

n

l

the cost of
transporting one unit of flow from TF l to CP n. This cost
is not relevant from the player’s perspective (it is paid by the
CP), however it can be used to express the reachability of
a given CP. In fact, while all the CPs are connected to the
NSPs, an IXP can be connected only to a subset of CPs. This
phenomenon can be expressed by putting:

b

n

l

=

(
0 if l  l1 or IXP

l

! CP

n

1 otherwise

(3)

Thanks to all these considerations, the cost function for
player i can be expressed as the sum of (1), (2) and (3):

C

i

(x

i

,x�i

) =

LX

l=1

✓
t

l

(x

i,l

, x

l

) +

1

c

l

� x

i,l

x

i,l

◆

+

LX

l=1

NX

n=1

x

n

i,l

b

n

l

(4)

In order to serve all the demands, each player i has to satisfy
the flow constraint: for every CP, the total flow has to be
equal to the demand �

n

i

. Therefore player i’s best response
BR

i

(x�i

) is obtained by minimizing cost function (4), subject
to the flow constraints (5):(

BR

i

(x�i

) = argmin

xi C
i

(x

i

,x�i

)

s.t.

P
l

x

n

i,l

= �

n

i

8n
(5)

The vector x

⇤
= (x

⇤
1

, ...,x

⇤
I

) 2 RI⇥L⇥N is an equilibrium
of the game if and only if x

⇤
i

2 BR

i

(x

⇤
�i

) 8i, that is, if the
strategy of each player is a best response to the strategies of
other players.

Throughout the paper we will always refer to the description
of Fig. 1, however, mutatis mutandis, the results are still valid
for scenarios where players are CPs or a mix of CPs and ISPs,
as long as the demand is changed accordingly.

B. Transmit Facility Usage Cost

The TF usage cost is different between the NSPs and the
IXPs. More specifically the NSP usage cost is linear in the
amount of flow that each player sends to it [3]. Therefore we
can write:

t

l

(x

i,l

, x

l

) = a

l

x

i,l

l  l1 (6)

where a

l

, l  l1 represents the transit price of NSP l per
unit of flow. We are aware that, due to economies of scale
in the traffic delivery, transit costs are subadditive in reality.
However, introducing this aspect would overcomplicate the
model, hiding the truly interesting differences between transit
and peering. Nevertheless, we are able to show that some of
our results still hold for more generic transit cost functions
(see below, theorem 5).
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Figure 2: IXP Port Costs for MIX (log-log scale)

For the IXP usage [1], each player has to pay a share of the
total cost of IXP maintenance. This share can be expressed as
the ratio between the flow sent by player i on IXP l and the
total flow crossing that IXP: xi,l

xl
. Assume we can write the

cost of maintenance of IXP l as a function h

l

of the total flow
through the IXP, therefore the usage cost is:

t

l

(x

i,l

, x

l

) =

x

i,l

x

l

h

l

(x

l

) l > l1 (7)

The cost of maintaining the equipment of an IXP is, in
general, a non-linear function of several parameters. In order
to keep the problem manageable, we will approximate this
cost with that of a single port which handles x

l

, the entire
flow over the IXP. The cost of a port is a step-wise increasing
function, as shown in Figure 2 for the MIX2, an Italian IXP.
This type of cost functions can be modeled (see [24]) by using
a function like x

↵ with ↵ 2 [0.4; 0.7]. For simplicity, we take
↵ = 0.5 as this value provides a fairly accurate fit (shown in
Fig. 2). Therefore, we express the maintenance cost as:

h

l

(x

l

) = a

l

p
x

l

(8)

where a

l

, l > l1 is a constant relating the total flow
through IXP l with its mainteinance cost. By putting together
definitions (6), (7) and (8), the cost function (4) can be
rewritten as:

C

i

(x

i

,x�i

) =

l1X

l=1

a

l

x

i,l

+

LX

l=l1+1

✓
a

lp
x

l

x

i,l

◆
+

+

LX

l=1

✓
1

c

l

� x

i,l

x

i,l

◆
+

LX

l=1

NX

n=1

x

n

i,l

b

n

l

(9)

