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Abstract—An extensive body of research deals with estimating
the correlation and the Hurst parameter of Internet traffic traces.
The significance of these statistics is due to their fundamental
impact on network performance. The coverage of Internet traffic
traces is, however, limited since acquiring such traces is chal-
lenging with respect to, e.g., confidentiality, logging speed, and
storage capacity. In this work, we investigate how the correlation
of Internet traffic can be reliably estimated from random traffic
samples. These samples are observed either by passive monitoring
within the network, or otherwise by active packet probes at end
systems. We analyze random sampling processes with different
inter-sample distributions and show how to obtain asymptotically
unbiased estimates from these samples. We quantify the inherent
limitations that are due to limited observations and explore the
influence of various parameters, such as sampling intensity, net-
work utilization, or Hurst parameter on the estimation accuracy.
We design an active probing method which enables simple and
lightweight traffic sampling without support from the network.
We verify our approach in a controlled network environment and
present comprehensive Internet measurements. We find that the
correlation exhibits properties such as long range dependence
as well as periodicities and that it differs significantly across
Internet paths and observation times.

I. INTRODUCTION

Traffic characteristics play a key role in planning and opera-

tion of packet data networks. As a consequence, in recent years

network measurements have attracted considerable attention as

a practical method for inferring traffic properties. The scope of

such measurements varies from access networks to backbone

networks or even across the Internet.

Numerous comprehensive measurement studies, based on

recorded network traces, have revealed that aggregate Internet

traffic possesses long memory correlations, so-called long

range dependence (LRD) [7], [13], [20]. The impact of LRD

on network performance was investigated in several works,

e.g., [8], [16], [18], [24]. Networks fed with LRD traffic ex-

hibit a fundamentally different behavior compared to systems

fed with memoryless or Markovian traffic.

In practice continuous logging and evaluation of all relevant

network events in large networks is typically not feasible due

to efficiency, confidentiality, and cost factors. For example,

with link speeds of 10 Gbps and more capturing traffic

traces becomes increasingly difficult, as suitably large and

fast storage systems are expensive. One main challenge is

therefore, to extract the desired information from a subset of

events, e.g., using a sampling procedure that yields consistent

estimates of the target metric. In addition, ISPs rarely disclose

traffic traces because of confidentiality issues such that traffic

characteristics can only be inferred from external observations.

Further, a fundamental limitation of traffic traces is that these

reflect traffic characteristics at only a single observation point.

In this work, we investigate the problem of estimating the

correlation of Internet traffic given a limited set of random

samples. The significance of these statistics is due to their

fundamental impact on network performance [8], [13]. First,

we consider passive sampling, i.e., capturing traffic samples

at some directly accessible node, e.g., a router. Here, the

main focus is on the choice of the sampling process and

it’s properties. Further, for any practical realization passive

sampling yields a finite sample size, which directly influences

the accuracy of the results. Secondly, we consider active

probing that is a technique, where external measurements

of specific probe packets are used. The aim is to avoid

any particular network support by exploiting, e.g., timing

information that is imprinted on the probes by interaction with

network traffic. The additional challenge of active compared

to passive methods is to design probes that actually permit

inferring the desired traffic characteristics, which in certain

cases may even be impossible [15].

The ultimate result of this work is to enable the online

estimation of traffic correlations along network paths without

network support. To this end, we present methods for extract-

ing LRD characteristics from sampled traffic. We derive the

impact of sampling on the observed traffic correlations for dif-

ferent sampling strategies and show that sampling may distort

observations. We develop methods that reverse these effects

for a set of sampling processes. We quantify the accuracy

of the observations under finite sampling durations, showing

that the estimation error increases as τ2−2H with the autoco-

variance lag τ and the LRD Hurst parameter H ∈ (0.5, 1).
We derive the impact of different sampling parameters on

estimation accuracy and show a non-linear trade-off between

sampling intensity and sampling duration. Finally, we design

and evaluate a practical active probing method to estimate

traffic correlations from external observations. We present

practical testbed and Internet measurement results showing a

complex covariance structure of Internet traffic that exhibits

LRD as well as periodic behavior.

