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Abstract—The assumption of Gaussian traffic is
widely used in network modeling and planning. Due
to its importance, researchers have repeatedly studied
the Gaussian character of traffic aggregates. However,
dedicated studies on this subject date back to 2002 and
2006. It is well known that network traffic has changed
in the past few years due the the increasing use of social
networks, clouds and video streaming websites.
Therefore, the goal of this paper is to verify whether

the Gaussianity assumption still holds for current net-
work traffic. To this end, we study the characteristics
of a large dataset, consisting of traces from four conti-
nents. The employed analysis methodology is similar
to that found in previous works. In addition to the
analysis of recent measurements, we also perform tests
for a very long measurement period of six years. Our
results show that the evolution of network traffic has
not had a significant impact on its Gaussian character.
Our findings also indicate that it is safer to relate the
degree of Gaussianity to traffic bandwidth than to the
number of users for high-speed links.

I. Introduction

Traffic modeling is very important for network design,
planning, deployment and management. Models are used
to identify and characterize traffic for purposes ranging
from security to network dimensioning. Since the 1990s,
Gaussian traffic models have received special attention
when studies revealed the presence of characteristics such
as self-similarity and long-range dependency in modern
network traffic [1], [2], [3]. It turned out that the fractional
Brownian motion (and other Gaussian models) have many
desirable properties for the modeling of IP traffic.

The Gaussianity of aggregated network traffic is sug-
gested by the Central Limit Theorem. In 2002, the authors
of [4] studied the level of aggregation that is needed to
justify the assumption that the amount of traffic offered in
an arbitrary timescale follows a normal distribution. The
follow-up work in [5] (2006) further explored the potential
and limitations of Gaussian models with respect to the
aggregation level.

Compared to six years ago, a much wider range of net-
work applications can be found nowadays. Social networks,
cloud computing and video streaming have drastically
changed user behavior. There is, indeed, a clear evolution
of traffic, as discussed in [15]. This raises the question
whether, and to what degree, the assumption of Gaussian-
ity still holds in today’s networks. Intuitively, one would

expect that the degree of Gaussianity has even increased
since current networks generally aggregate traffic of a
larger number of users/hosts than in the past. However,
the measurements from [5] date back to 2004 or earlier
and no recent results are available.

The goal of this paper is to verify the assumption of traf-
fic Gaussianity by recent measurements. The methodology
of the study presented in this paper borrows from [4], [5].
We assess the impact of different horizontal aggregation
level, i.e., the chosen timescale of aggregation on Gaus-
sianity, as well as the impact of the vertical aggregation
level in terms of the number of hosts and the amount of
traffic aggregated.

We show, by analyzing an extensive dataset of recent
measurements, that the assumption of Gaussianity still
holds for current network traffic. In contrast to existing
work, we also perform tests for a very long measurement
period of six years. Our results indicate that the evolution
of network traffic has not had a significant impact on
its Gaussian character. Our findings also suggest that
it is safer to relate the degree of Gaussianity to traffic
bandwidth than to the number of users for high-speed
links.

The reminder of this paper is organized as follows. For
our experiments, we have used traffic measured at several
locations around the globe. The traffic traces are presented
in Section II. In Section III we describe the methodology
we follow to assess the Gaussian character of traffic. The
results are presented in Section IV. Finally, we draw our
conclusions in Section V.

II. Measurements Data Set

In this section we describe the measurement dataset
used to assess the Gaussianity of network traffic. The
entire dataset comprises 768 15-minute traces1, totalling
192 hours of captures. These traces come from different
locations around the globe and account for a total of more
than 18.5 billion packets. Traffic captures were done at the
IP packet level, using tools such as tcpdump. Table I gives a
summary of the data obtained from the six measurement
locations. Note that the column "length" gives the total

1The trace duration of 15 minutes has been chosen in accordance
with [5]. Longer time periods are generally not stationary due to the
diurnal pattern.
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TABLE I
Summary of measurements

abbr. description year length # of hosts link capacity avg. use

A link from university’s building to core router 2011 24h 6.5k 2 × 1 Gb/s 15%
B core router of university in the Netherlands 2012 6h 886k 10 Gb/s 10%
C1 core router of university in Brazil 2012 85h 10.5k 155 and 40 Mb/s 19%
C2 core router of university in Brazil (24-hour) 2012 6h 7k 155 and 40 Mb/s 11%
D backbone links connecting Chicago and Seattle 2011 4h 1.8M 2 × 10 Gb/s 8%
E backbone links connecting San Jose and Los Angeles 2011–2012 10h 3M 2 × 10 Gb/s 10%
F1 trans-Pacific backbone link 2012 13h 4M n/a n/a
F2 trans-Pacific backbone link (historical traces) 2006–2012 44h 1M n/a n/a

duration of the, not necessarily consecutive, 15-minute
traces, i.e., a length of 1h corresponds to four traces.