Now, we define these new functions:8
>><

>>:

f

l

⇣P
i

P
n

x

n

i,l

⌘
=

(
a1 l  l1

alpP
i

P
n x

n
i,l

l > l1

g

l

⇣P
n

x

n

i,l

⌘
=

1
cl�

P
n x

n
i,l

(10)

By using (10) and recalling that x
i,l

=

P
n

x

n

i,l

and x

l

=P
i

P
n

x

n

i,l

, we can rewrite (9) as:

C

i

(x

i

,x�i

) =

X

l

X

n

x

n

i,l

"
f

l

 
X

i

X

n

x

n

i,l

!
+

+g

l

 
X

n

x

n

i,l

!
+ b

n

l

#
(11)

2Milan IXP - public peering costs available online: http://www.mix-it.net
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Figure 3: Minimal Complexity Model

Equation (11) is the most general expression of the cost
function for each player. Please note that (11) is in general a
non-convex function of x

i,l

, and therefore we cannot directly
establish existence of pure equilibria. In particular it does
not comply with the general assumptions used for link cost
functions in the framework described in [8]. Nevertheless, we
cannot avoid dealing with functions of this shape if we want
to properly grasp the difference between transit and peering
strategies offered, respectively, by NSPs and IXPs.

IV. MINIMAL COMPLEXITY MODEL (MCM)
In order to gain insights on the problem solution, in this

section we analyze a simpler model, which we call Minimal
Complexity Model (MCM), where I, L,N = 2. The MCM
has two ISP players, two CPs (therefore each player only has
two demands, namely �

1
i

and �

2
i

) and two transmit facilities
available, either the NSP (l = 1) or the IXP (l = 2), as
depicted in Figure 3. With some algebraic manipulations,
explicitely shown in the full version [25] of the paper, we
can rewrite cost function (11) for player 1 of the MCM as:

C

1
(x1, x2, y1, y2) = (12)

=

�
�

1
1 + �

2
1 � x1 � x2

�✓
a1 +

1

c1 � (�

1
1 + �

2
1 � x1 � x2)

◆
+

+ (x1 + x2)

✓
a2p

x1 + x2 + y1 + y2
+

1

c2 � (x1 + x2)

◆
+

+

�
�

1
1 � x1

�
b

1
1 +

�
�

2
1 � x2

�
b

2
1 + x1b

1
2 + x2b

2
2

where x

n

is the flow sent from player 1 to CP n through
the IXP and �

n

1 � x

n

is, by constraint, the flow sent through
the NSP. The same applies to y

n

for player 2.
Assume now that the topology is fully connected, meaning

that bn
l

= 0 8l, n. In this case, from the player’s perspective,
the cost does not depend on the facility used for a specific
CP, but rather on the total amount of flow going through a
specific TF, independently from the destination. Once again,
with some algebraic manipulations (shown in [25]) we rewrite
cost function (12) for both players as:8

>>>>>><

>>>>>>:

C

1
(x, y) = (�1 � x)

⇣
a1 +

1
c1�(�1�x)

⌘
+

+x

⇣
a2p
x+y

+

1
c2�x

⌘

C

2
(x, y) = (�2 � y)

⇣
a1 +

1
c1�(�2�y)

⌘
+

+y

⇣
a2p
x+y

+

1
c2�y

⌘
(13)

where x is the cumulative flow of ISP1 through the IXP
and �1 is its cumulative demand. The same applies to y and
�2 for ISP2. The best response of player i is thus obtained
by minimizing C

i

(x, y) defined in (13).
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While simple, the MCM is interesting on its own as it
provides a clear way to study the fundamental difference
between transit and peering agreements, shedding light on the
emerging competition between NSPs and large IXPs (see [9]).