The paper is structured as follows: In the next section we

present the state-of-the-art on LRD network traffic character-

istics, sampling and active network probing. In Sect. III we

derive our main results concerning traffic sampling and the

accuracy of the estimated traffic parameters. In Sect. IV we
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2

present and deploy an active probing method that uses packet

probes to infer traffic correlations. Sect. V concludes the paper.

II. RELATED WORK

In the following, we discuss related work on LRD traffic

characteristics, sampling and network probing.

A. LRD traffic characteristics

Comprehensive measurements in the 90s, e.g., [7], [13],

[20] revealed that aggregate Internet traffic exhibits LRD and

self-similarity phenomena, that can be described by the so-

called Hurst parameter H . The aggregation of multiple traffic

sources offers a possible explanation of these characteristics.

It was shown in [31] that aggregating many on-off sources

with heavy tailed on and off periods yields self-similar LRD

traffic. This notion corresponds to file transfers from heavy

tailed file size distributions as observed on storage systems

[7], [34]. An experimental validation of the relation between

self-similarity and heavy-tailed distributions is carried out in

[14] on a large-scale experimental facility.

Given a stationary process Y (t), LRD manifests itself in

the slow decay of the autocovariance1 cY (τ) such that

cY (τ) ∼ σ2
Y τ

2H−2 for τ → ∞, (1)

where σ2
Y is the variance of Y (0) and the Hurst parameter

H ∈ (0.5, 1). The sum of the autocovariance over all lags τ
diverges, i.e.,

∑

τ cY (τ) → ∞.

In this work, we focus on the autocovariance structure

of (1). Our goal is to infer (1) from traffic observations,

respectively, to estimate the Hurst parameter H from the slope

of cY (τ) on a log-log scale. Numerous other methods exist

for estimating the Hurst parameter from LRD and self-similar

time series [3], [30], [33]. Due to limited space we refer the

interested reader to our analysis of H estimation from sampled

times series using a variance and a spectrum based technique

in the extended technical report version of this paper [25].

B. Sampling

Sampling is widely used to reduce the data processing

and storage requirements as well as to circumvent problems,

such as system inaccessibility and hardware access latency. A

fundamental result often employed in the sampling context is

known as PASTA, Poisson Arrivals see Time Averages [35].

PASTA states that the portion of Poisson arrivals that see a

system in a certain state corresponds, in average, to the portion

of time the system spends in that state.

Further, the authors of [17] establish general conditions,

such that Arrivals See Time Averages (ASTA) holds, i.e., bias

free estimates are not limited to Poisson sampling. In a recent

work the authors of [2] coined the term NIMASTA, i.e. Non-

intrusive Mixing Arrivals See Time Averages, in the context of

network measurements using an argument on joint ergodicity.

1Throughout this work, we use the definition of autocovariance in the signal
processing sense, i.e., for a stationary process Y (t) the autocovariance is
defined as cY (τ) := E[Y (t)Y (t + τ)] − E[Y (t)]E[Y (t + τ)]. For brevity,
we frequently use the term covariance to mean autocovariance.

The authors in [1] show that Poisson sampling, though bias

free, does not guarantee minimum variance estimates.

A comparison of Poisson and periodic sampling was carried

out in [27], [32]. Using the notion of asymptotic variance,

[27] shows that either Poisson or periodic sampling can be

superior depending on the a priori known autocovariance of

the sampled process.

In [21] it is shown that for correlation lags tending to

infinity, random sampling captures the long memory of the

original processes, as long as the sampling distribution has a

finite mean.

C. Active network probing

The injection of test packets into a network for inferring

network performance, i.e., active probing, has attracted con-

siderable attention in recent years. End-to-end packet delays or

inter packet times are metrics commonly used to estimate net-

work characteristics such as the average available bandwidth

or even to reconstruct cross-traffic statistics [12], [23], [29].