A. Measurement locations
Location A: Location A is an aggregated link

(2 × 1 Gb/s) connecting a university building in the
Netherlands to the university’s core router (university’s
gateway). Considering incoming and outgoing traffic, this
link aggregates traffic from approximately 6500 hosts and
has an average use of 15%. Most traffic in this link is
actually internal to the university, i.e., from that building
to other parts of the campus. Due to the small number
of hosts, single activities, such as an overnight automatic
backup, can drastically change the shape of the traffic. The
measurement took place in a week day in September of
2011 with a duration of 24 hours. Therefore, this location
comprises 96 successive 15-minute traces.
Location B: Location B is the 10 Gb/s up/down link

at the core router of a university in the Netherlands.
The link comprises all the incoming and outgoing traffic
of the university. A total of approximately 886000 IP
addresses were observed during the measured period and
they generated an average link use of 10% (up to 15% in
busiest hours). This is a full day measurement in which
traffic was captured during the first 15 minutes of every
full hour for a period of 24 hours. Therefore, this location
comprises a total of 24 15-minute traces.
Location C: Location C is the core router of a university

in Brazil. The aggregate of two links of 155 Mb/s and
40 Mb/s was measured over two periods of time. C1
comprises traces collected during some week days from
September 2012 to December 2012. Each trace corresponds
to the first 15 minutes of each full hour between 08:00 and
23:00 inclusive. C2 traces are from the same monitored
point as C1. However, C2 is a 24-hour measurement that
contains the first 15 minutes of traffic of every full hour
from 00:00 to 23:00 inclusive. The C2 measurement took
place in December 2012. Most of the traffic at location C
is web browsing and email.
Locations D and E: The traces for location D and E

are from CAIDA’s public repository [8], [9]. Two unidirec-
tional backbone links of 10 Gb/s were measured for each
location. The original traces are captures of a full hour

done on selected days. In location D, links interconnect-
ing Chicago and Seattle (USA) were measured and the
selected traces are from May and July 2011. In location
E, links interconnecting Los Angeles and San Jose (USA)
were measured and the selected traces are from December
2011 and January and February 2012. Each full hour of
capture gives us 4 successive 15-minute traces.
Location F : Location F is a trans-pacific link. Mea-

surements for this location come from the public MAWI
repository [10]. We do not have additional information on
the link capacity and, consequently, we cannot determine
the average use of the link2. Traces from this location are
divided in two groups. F1 consists of very recent traffic
captures, dating from November 2012 to December 2012.
F2 comprises historical captures starting in August 2006
until December 2012. F1 traces aggregate traffic from
an average of more than 4 million hosts, and F2 traces
from an average of more than 1 million hosts. Note that
for F2 traces, as we further show, traces dating from
2011 or older have much less hosts than 2012 traces.
Unfortunately, MAWI does not provide additional details
about the measurement point that could lead us to a better
conclusion on the causes for such increase in the number
of hosts in the year of 2012.

For measurements directly performed by us (i.e., loca-
tions A, B and C), no packet losses were observed. From
CAIDA’s web page, we know that for one link of the
location D’s pair, packet losses are likely to happen. For
traces from location F , no information on packet loss is
provided in the online repository.

B. Link usage
Although Table I presents the average link use for each

location, such value is generally not constant over the
measurement period. In fact, for some locations it varies
quite a lot. Fig. 1 shows the average traffic rate per 15-
minute for each location. The figure also shows the mini-
mum and maximum values of mean rate per trace. As one
can see, traffic from locations with higher-capacity links
are the ones that vary most. In case of locations A and
B, the difference between minimum and maximum values

2The information on the link capacity given on the MAWI website
is not consistent with the bandwidth observed in the traces.
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Fig. 1. Average, minimum and maximum values of mean traffic at
each location; location C corresponds to C1 and C2 together, and
location F corresponds to F1 and F2 together.

are due to the fact that these are 24-hour measurements.
Therefore, low averages are most likely to be from the
overnight period, while high averages from the day.

III. Methodology
In this section we present our procedure to study the

Gaussianity characteristic of the traffic. The methodology
of the study presented in this paper borrows from previous
works [4], [5].