A. Theoretical Results

Definition 1. Supermodular games [26]

Consider a generic game G, where players’ payoffs are
given by an utility function u : Rk ! R. The game is said
supermodular if the utility function is supermodular, that is:

u(x _ y) + u(x ^ y) � u(x) + u(y) 8x, y 2 Rk

where x _ y denotes the componentwise maximum and
x ^ y the componentwise minimum of x and y. If u is
twice continuously differentiable, this property is given by the
following condition:

@

2
u

@z

i

@z

j

� 0 8i 6= j

In our case we consider costs rather then utilities and
minimization instead of maximization, therefore a game like
ours is supermodular if:

@

2
C(x, y)

@x@y

 0 (14)

Theorem 1 of [27] proves the existence of equilibria for
supermodular games, moreover it provides a way of computing
them. The proof is based on showing that best response

sequences are monotone and therefore converge to a limit
which is then shown to be a Nash Equilibrium Point (NEP).
The monotonicity is a consequence of the “strategic comple-
mentarity” of the players: if one of them chooses a strategy x

that decreases its own cost, this decision is beneficial for the
cost of the other players too.

Here we relax the results on the existence of equilibria
and convergence of best response sequences in supermodular
games.

Definition 2. Symmetric supermodularity

We define as symmetric supermodular games, those for
which (14) holds for all strategies x = y, meaning that the
property holds along the symmetric axis.

Definition 3. Symmetric best response sequence

We call symmetric best response sequence a path (x0, y0),
(x1, y1), . . ., where x0 = y0 and 8i, (x

i

, y

i

) satisfies x

i

= y

i

.

Theorem 4. In symmetric supermodular games, pure equilib-
ria exist and are given as the limit of symmetric best response
sequences.

Proof: Consider a sequence of best responses (x0, y0),
(x1, y1), . . .. Due to symmetry we can choose this path to be
a symmetric best response sequence. From definition 2 and by
applying the same reasoning as in the original proof [27], we
shall get monotone sequences whose limits are equilibria.

Theorem 4 not only proves the existence of equilibria for
symmetric supermodular games, but also gives an algorithm
for computing them. Please note that, for this theorem to

hold, the game does not need to satisfy (14) for all possible
strategies, but just along the symmetric path. This result can
be applied to our game thanks to Theorem 5 and Corollary 6.

Theorem 5. The game defined in (13) is symmetric super-
modular.

Proof: Consider the cost function of our game. We
compute the mixed second derivatives:

8
<

:

@

2
C

1(x,y)
@x@y

= � a2

2(x+y)
3
2
+

3a2x

4(x+y)
5
2

@

2
C

2(x,y)
@x@y

= � a2

2(x+y)
3
2
+

3a2y

4(x+y)
5
2

(15)

Since we are interested only in their sign, we can multiply
both derivatives in (15) by (x+ y)

3
2 , which is always positive

as long as the flows are positive. Therefore we have:8
<

:
sgn

⇣
@

2
C

1(x,y)
@x@y

⌘
= sgn

⇣
a2
4 · x�2y

x+y

⌘

sgn

⇣
@

2
C

2(x,y)
@x@y

⌘
= sgn

⇣
a2
4 · y�2x

x+y

⌘ (16)

Consider now the symmetric axis, where x = y. With
this equality both mixed second derivatives in (16) become
negative, therefore due to condition (14) the game is symmetric
supermodular.

It is interesting to note that, as long as the transit cost
function t

l of one ISP does not depend on the other ISP,
the mixed second derivative (15) does not change. Therefore,
symmetric supermodularity can be applied to game (13) even
for more general transit cost functions (as outlined in section
III-B). Please note that without the symmetric assumption, the
game is neither supermodular, nor submodular, because we
cannot say anything about the sign of the mixed derivatives.

Corollary 6. The game defined in (13) has at least one pure
equilibrium for symmetric demands, given as the limit of a
symmetric best response sequence.

Proof: By hypothesis the demands satisfy �1 = �2. If
we put this condition in system (13), the two players become
symmetric, therefore we get this result combining Theorems
4 and 5.