Cross traffic estimation of LRD traffic using active mea-

surements was discussed, in [11], [22]. The authors of [11]

carry out a numerical simulation to interpolate cross traffic

from probes and predict future traffic from the LRD property.

In [22] the authors derive and show simulation results for a

deterministic probing scheme based on a multi-fractal wavelet

traffic model. Essential to their estimation is the assumption

that the queue does not empty between the individual packets

of a packet probe. Our work differs significantly from [11],

[22] as we examine random sampling distributions, show how

to extract traffic correlations from distorted observations and

characterize end-to-end paths.

Two important aspects concerning network probing are the

measurement intrusiveness and the interaction of probes with

the measured system. The first aspect is usually addressed by

minimizing the probing rate while controlling the quality of

the results. The second aspect is more involved, since the

probes perturb the system leading to distorted observations.

For example, measuring queueing delays of probes to de-

termine the true queue length distribution is governed by a

type of Heisenberg uncertainty [26], since the probes alter the

queue length. The authors describe the impact of the probing

intensity on the accuracy of the result using the notion of

asymptotic variance. The effect is increased in case of LRD

traffic, although not given in closed form, leading to higher

uncertainty in the estimated waiting time [26].

III. TRAFFIC SAMPLING AND PARAMETER ESTIMATION

In this section we derive our main results on traffic co-

variance estimation from sampled observations. Based on

sampling properties we present rigorous traffic parameter

estimation. Subsequently, we investigate the accuracy of the

estimates under the practical constraint of finite sample sizes.

A. Covariance of sampled processes

We define a sampling model comprising of three stationary

discrete time processes: a traffic increment process Y (t), a

2
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TABLE I
PARAMETRIZATION OF SAMPLING DISTRIBUTIONS AND TRAFFIC PARAMETER ESTIMATION

inter-sample distribution autocovariance cA(τ) = reconstructed traffic remarks

f(τ) E [A(t)A(t+ τ)]− µ2
A for τ > 0 covariance cY (τ)

Geometric p(1− p)τ−1 0 cW (τ)

µ2
A

µA = p

Periodic δ(τ −∆)

{

1/∆− 1/∆2 for τ = k∆, k ∈ N0

−1/∆2 otherwise

cW (τ)−µAµ2
Y (1−µA)

µA

cY (τ) at τ = k∆,
µA = 1/∆

Gamma βα

Γ(α)
τα−1e−βτ

−µ2
Ae

−4(µA)τ cW (τ)+µ2
Aµ2

Y e−4(µA)τ

µ2
A(1−e−4(µA)τ )

for α = 2, µA = β

α

Uniform 1/b for 0 ≤ τ ≤ b µ2
A(

1
2
e

1
2
(µA)τ

− 1)
2cW (τ)−µ2

Aµ2
Y

(

e
1
2
(µA)τ

−2

)

µ2
A
e
1
2
(µA)τ

−2

cY (τ) for τ ≤ b,
µA = 2/b
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Fig. 1. Autocovariance of LRD traffic processes under geometric sampling.
The observed “cW (τ)” maintains the autocovariance structure of the traffic
process. The covariance of the original process “cY (τ) (traffic)” is exactly
covered by the reconstructed “cY (τ) (estimate)”.

sampling process A(t), and an observed process W (t) for

t ∈ N0. We assume statistical independence of A(t) and Y (t).
Our focus lies on the estimation of the covariance of Y (t) that

is characterized by LRD. While the LRD process may be in

continuous time, we regard its increments on a fixed time slot

basis, and hence the discretization of Y (t).
The sampling process A(t) is a point process taking the

value of one whenever a sample is taken, and zero otherwise,

i.e., A(t) is a Kronecker delta train, where a Kronecker delta

is defined as δ(n) = 1 for n = 0 and zero otherwise. The

process has independent and identically distributed (iid) inter-

sample times drawn from a given probability distribution F .