A. Definition of Gaussianity
Let T be the timescale of traffic aggregation and let

L1(T ), . . . , Ln(T ) be the amount of traffic observed in
time periods 1, 2, . . . , n of length T . For any T > 0, we
want to know if L(T ) is Gaussian distributed, i.e., whether
L(T ) ∼ Norm(ρ, υ(T )), where ρ is the average traffic
throughput and υ(T ) is the estimated variance of L(T )
given by

ρ = 1
nT

n∑
i=1

Li(T ) , (1)

υ(T ) = 1
n− 1

n∑
i=1

(Li(T )− ρ)2. (2)

B. Analysis of Gaussianity
Quantile-quantile (Q-Q) plots can be used for a qual-

itative analysis of the Gaussian character of measured
traffic. To create a Q-Q plot, the inverse of the normal
cumulative distribution function Norm(ρ, υ(T )) must be
plotted against the ordered statistics of the sampled data
L(t). Therefore, the pairs for a Q-Q plot are determined
by: (

Φ−1
(

i

n+ 1

)
, α(i)

)
, i = 1, 2, . . . , n , (3)

where Φ−1 is the inverse of the normal cumulative distri-
bution function, α(i) are the ordered traffic averages for
each time bin of length T and n the size of our sample
(i.e., number of time bins of size T ). Note that i

n+1 is used
instead of i

n because the 100th percentile is infinite for the
normal distribution. However, for large sample sizes (i.e.,
large n), the difference is not significant [11], [12].

Fig. 2 shows Q-Q plots generated from an example trace
using two different values of T . For such plots, a traffic
sample is considered "perfectly Gaussian" when all the
points fall on the diagonal line. By visually analyzing the
plots in Fig. 2, one can conclude that, at both T , the traffic
from the example trace is "fairly Gaussian", since only few
points do deviate from the diagonal line.

When creating Q-Q plots of Internet traffic time series,
it is common to see points at the high-end of the plot
that fall distant from the diagonal line. This is due to
the well known heavy-tail characteristic of traffic. This
is a very important characteristic when the context of
the study on Gaussianity is related to management tasks
such as bandwidth provisioning [6] because such points
represent significant fluctuations of traffic that occur at
the considered timescale T . In the example of bandwidth
provisioning, such fluctuations will impact traffic variance,
which is an important parameter for computing the re-
quired link capacity for a given input traffic.

Q-Q plots provide a good visual analysis of the goodness
of fit of the measured traffic compared to a Gaussian traffic
model. However, a quantitative analysis is also needed to
support observations from such plots. There are several
procedures to quantify Gaussian goodness of fit. We opted
for the linear correlation coefficient [7]. This choice was
also done to conform to the methodology followed by
previous works [4], [5]. The linear correlation coefficient
is defined by:

γ(x, y) =
∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2∑n
i=1(yi − y)2

, (4)

where the pair (x, y) is the same as in Eq. (3). Clearly,
for a given traffic trace, |γ| = 1 if and only if all points lie
perfectly on a straight line in the Q-Q plot. It is important
to note that γ ≥ 0.9 corresponds to a Kolmogorov-Smirnov
test for normality at significance 0.05, which supports the
hypothesis that the underlying distribution is normal. The
values of γ for the example trace in Fig. 2 are, respectively,
γT=100ms = 0.9986 and γT=1s = 0.9981.

IV. Results

We have divided our analysis in three parts. First,
we assess the impact of horizontal traffic aggregation on
Gaussianity (Section IV-A). That is, we vary T when
analyzing a given input traffic. In a second step, we study
the impact of vertical traffic aggregation (Section IV-B).
Vertical aggregation corresponds to the number of (ide-
ally independent) sources being aggregated. Finally, in
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Fig. 2. Q-Q plots for a single example trace at different T ; this example trace is from location D.

Section IV-C we study the Gaussianity for the long-term
measurement from location F2.

A. Horizontal traffic aggregation

The goal of this section is to assess whether the
Gaussianity goodness of fit remains constant over various
timescales. That is, we want to find out if a value of γ
at one timescale gives indication of how traffic behaves at
other values of T . According to [4], larger horizontal aggre-
gation of traffic is needed to justify Gaussian distribution.
That is, traffic tends to be more Gaussian-like at larger
timescales. The considered timescales for this analysis are
based on the same assumption as in [5]: timescales from
5ms to 5s dominate the Quality-of-Service as perceived by
the end user. In this work we extend the timescale range
to 1ms to 30s.