B. Cost Function Analysis

In order to gain insights on the outcome of the best response
sequence algorithm, here we analyze the cost function. Con-
sider the cost function of player 1 and suppose that the strategy
y of player 2 is fixed, so:

C

1
(x) = (�� x)

✓
a1 +

1

c1 � (�� x)

◆
+

+ x

✓
a2p
x+ y

+

1

c2 � x

◆
(17)

Lemma 7 and Theorem 8, whose proofs can be found in
the full version [25], tell us the shape of the cost function.

Lemma 7. The second derivative of the cost function (17) is
a monotonically increasing function.

Theorem 8. The cost function (17) can be either: always
concave, always convex, or first concave and then convex.
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Figure 4: Cost Function

Figure 4 shows the possible cases. Please note that the shape
depends both on the parameters and the strategy y of the other
player: while for specific values of y the function might be
convex as in Fig. 4b, it can also be concave (Fig. 4a) and in
general is neither convex nor concave, as shown in Fig. 4c.

C. Simulation Results

The analysis of the cost function, performed in section IV-B,
suggests that in our game (13), even if the best response
procedure converges to a NEP, there might be multiple equi-
libria, because of the presence of multiple local minima. This
assumption can be verified via simulation, where we show a
specific case in which the NEP reached can change, depending
on the starting point of the algorithm.

We implemented in MATLAB [28] the general model (11)
described in section III. Iteratively, each player performs its
best response to the set of other players’ strategies as shown
in algorithm 1. If the simulation converges (this has not been
proven for the general game (11)), the output newx is the
NEP for the given input parameters, which are:

• The number of ISPs, TFs and CPs, respectively I , L, N .
• The cost function parameters a

l

, c
l

, bn
l

and demands �

n

i

.
• The tolerance and the startingpoint.

We can use the implemented algorithm on the MCM, which
has fully connected topology and symmetric demands, by
putting I = 2, L = 2, N = 2, b

n

l

= 0 8l, n and
�

n

i

= �

n. Given the selected scenario and the best response
sequence algorithm, Theorem 6 ensures the convergence of the
simulation for whatever cost function coefficients. Moreover,
thanks to the symmetric property, we can just investigate the
strategy of player 1 (x), because player 2 will show exactly
the same behavior. We simulate the following parameters:
a1 = 4, a2 = 5, �

1
+ �

2
= 4, c1 = 10, c2 = 5. In

this case, as previously shown in Figure 4c, the cost function
could present multiple local minima, depending on the players’
strategies. The simulation has multiple outcomes: if we start
from the mean point (x = 2, � � x = 2) we end up in an
equilibrium where traffic is split between the IXP and the NSP:
x

⇤
= 3.64; �� x

⇤
= 0.36. The IXP is preferred because the

usage cost is shared among the two players, however it is not

used exclusively due to its smaller capacity not being able
to serve all the traffic. With a bigger capacity, all the traffic
would have been routed through the IXP. Otherwise, if we
start from a strategy where the majority of traffic is routed
through the NSP (x = 0.4, � � x = 3.6), we end up in
an equilibrium where all the traffic flows through the NSP:
x

⇤
= 0; � � x

⇤
= 4. This happens because when the IXP is

routing a small amount of traffic, the flat port cost is too high
to justify its use, therefore the players prefer the NSP. Once
the NSP is serving all the traffic no player has an incentive to
deviate, because he would pay the whole IXP cost by himself.

As we see, the outcome of the game is highly dependent
on the starting point: the IXP is preferred only if it already
has, at the beginning, a good amount of flow passing through
him, otherwise all players will stick to the NSP. This result is
consistent with reality, in fact, the necessary condition for an
IXP to emerge is that it has a critical mass (represented by a
fraction of the traffic/users in the Internet) which makes the
value perceived by a potential participant greater than the cost
he would incur in by joining the facility [7].