The inter-sample time is the time between two consecutive

Kronecker deltas. The sampling intensity, i.e., the mean rate

of the sampling process of A(t), is E [A(t)] = µA for all t,
with 0 ≤ µA ≤ 1. Throughout this work we use µ(·) to denote

the expected value E [(·)].
We base our analysis on the observed stochastic process

W (t), generated by random samples A(t) of the increment

process Y (t), with

W (t) = A(t)Y (t). (2)

We aim to infer properties of the traffic process Y (t) from

the observation process W (t). In particular, we are interested

in sampling distributions F that deliver accurate estimates

of the correlations of the LRD traffic process Y (t) and the

associated Hurst parameter H . Extracting the autocovariance

of the process Y (t), i.e., cY (τ) from the observed cW (τ)
is generally not a straightforward task. The following lemma

reveals the impact of sampling on the autocovariance of the

observed process. The proof of Lem. 1 is a variation of

standard technique in stochastics and is given in the technical

report [25].

Lemma 1: Given the stationary and independent stochastic

processes A(t) and Y (t) and let W (t) = A(t)Y (t). The

covariance of W (t) can be decomposed into

cW (τ) =
(

cA(τ) + µ2
A

)

cY (τ) + cA(τ)µ
2
Y .

Lem. 1 clearly shows the impact of the sampling process on

the observed covariance. In particular, the choice of the inter-

sample distribution influences cW (τ) through µA and cA(τ),
i.e., both the sampling intensity and the sampling covariance

influence the observation.

In this work we investigate four inter-sample distributions:

geometric (memoryless), periodic, Gamma, and uniform. For

each distribution we show how to recover the covariance of

the LRD process cY (τ) from the observed cW (τ) using the

covariance cA(τ). To this end, we derive the covariance of the

sampling process cA(τ) = E [A(t)A(t+ τ)]−µ2
A. We use the

probability mass function f(τ) of the inter sample times to cal-

culate the n-fold self-convolution f (∗n)(τ). We then calculate

the autocorrelation E [A(t)A(t+ τ)] = µA

∑

∞

n=1 f
(∗n)(τ) as

given in [6], Eq. (4.6.1). We exploit the property that f (∗n)

is a power series for the considered distributions and that

its sum converges. We provide an elaborate derivation of the

autocovariance in the technical report [25]. In the last step we

insert cA(τ) into Lem. 1 and solve for cY (τ).
Tab. I summarizes the expressions used to reconstruct

cY (τ) given specific inter-sample distribution parameters and

corresponding cA(τ). First, we consider the geometric inter-

sample distribution, i.e., a Bernoulli sampling process. The

independence of the increments implies that cA(τ) = 0 for

τ > 0. From Lem. 1, the observations W (t) have autocovari-

ance

cW (τ) = cY (τ)µ
2
A. (3)

This indicates that sampling processes with uncorrelated in-

crements preserve the autocovariance structure of Y (t).
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Next, we consider periodic sampling, where A(t) is mod-

eled as a comb of Kronecker deltas with sampling period ∆.

The mean intensity of the sampling process is µA = 1/∆. We

can recover cY (τ) at τ = k∆, however, the mean rate µY of

the traffic process must be known. Due to the rigid structure

of periodic sampling it is known that the associated mean rate

estimator µW /µA is not unbiased [2], e.g., the sampling period

may coincide with periodicities in the original process.

Finally, Tab. I provides expressions for reconstructing

cY (τ) after Gamma and uniform sampling. For mathematical

tractability, here we use continuous time for the derivation

of the autocorrelation of A(t). Note that the discretization

error diminishes for autocorrelation lags much larger than the

discretization time slot. In case of Gamma sampling, the ability

to estimate cY (τ) is not limited to the exemplary α = 2 given

in Tab. I. Lem. 1 can be used to estimate cY (τ) for arbitrary

Gamma sampling processes as long as the autocovariance

cA(τ) is computable. We provide results for Gamma sampling

with α = 4 in the technical report [25].