Each line of the plot in Fig. 3 presents the γ value for
one single, randomly selected 15-minute trace per location.
Traffic tends to become less Gaussian on shorter timescales
mainly when the link aggregate is not too large as, for
example, in locations C1 and C2. That is, the shorter T ,
the less traffic is aggregated and the higher the variance
due to traffic bursts caused by individual sources.

According to [4], a very short T , i.e., in the range of
milliseconds, can be too close to the packets’ transmission
intervals. That would result in a time series with a binary
behavior, where we may have or have not packets being
transmitted within the period of length T (i.e., ON/OFF
behavior). Such a time series is, obviously, not Gaussian.
This can be even more problematic if we consider links
that aggregate traffic of very few sources, because we may
have binary-like traffic time series even in the milliseconds
timescale.
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Fig. 3. γ at various timescales for an example trace from each
location.

For example, the traces from locations C1 and C2 show
a very bad Gaussianity fit at T = 1ms. This problem
is alleviated when increasing T over a certain threshold,
where γ becomes fairly stable. The same behavior, but
with less impact on γ, can be observed for traces from
other locations. Interestingly, the example trace from lo-
cation B in Fig. 3 has a different behavior than others.
However, the observed fluctuation of γ through various
timescales is not large: γ is larger than 0.9 for all values
of T . A similar situation has been also observed in [5].
One important conclusion is that it would not be safe
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Fig. 4. Average γ at various timescales for all traces in our dataset.

for an arbitrary location to assume Gaussianity at very
short timescales. That is, if the traffic is Gaussian at
T = 5ms, it does not necessarily means that the same
traffic will remain Gaussian at T < 5ms. Furthermore,
Fig. 3 also indicates that γ, to a wide extent, monotonously
increases with T , and, hence one can assume Gaussianity
at timescale T1 for a particular traffic if the same traffic
is Gaussian at T0 and T2 (where T0 < T1 < T2).
As an overall representation of the Gaussian goodness

of fit of our entire dataset, we have calculated the average
γ for all traces. Fig. 4 shows the average γ from all traces
for each location at various timescales and the respective
standard deviation. The idea here is to find out whether
the whole traffic of a location remains Gaussian through
different timescales. For all locations, except location B,
the average γ increases at higher timescales, or it remains
almost constant. Again, this complies with statements
from [4] on how Gaussianity should increase with T .
However, as one can see in Fig. 4, location B again

behaves differently than other locations. That is, for B
at very large timescales, traffic seems to not be Gaussian.
Since it is a 24-hour measurement, one possible explana-
tion is that during the overnight period, traffic is very
unsteady with some traffic bursts close to each other. For
large T , those bursts would be aggregated to a single time
bin, resulting in a strongly non-stationary and, hence, non-
Gaussian process.

We observe from Fig. 4 that the γ values for the traces
of location A and C2 depict the largest variation among
all locations. In order to allow a better understanding we
show the cumulative distribution function (CDF) of γ for
all traces per location in Fig. 5, for an arbitrarily chosen
timescale of T = 1s. For more than 85% of all traces
in our dataset γ ≥ 0.9, which means that most traces
from our dataset are at least in the "fairly Gaussian" level.
For all locations, except A and C2, at least 85% of the
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Fig. 5. CDF of γ for all traces per location; T = 1s; points sampled
for visualization.

location’s traces have γ ≥ 0.9. Around 50% of traces from
A and 25% from C2 have poor Gaussianity fit. Since these
two locations are 24-hour measurements from very small
networks, the traffic averages significantly decrease during
the night due to the reduced number of active hosts, and
this causes Gaussianity fit to also decrease. Such problem
is further discussed in Section IV-B.

Finally, it is also interesting to know the consistency
of γ of a location over all considered timescales. Recall
that Fig. 3 shows γ for a set of example traces and
Fig. 4 shows the average for all traces from a location
at specific timescales. One way to find out the stability
of γ for each location is to compute, individually for each

5



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

6

 0

 0.04

 0.08

 0.12

 0.16

 0.2

 0.24

 0.28

 0.32

 0  0.2  0.4  0.6  0.8  1

d
ev

ia
ti

o
n

 o
f 

γ
 o

v
er

 v
ar

io
u

s 
ti

m
es

ca
le

s

ordered traces by σ
γ

location A
location B
location C1
location C2
location D
location E
location F1
location F2

Fig. 6. Variance of γ across various timescales; points sampled for
visualization.

trace, the standard deviation of the trace’s γ at various
timescales. This metric was proposed in [5]. Hence, for a
trace with gamma γT for T = 1ms, . . . , 30s, we compute
σγ =

√
Var[γT ].