D. The Best Response Behavior

With the purpose of understanding the number and position
of NEPs, we draw the Best Response Intersection (BRI)
picture. In this graph, shown in Figure 5, the line with tick
marks represents the best response x of player 1 as a function
of player 2’s strategy y, while the line with cross marks does
the exact opposite. The intersection points on the graph mean
that both players are playing their best responses, therefore
they are Nash Equilibrium Points. As we can see, there are
three NEPs and, as expected due to the symmetric property,
they are all on the symmetric axis [29]:

Left Equilibrium: is in x = x

⇤
L

= 0 and corresponds to
the scenario where all the traffic is routed through the NSP.

Right Equilibrium: is for x = x

⇤
M

= 1.43 and is the one
where traffic is split between the IXP and the NSP.

Middle Equilibrium: happens for x = x

⇤
M

= 0.31. This
is however a repulsive equilibrium, in fact, as soon as one of
the two players deviate, they will never return to this point
and reach instead one of the two others equilibria.
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Algorithm 1 Best Response Sequence
1: startingpoint = ... . Initial strategies
2: tolerance = ... . NEP stationariety tolerance
3: newx = startingpoint

4: repeat

5: oldx = newx . current step game strategies
6: for i = 1; i < I; i++ do

7: x�i

= oldx�i

. other players strategy
8: x

i

= argmin

xi
C

i

(x

i

,x�i

) . i strategy
9: s.t.

P
l

x

n

i,l

= �

n

i

8n
10: newx

i

= x

i

. next step game strategies
11: end for

12: until ||newx� oldx|| < tolerance

These three equilibria can be understood by observing
Figure 4c: x

⇤
L

and x

⇤
R

are attractive, and correspond to the
minima of the cost function, while x

⇤
M

corresponds to the
maximum of the cost function, and is thus repulsive. Of course,
the last picture corresponds to the cost function for a specific
strategy, therefore it cannot assert the position or the existence
of equilibria, however it gives an insight on their meaning.

As we change the game parameters we observe that the
shape of the best response is always the same, while the
position of x

⇤
M

and x

⇤
R

changes. In particular, as shown in
Figure 6, if the ratio a2

/a1 increases (meaning that IXP cost
w.r.t. NSP cost increases) then x

⇤
M

gets nearer to x

⇤
R

, making
the left equilibrium is easier to reach. Moreover, we observe
that if the capacity c2 of the IXP is large enough, than in the
right equilibrium all the traffic will flow through him.

V. PRICE OF ANARCHY, STABILITY AND FAIRNESS

A. Social Optimum

We now compare the performance of the distributed system,
where each Service Provider acts on its own, with that of an
ideal centralized system where decisions are taken by some
external entity. In this case the objective is to minimize the
total cost of the two players, given by the summation of the
two costs in (13):

C(x, y) =

P
i

C

i

(x, y) = (18)

= (�1 + �2 � x� y) a1 +
�1�x

c1�(�1�x)+

+

�2�y

c1�(�2�y) +
x+yp
x+y

a2 +
x

c2�x

+

y

c2�y

Theorem 9 and Corollary 10, whose proofs can be found
in the full version of the paper [25], explain how to optimize
this cost function.

Theorem 9. The cost function (18) has a global minimum
point. For symmetric demands this minimum point is attained
at symmetric strategies, and it is either the left endpoint of
the strategy space or the unique local minimum point of its
convex part.

Corollary 10. The global minimum point of (18) is, for
symmetric demands, either the left endpoint of the strategy
space or the output of a standard algorithm for convex function
optimization that starts from the right endpoint.
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The globally optimal solution to problem (18) can thus be
computed by comparing the two candidate points highlighted
in Corollary 10.