Figures 1 and 2 illustrate autocovariance estimates de-

rived from observations W (t), that are obtained by sampling

LRD traffic with autocovariance cY (τ) ∼ σ2
Y τ

2H−2 and

H ∈ [0.6, 0.9].2 We use geometric, periodic, Gamma, and

uniform inter-sample time distributions and set µA=0.1. In all

cases the reconstructed autocovariance denoted “cY (estimate)”

exactly covers the original traffic autocovariance “cY (traffic)”.

Geometric sampling in Fig. 1 preserves the linear covariance

structure of cY (τ). The observed cW (τ) is vertically shifted

by log(µ2
A) w.r.t. the original cY (τ). The Hurst parameter H

can be inferred directly from the slope of cW (τ).

For the remaining considered distributions shown in Fig. 2,

the observations cW (τ) are distorted. However, using Lem. 1

we recover the original covariance cY (τ). Using the expres-

sions from Tab. I we reconstruct “cY (estimate)” which lies on

top of the original autocovariance “cY (traffic)”.

In the following we discuss advantages and disadvantages

of the presented sampling distributions. Periodic and uniform

sampling are practically convenient as the inter-sample times

2Synthetic traces of length 2.5×108 time slots were used for the simulation
which was repeated 25 times for each considered H .

cannot become arbitrarily large due to the finite support of the

inter-sample distribution. Moreover, periodic sampling is easy

to implement.

However, it is important to point out that periodic sampling

yields misleading results if the sampling period coincides

with periodicities in the target process. In addition, periodic,

Gamma as well as uniform sampling require a reconstruction

step to estimate the covariance cY (τ) from observations as

shown above. To this end, an estimate of the mean rate of

Y (t) is required.

Memoryless sampling is proposed by the IETF as a network

probing scheme [19]. In contrast to periodic, Gamma and

uniform sampling, a major advantage of geometric sampling,

i.e., memoryless, is that the covariance structure of cY (τ) is

preserved in the observations as given in (3). In the following

we continue the analysis with geometric sampling because of

its advantages discussed above.

B. Impact of finite sample sizes

Next, we examine the accuracy of the derived estimates for

finite sample sizes which is vital for any practical realization.

The use of finite sample sizes relaxes the assumption of

stationarity to piece-wise stationarity for the duration of a

measurement. We determine the impact of sampling param-

eters, e.g., sampling duration or intensity, on the observations.

Moreover, we evaluate the accuracy of the deployed statistical

estimators. Finally, we recover the results from Sect. III-A in

the limit for infinite sampling durations.

We investigate sample autocovariances marked by c̃(·) as

estimators of the population autocovariances c(·). In addition,

we consider the sample means µ̃(·) as estimators of the

population means µ(·). To better understand the impact of finite

sample sizes on the observations and the covariance estimates

we examine the individual effects of the sample covariances

involved in a step by step manner.

While geometric sampling is appealing since it’s autoco-

variance cA(τ) = 0 for τ > 0, it looses this property for finite

sampling duration T , where T is the length of the time-slotted

sampling process A(t) in slots.

In the following we focus on three aspects. First in subsec-

tion III-B1, we derive the impact of finite sample sizes on the
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Fig. 2. Autocovariance of the LRD process under different sampling strategies. Note that “cY (τ) (traffic)” is covered by the “cY (τ) (estimate)”.
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Fig. 3. Noisy observations due to finite sampling. Noise floor (shaded area)
in Sect. III-B1. Noise cone in Sect. III-B2.

observability of the covariance of sampled traffic. The second

aspect is the impact of the sample covariance c̃A(τ) and its

influence on the estimation error. This is handled in subsection

III-B2. The third aspect is the impact of finite sample sizes

on the bias of the covariance estimators given in subsection

III-B3.

1) Observation limit: In this subsection, we do not consider

deviations of sample statistics from respective population mea-

sures. We relax this assumption in the following subsections.