Fig. 6 shows the results for each location with the traces
sorted by their standard deviation σγ . The figure reveals
that for more than 50% of all traces σγ ≤ 0.05, and
that for about 90% of all traces σγ ≤ 0.09. Analyzing
each location separately, we see that σγ < 0.02 for all
traces from D, and for nearly all traces from E, but
one, σγ < 0.04. For all traces from locations A and
F1, σγ < 0.1. And for the worst cases, the amount of
traces that have σγ ≥ 0.1 for locations B, C1, C2 and
F2 are, respectively, 12%, 15%, 42% and 10%. Therefore,
traces from these four locations are the ones where γ
varies most through different timescales. These results
strengthen our previous observations on which Gaussianity
is quite constant over timescales, and traffic that exhibits
good Gaussian fit at T0 and T2 is likely to be Gaussian
also at T1.

B. Vertical traffic aggregation
Previous works [4], [5] have studied the impact of ver-

tical aggregation on the Gaussianity of traffic. Vertical
aggregation refers to the amount of aggregated traffic
sources. An important question is how many sources are
needed to guarantee the Gaussian characteristic of the
traffic. Furthermore, one is interested in a definition of
traffic source that can be easily used to calculate the
number of active sources. For example, a traffic source is
not necessarily equivalent to a TCP connection.

In [5], the authors attempt to quantify the number
of users (measured as number of observed IP addresses)
necessary to justify the Gaussianity assumption. To do
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Fig. 7. Gaussianity goodness of fit for a 24-hour measurement period
from location A; for b and c, T = 1s.

so, they sample traffic from randomly selected users and
compute γ for it. They conclude that few dozens of users
would be enough to justify traffic Gaussianity.

We believe that it can be risky to solely rely on the
number of observed users since this assumes that all users
behave uniformly in all networks. It is not clear whether
the same number of users sufficient for Gaussianity in
network X would also be sufficient in network Y. For
example, users in a university campus network may be-
have completely differently from the sources observed in
a backbone link. An alternative approach is to relate
the level of vertical aggregation to the amount of traffic
aggregated. However, this can be also dangerous since
individual hosts can also have high transmission speeds,
as already observed in [4]. Therefore, we study in the
following the impact of vertical aggregation on Gaussianity
both in terms of (i) the number of hosts and (ii) the
amount of traffic aggregated.

Three 24-hour measurements are used in this analysis.
The natural diurnal pattern present in such measure-
ments results in strong variations in the network usage.
In addition, the sources that are active during the night
often behave quite differently from sources active during
daytime. This allows us to study the impact of a wide
range of scenarios on the Gaussianity.

For location A, all 96 traces are used, that is, the whole
traffic in the 24-hour period is considered. Fig. 7a shows
γ for each 15-minute trace. For all T , one can see that
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Fig. 8. Gaussianity goodness of fit for a 24-hour measurement period
from location B; T = 1s.

γ oscillates a lot across the measurement period. Good
Gaussianity fit is found even during the overnight period,
what would not be expected considering the small number
of active users in the network (shown in Fig. 7c). However,
Fig. 7b shows that between 23:00 and 01:00, there is an
increase on the traffic average which seems to be the
reason of the good fit. A smaller increase can also be
observed from 2:00 to 4:00. This might have been the result
of automatic operations, such as overnight backups. The
figure also shows that traffic averages during the day are
generally higher due to the higher number of active users
in the network. Consequently, Gaussianity of traffic tends
to be more regular in the busiest period of the monitored
link.

The results indicate that Gaussianity depends more
on the behavior than on the quantity of active users.
Although we have more than thousand active hosts at 1:00
and 21:45, the Gaussianity fit is low. Furthermore, Fig. 7
shows that a high traffic rate can be a better indicator for
good Gaussianity than the number of users. Note that the
opposite is not necessarily true.

We have also studied the Gaussianity fit of a 24-hour
measurement from location B. However, in this measure-
ments we have only the first 15 minutes of each hour during
an entire day. The results of this analysis are presented
in Fig. 8 for T = 1s.. The measured link in location B
has many more active hosts than location A, also during
the night. One of the main reasons is that this link also
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Fig. 9. Gaussianity goodness of fit for a 24-hour measurement period
from location C2; T = 1s.

transports traffic from the residential buildings located on
the university campus and the public servers.