B. Alpha-Fair Solution
Another metric for comparison comes from the theory of

fairness. A unifying mathematical formulation, known as ↵-
fairness [30], says that given a set of players and utility func-
tions U

i

(x), the ↵-fair solution to the problem of maximizing
their utilities is given by:

max

x

⇣P
i

U

i(x)(1�↵)�1
1�↵

⌘

For ↵ = 0, this is the same as maximizing the sum of
the utilities, thus it gives the social optimum for the problem.
The case ↵ ! 1 yields the proportional fair share assignment,
however this solution is not feasible when we have to deal
with cost function rather then utilities, and for ↵ ! 1
it is equivalent to the max-min fairness. For ↵ = 2, the
formula gives us the “harmonic mean fair” solution, which
we investigate numerically in the next subsection.

C. PoA/PoS/PoF Comparison
As is usually done in the literature ([22], [30]), we define

the Price of Anarchy (PoA) as the ratio between the worst
decentralized solution (equilibrium) and the social optimum.
Similarly, the Price of Stability (PoS) is defined as the ratio
between the best equilibrium and the social optimum:

PoA =

C (x

⇤
worst

)

C (x

opt

)

� 1 PoS =

C (x

⇤
best

)

C (x

opt

)

� 1
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Figure 7: Price of Anarchy, Stability and Fairness

In our case we have just two attractive equilibria, therefore
the best and worst equilibria are either x

⇤
L

or x

⇤
R

. Following
the same path, we define the price of fairness as the ratio
between the fair and the optimal solution:

PoF =

C (x

fair

)

C (x

opt

)

� 1

Algorithm 1 has been extended to include numerical com-
putation of the above defined Prices of Anarchy, Stability and
Fairness. We use as general configuration: a1 = 3, a2 = 4,
� = 2, c1 = 10, c2 = 3 (except for Fig. 7c, where c2 increases
as � increases), and show PoA, PoS and PoF as parameters
a1, a2 and � change. Results are reported in Figure 7. As we
see, it is always the case that PoF = 1, meaning that the
harmonic mean fair solution is equal to the social optimum.

The PoA almost always corresponds to the left equilibrium.
An exception to this is the case where there is a small amount
of total traffic, shown in Fig. 7c for � = 1: in this case the
left equilibrium outperforms the right one, meaning that for
small amounts of flow it is not convenient to share costs at
the IXP. As � increases, the advantages of sharing become
obvious. Figures 7a and 7b show that the PoA increases as
a1 increases and decreases as a2 increases. An exception to
this is the case a2 = 1 of Fig. 7b: with these parameters the
cost function resembles that of Fig. 4b, therefore we have only
one equilibrium. The PoS is almost always very low, and it is
always caused by the fact that the competition between ISPs
reduces the amount of traffic through the IXP, thus reducing
their opportunities to share costs.

VI. GENERALIZATIONS
While the results obtained by the MCM are interesting on

their own, as they shed light on the competition between
an Internet Exchange Point and a Network Service Provider,
driven by the clear differences between transit and peering, one
might argue that this topology is quite small and simplified
to represent the Internet. In this section, we use our MAT-
LAB implementation to check what happens in more general
topologies. While at this stage we do not have convergence
guarantees for these topologies, we know that if the best
response sequence algorithm converges, then it converges to
an equilibrium [27]. Therefore we can use our simulator both

to study our system in more general cases, and to asses
convergence for specific cases.

The base configuration used is I = 2, L = 2, N = 2, bn
l

=

0 8l, n and �

n

i

= �

n

= 2, and all tests have been performed
with fully connected topology and symmetric demands. The
cost coefficients used are: a1 = 1, a2 = 1.5, c1 = 10, c2 = 6.
As long as flows and capacities are properly balanced, the
existence of multiple CPs does not seem to affect the results of
the simulations, therefore here we check what happens when
we have either more ISPs or IXPs.

a) Generic Number of ISPs: When the number I of
players increase, the benefits of joining an IXP increases as
well, due to the fact that costs are shared among multiple
participants: in fact, as shown in Figure 8 on the y1 axis, the
fraction of traffic flowing through the IXP at the equilibrium
increases with I . We recall from section IV-C that IXPs need
a critical mass to be used, which in our case corresponds to
a fraction of the total traffic in the system. Very interestingly,
the y2 axis of Figure 8 shows that this fraction decreases as
the number of player grows.