Fig. 3(a) depicts the sample autocovariance c̃Y (τ) of an LRD

traffic trace Y (t), and the corresponding autocovariance of

geometrically sampled observations c̃W (τ) with a limited

sample size T . Evidently, c̃W (τ) is not just a shifted version of

c̃Y (τ) but superposed and distorted with observation “noise”

for increasing lags τ .

We seek a range of lags τ ∈ [0, τ∗] in which the covariance

of the sampled process can be observed without significant

distortion. Based on a standard technique [3] we compare

the covariance of the observed process to the covariance of

geometrically sampled iid Gaussian sequences to obtain τ∗

up to which both covariances are significantly different.

Fig. 3(b) schematically depicts τ∗ as the intersection

of cW (τ) from (3) and the shaded 0.95 confidence in-

terval for geometrically sampled finite Gaussian iid se-

quences with mean µY and variance σ2
Y . For T ≫ τ we

find that this confidence interval is given by 2(σ2
Aµ

2
Y +

µAσ
2
Y )

√

(4µ2
Aµ

2
Y )/(σ

2
Aµ

2
Y + µAσ2

Y ) + 1/
√
T . The calcula-

tion relies on the central limit theorem and is given in detail in

the technical report [25]. In Fig. 3(b) we denote this confidence

interval as noise floor.

We calculate τ∗ for LRD traffic with covariance cY (τ) =
Kσ2

Y τ
2H−2, with constant K, as

τ∗ =









Kσ2
Y µA

√
T

2 (σ2
Aµ

2
Y + µAσ2

Y )

√

4µ2
A
µ2
Y

σ2
A
µ2
Y
+µAσ2

Y

+ 1









1
2−2H

.

It is obvious that stronger LRD, i.e., higher H , is observed

better. Clearly, for an infinite sample size T → ∞, the

observable range goes to infinity τ∗ → ∞. Fig. 3(a) shows

that in practice it is important to consider this range to ensure

that the results are not significantly distorted.

2) Estimation accuracy: Next, we evaluate the impact of

the finite sample size on the sample covariance c̃A(τ). We

analyze the influence of c̃A(τ) on the observation c̃W (τ) and

of estimates of cY (τ) obtained thereof. For ease of exposition,

we assume c̃Y (τ) = cY (τ), µ̃A = µA and µ̃Y = µY , i.e.,

in this subsection we restrict our analysis to the deviation of

c̃A(τ) from cA(τ).
We assume T ≫ τ and use the central limit theorem

to approximate the distribution of the sample autocovariance

c̃A(τ) by a Gaussian distribution with standard deviation

σA

√

σ2
A + 4µ2

A/
√
T − τ , with σ2

A = µA − µ2
A from the

geometric distribution. We calculate the 0.95 confidence inter-

val c.95A ≈ ±2σA

√

σ2
A + 4µ2

A/
√
T − τ for the mean sample

autocovariance3. The derivation can be found in the appendix

of the technical report [25].

With help of c.95A we investigate the impact of the varia-

tions of c̃A(τ) on the observation c̃W (τ). First, we use c.95A

to calculate a confidence interval for c̃W (τ) as c.95W (τ) ≈
±c.95A

(

cY (τ) + µ2
Y

)

. We schematically depict c.95W (τ) as noise

cone in Fig. 3(b).

Next, in reference to (3) we consider the estimator

c̃W (τ)/µ2
A for estimating cY (τ). We analyze the impact of

the variations of c̃A(τ) on this estimator. We calculate the

confidence interval c.95Y (τ) for this estimator as c.95Y (τ) ≈
±c.95A

(

cY (τ) + µ2
Y

)

/µ2
A. Finally, we obtain the following

relative error

εrelY (τ) =
|c.95Y (τ)|
cY (τ)

≈ 2σA

√

σ2
A + 4µ2

A√
T − τµ2

A

(

1 +
µ2
Y

cY (τ)

)

. (4)

From (4) we observe that the estimation error introduced

through c̃A(τ) decays with increasing sampling duration T or

with increasing sampling intensity µA. For small (practical)

sampling intensities, e.g., µA ≤ 0.1, we find a nonlinear trade-

off between sample intensity µA and sampling duration T .