There are only two moments in which Gaussianity fit
of traffic is not good enough, i.e., γ < 0.9: at 03:00 and
at 08:00. In these moments, traffic averages and number
of users were quite low compared to other periods of the
day. Although one cannot argue that Gaussianity is as
bad as observed for the overnight period in Fig. 7, it is
clear that it is unstable between 00:00 and 09:00. Again
it seems that the behavior of a few users determine the
Gaussian characteristic during the light-loaded period of
the link. Again, we observe that a high traffic rate is a
better indicator for a high γ value than the number of
users: For example, γ closely follows the traffic rate in
the period from 19:00 to 23:00. Again, the opposite is not
necessarily true.

Finally, we have the same kind of measurement for
location C2, where only the first 15 minutes of traffic of
every full hour was measured during an entire day. One
important remark regarding location C2 measurements is
that, unlike C1, the measurement took place when most
students were on holidays. That was unfortunate since
we missed a portion of network users, but at the same
time it gave us the possibility to study the properties of
traffic aggregated from fewer users. Another remark is that
this university does not have residential buildings on the
campus and, hence, overnight traffic averages are likely to
be low. Fig. 9 presents the results for this location.
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Fig. 10. Gaussianity goodness of fit for traces from location F2;
T = 1s.

As one can see from Fig. 9a, γ is not very high (close to
0.9) but fairly stable. Indeed, it seems that it is affected
neither by the traffic rate nor by the number of users. We
believe that, due to the holiday period, the traffic charac-
teristics mainly arise from the rather constant behavior of
the employees and automated processes, while variations
caused by, for example, file transfers are rare. The main
take away from Fig. 9 is that with links that have low
capacity or low activity the overall user behavior becomes
the dominating factor.

C. Impact of long-term traffic evolution
The aim of this analysis is to check whether long-term

traffic evolution has an effect on Gaussian characteristics
of traffic. In the context of this paper, traffic evolution
would be caused by applications that emerged in the past
years. On one hand, services such as Facebook would
be responsible for many connections with few transferred
data (i.e., short flows) [13]. On the other hand, online video
streaming and cloud storage services would be responsible
for connections with, generally, large amount of transferred
data [13], [14].

Fig. 10 shows the Gaussian goodness of fit γ calculated
for the traces from location F2 dating from 2006 to 2012.
A total of 178 traces (about 2 to 3 traces per month from
August 2006 to December 2012) were used in this analysis.
We observe that the (already good) average goodness of fit
has only slightly increased from 2006 to 2012, while traffic
bandwidth has more than doubled. It should be noted that

the increased bandwidth results in less variation of γ.
The number of users has not changed significantly dur-

ing the measurement period. For unknown reasons, the
measured link experienced several moments of huge peaks
on number of hosts transferring data from September 2011
to December 2012. However, this did not result in higher
traffic rates or a better Gaussianity fit.

V. Conclusions

The assumption of Gaussian traffic is widely used in
network modeling. However, the most recent systematic
study on the presence of Gaussianity in real network traffic
is from 2006, relying on measurements from 2004. In this
paper, we have verified the assumption of Gaussianity
on recent traffic measurments. Our dataset comprises
extensive measurements from four continents and covers
diverse scenarios, from small campus networks to 10 Gb/s
backbone links.

Our results show that the assumption of Gaussianity
still holds for current network traffic, indicating that the
evolution of the Internet in the past years has not had a
significant impact on its Gaussian characteristic. Indeed,
most of the analyzed measurement locations show a high
or very high degree of Gaussianity for a wide range of
considered aggregation timescale. However, this degree can
vary depending on the level of vertical aggregation and is
usually highest during the busiest period of the network,
i.e., during daytime.

Our findings also suggest that it is safer to relate the
degree of Gaussianity to traffic bandwidth than to the
number of users for high-speed links. The number of
active users is less reliable as indicator for Gaussianity be-
cause users from different networks may behave differently.
Cases in which traffic is Gaussian even with few users and
low traffic averages require a deep manual study of the
traffic properties, and this is planned as future work.

Finally, we have illustrated the invariance of the Gaus-
sianity property by our study of a trans-Pacific backbone
link over a period of six years. Although the amount of
traffic transported by that link has considerably changed
during the measurement period, the degree of Gaussianity
has nearly stayed constant. To the best of our knowledge,
this is the first time such a longitudinal analysis has been
performed.

We conclude that mathematical models relying on the
Gaussianity of network traffic are still valid, especially
for the, from the viewpoint of network operators, most
interesting periods of high network activity.
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