b) Generic Number of IXPs: In order to have an interest-
ing case study as L grows, we test a scenario where the global
IXP capacity does not change, therefore c

l

= c2/(L�1) 8l 6=
1. This means that instead of having one “large” IXP with a
high capacity, we have multiple IXPs with less capacity. In
order to have meaningful capacities for the small IXPs, we
increased global flows and capacities to: c1 = 50, c2 = 25,
�

n

i

= �

n

= 10. As shown in Figure 9 the fact that IXPs only
offer small ports is detrimental for the players, and after a
certain point they will all stick to the NSP.

While simulation allowed us to only check a limited amount
of cases, in all these cases we converged to an equilibrium,
therefore we conjecture that the properties shown here for the
MCM can be generalized to more complex scenarios.

VII. CONCLUSIONS AND FUTURE WORK

The proposed model gives insight into the economy of
different types of Autonomous Systems and the driving forces
behind the decisions they make when joining the Internet. The
peculiar pricing strategies of players doesn’t allow standard
modelization, however, by exploiting peculiar properties of
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the game, we are able to prove analytically the existence of
multiple equilibria, and provide an algorithm to compute the
stable ones. From a game theoretic perpective, while the theory
on supermodularity is well-developed, we relaxed this concept
and introduced the new category of Symmetric Supermodular
games. Thanks to this we were able to prove existence of
equilibria and convergence of best response sequences in our
game. This is the first case, to the best of our knowledge, where
results on supermodularity are applied even if the property
does not hold for the game in general, by showing that it holds
along the symmetric path. From an engineering perspective,
the outcome of the analysis is highly insightful as it shows
different interesting aspects. First of all, we observe the sub-
optimality of the decentralized solution, originated by the non-
cooperative behavior of the ASes, by showing the existence
of a Price of Anarchy and Stability. Even more interestingly,
we highlight the growing competition between IXPs, providing
customers the ability to lay out peering connections, and NSPs,
high level providers selling transit connections.

The work calls for extensions in at least two directions,
actively pursued at the time of writing. The first is extending
the results of this paper by checking if analytic results on
the MCM can be applied to more general scenarios, relaxing
assumptions such as the complete connectivity, and improving
the simulative part to those cases which weren’t covered here.
The second follows directly from the dynamic nature of the
Internet. In fact, while here we examine a static situation, both
transit and peering costs can be renegotiated over time. In
order to keep into account this phenomenon, we could add as
players the NSPs and IXPs, define their utilities accordingly,
and then analyze a dynamic game where their strategies are
intertwined with that of ISPs.

REFERENCES

[1] W. Norton, The Internet Peering Playbook: Connecting to the Core of
the Internet. 2011.

[2] “Peeringdb - http://www.peeringdb.com.”
[3] W. B. Norton, “Internet transit prices - historical and projected,” tech.

rep., Dr. Peering White Paper, 2010.
[4] A. Dhamdhere and C. Dovrolis, “The internet is flat: modeling the

transition from a transit hierarchy to a peering mesh,” in Proceedings
of the 6th International COnference, Co-NEXT, ACM, 2010.

[5] W. B. Norton, “A study of 28 peering policies,” tech. rep., Dr. Peering
White Paper, 2010.

[6] E. Gregori, A. Improta, L. Lenzini, and C. Orsini, “The impact of
IXPs on the AS-level topology structure of the Internet,” Computer
Communications, vol. 34, pp. 68–82, Jan. 2011.

[7] W. B. Norton, “The art of peering - the ix playbook,” tech. rep., Dr.
Peering White Paper, 2010.

[8] A. Orda, R. Rom, and N. Shimkin, “Competitive routing in multiuser
communication networks,” IEEE/ACM Transactions on Networking,
vol. 1, pp. 510–521, Oct. 1993.

[9] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and W. Will-
inger, “Anatomy of a large european ixp,” in Proc. of the 2012 ACM
SIGCOMM Conference, pp. 163–174, 2012.