Using σ2
A = µA−µ2

A from the geometric sampling distribution

the prefactor in (4) can be approximated as 1/
√
TµA for

T ≫ τ . This result enables the important conclusion that for

finite sample sizes sampling intensity has a stronger impact

on accuracy than sampling duration.

Next, we examine the influence of the parameter H on (4)

for large lags τ . For increasing τ , cY (τ) decreases, such that

when cY (τ) ≪ µ2
Y , the relative estimation error (4) becomes

εrelY (τ) ≈ 2σA

√

σ2
A + 4µ2

Aµ
2
Y√

T − τµ2
Aσ

2
Y

τ2−2H . (5)

The relative estimation error εrelY (τ) increases with the lag τ
depending on H ∈ (0.5, 1). For LRD traffic which exhibits

large H , the estimation error increases slower in τ compared

to traffic with a small parameter H .

We depict εrelY (τ) in Fig. 4. To this end, we used 100
generated LRD traffic traces with T = 2 × 108 time slots.

The figure includes auxiliary lines with a slope of 2− 2H . It

is evident, that the estimation error evolves with τ as in (5).

In addition, we calculate the needed sampling duration T to

achieve constant εrelY for a given lag τ , and fixed µA, µY and

3We use the relation ≈ to denote the approximation, here due to the
Gaussian distribution approximation.
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Fig. 4. Estimation error under finite sampling depends on H .

σY . We find from (5) that the sampling duration has to increase

as T ∼ max{τ4−4H , τ}, which again reveals the impact of

H . Specifically, for H < 0.75 the sampling duration has to

increase faster than linearly with τ to achieve constant εrelY .

3) Bias of autocovariance estimators: Next we inves-

tigate the accuracy of the deployed statistical estimators.

The impact of the finite sample size carries forward to

the computation of the autocovariance of Y (t). First we

consider the case where we directly observe Y (t) for a

finite duration T . We consider the autocovariance estima-

tor c̃Y (τ) = 1
T−τ

∑T−τ
t=1 (y(t)− µ̃Y0

) (y(t+ τ)− µ̃Yτ
) with

µ̃Yi
= 1

(T−τ)

∑T−τ
t=1 y(t+ i). An estimator of the autocovari-

ance is unbiased iff E [c̃Y (τ)] = cY (τ). To inspect the bias of

c̃Y (t), we calculate its expected value and find

E [c̃Y (τ)] ≈ cY (τ)−
σ2
Y

(T − τ)2−2H
. (6)

The derivation of (6) is given in the appendix of the technical

report [25].

From (6) we conclude that the autocovariance estimator

c̃Y (τ) is asymptotically unbiased for T → ∞ and T ≫ τ . The

maximum lag, up to which the autocovariance is estimated,

must be chosen carefully, such that the bias in (6) becomes

negligible. However, the bias depends on H such that higher

H require larger T to retain a negligible bias.

After considering the entire process Y (t) we now investigate

the bias of the autocovariance estimator when applied to W (t)
as observed by sampling with finite duration T . We calculate

the expected value of the estimated autocovariance

E[c̃W (τ)]≈cW (τ)−cW (0)

T − τ
− 2

(T − τ)2

T−τ−1
∑

t=1

(T−τ−t)cW (t).

(7)

The derivation of (7) is given in the appendix of the technical

report [25]. The bias in (7) goes to zero for T → ∞ and

T ≫ τ .

In the remainder of this section we provide brief conclusions

that highlight our main findings. We presented a framework for

extracting the traffic autocovariance from observed samples.

From our evaluation of the sampling distributions we conclude,

that the covariance observed under geometric sampling does

not exhibit any distortions. This property greatly simplifies the

reconstruction of the covariance of the original process Y (t),
as no additional parameters, such as µY , must be estimated.