[10] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law Relation-
ships of the Internet Topology,” ACM SIGCOMM Computer Communi-
cation Review, 1999.

[11] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks.,” Nature, vol. 393, pp. 440–2, June 1998.

[12] E. Gregori, L. Lenzini, and C. Orsini, “k-clique Communities in the
Internet AS-level Topology Graph,” 31st International Conference on
Distributed Computing Systems Workshops, pp. 134–139, June 2011.

[13] H. Haddadi, M. Rio, G. Iannaccone, A. Moore, and R. Mortier, “Network
Topologies: Inference, Modeling and Generation,” IEEE Communica-
tions Surveys, vol. 10, no. 2, pp. 48–69, 2008.

[14] S. Yook, H. Jeong, and A. Barabási, “Modeling the Internet’s large-scale
topology,” in PNAS, pp. 1–15, 2002.

[15] X. Wang and D. Loguinov, “Understanding and Modeling the Internet
Topology : Economics and Evolution Perspective,” IEEE Transactions
on Networking, vol. 18, no. 1, pp. 257–270, 2010.

[16] G. Accongiagioco, E. Gregori, and L. Lenzini, “A Structure-Based
Topology Generator for the Internet’ s Core,” in 4th Workshop of Italian
group on Quantitative Methods in Informatics (InfQ), pp. 1–8, 2013.

[17] A. Fabrikant, E. Koutsoupias, and C. H. Papadimitriou, “Heuristically
optimized trade-offs: A new paradigm for power laws in the internet,”
in Proceedings of the 29th ICALP ’02, Springer-Verlag, 2002.

[18] H. Chang, A. Arbor, P. Ave, and F. Park, “To Peer or not to Peer: Mod-
eling the Evolution of the Internet’s AS-level Topology,” in Proceedings
of 25th IEEE Conference on Comput. Commun., INFOCOM ’06.

[19] M. Jackson, Social and Economic Networks. Princeton Univ.Press, 2010.
[20] S. Goyal, Connections: an introduction to the economics of networks.

Princeton University Press, July 2007.
[21] A. Lodhi, A. Dhamdhere, and C. Dovrolis, “GENESIS: An agent-based

model of interdomain network formation, traffic flow and economics,”
2012 Proceedings IEEE INFOCOM, pp. 1197–1205, Mar. 2012.

[22] T. Jiménez, Y. Hayel, and E. Altman, “Competition in access to content,”
in Proceedings of IFIP Networking, pp. 211–222, 2012.

[23] S. Shakkottai and R. Srikant, “Economics of network pricing with
multiple isps,” IEEE/ACM Trans. Netw., vol. 14, Dec. 2006.

[24] M. Motiwala, A. Dhamdhere, N. Feamster, and A. Lakhina, “Towards
a cost model for network traffic,” ACM SIGCOMM Comput. Commun.
Rev., vol. 42, pp. 54–60, Jan. 2012.

[25] G. Accongiagioco, E. Altman, E. Gregori, and L. Lenzini, “Peering vs
transit: a game theoretical model for autonomous systems connectivity,”
tech. rep., [Online] Available: http://tinyurl.com/naj7o4t, 2013.

[26] D. D. Yao, “S-modular games, with queueing applications,” Queueing
Systems, vol. 21, pp. 449–475, Sept. 1995.

[27] E. Altman and Z. Altman, “S-modular games and power control in
wireless networks,” IEEE Trans. on Automatic Control, vol. 48, 2003.

[28] Mathworks, “Matlab - http://www.mathworks.it/products/matlab/.”
[29] S. fen Cheng, D. M. Reeves, Y. Vorobeychik, and M. P. Wellman,

“Notes on equilibria in symmetric games,” in Proceedings of the 6th
International Workshop GTDT, pp. 71–78, 2004.

[30] T. Lan, D. Kao, M. Chiang, and A. Sabharwal, “An axiomatic theory of
fairness in network resource allocation,” INFOCOM ’10.