Hence, for geometric sampling with sufficiently large T we

use c̃W (τ)/µ2
A as an estimator of the traffic autocovariance.

From the evaluation of the estimator we find two major aspects

that limit the observability for finite sampling sizes. First,

finite sampling size yields a computable noise range which

may obscure the true covariance structure. Secondly, the bias

for covariance estimators depends on the Hurst parameter,

such that longer measurements must be conducted for traffic

exhibiting strong LRD.

Nevertheless, finite sampling effects disappear in the limit

for large sampling durations. Moreover, we found that increas-

ing the probing intensity improves estimation results more

quickly than increasing the sampling duration.

IV. ACTIVE PROBING

So far, we focused on the estimation of traffic correlations

using passive sampling. In large multi-provider networks like

the Internet, service providers often do not provide such

network traces, e.g., for reasons of competition. The estimation

of traffic correlations, therefore, must rely on inferring samples

of the Internet traffic from network metrics that can be easily

observed at end systems, e.g., by active probes. Moreover,

passive sampling is a priori limited to single links. In case of

network paths, where the correlations of the end-to-end service

involve multiple nodes and links, end-to-end measurements

may be the only viable option. We present an active probing

method that enables users to characterize end-to-end paths,

with minimal effort and without administrative support from

the network under observation.

In this section, we address the fundamental problem of

inferring the correlation of LRD traffic using active probes.

We propose a new active probing method which collects traffic

samples by detecting router busy periods. The observations

are used to estimate the covariance of the end-to-end service.

Subsequently, we estimate the corresponding Hurst parameter.

In the extended technical report [25] we show an alternative

approach for estimating traffic correlations that is based on

capturing traffic intensities using packet pair probes. Com-

pared to packet pairs, the approach described in the following

uses less probing traffic and can be stringently formulated for

multi-node networks. In the sequel, we describe our probing

methodology and discuss traffic correlation estimation for

both the single and multi-node cases. We then show testbed

measurements to demonstrate the feasibility of our method.

Finally, we present a set of Internet measurement results

showing end-to-end correlations of entire network paths.

A. Probing Methodology

To extract an estimate of the cross traffic autocovariance, we

propose an approach which uses the delays of single packet

probes to detect busy periods at a router, and hence samples

the link utilization at the router egress. For the remainder of

this work, cross traffic denotes any traffic sharing resources

with the probing traffic.

We make the general assumption that packet scheduling is

non-preemptive. Hence, whenever a router is busy transmitting

a packet, the delay dp experienced by an arriving packet will

6
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Fig. 8. End-to-end covariance estimates from Internet measurements. The covariance structure varies across different paths and for different times. For some
targets we observe distinct periodicities on different timescales.
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Fig. 7. Hurst parameter estimates from (a) offline trace analysis, (b) offline
trace sampling and (c) active probing in the Emulab testbed.

H to the receivers Ri. The traces were synthesized by super-

position of 105 heavy tailed on-off sources with tail index α.

The relation between H and the tail index α is given in [34].

We set the mean rate of the traffic at each sender to 50 Mbps,

with a constant packet size of 1500 Byte.

We use geometrically distributed inter-sample times with

p = 0.1 and slot length δ = 1ms. For each measurement we

send 106 probes with a mean probing rate of 100 packets per

second (corresponding to ∼ 70 kbps) from the probe sender

Sp to the receiver R3. We fix the measurement duration to 3
hours that is a time-scale over which piecewise stationarity

of traffic processes has been observed, e.g. in [10], [28].

The chosen probing parameters introduce a light load on the

nodes and simultaneously yield viable results. We highlight the

non-linear tradeoff between probing duration and intensity in

Sect. III-B. We use the same parameters for the Internet mea-

surements in Sect. IV-E. To deal with non-queueing induced

jitter in routers, which we assume to be light tailed, H-probe

substitutes dmin from (8) by the strictly larger average E[d] to

reduce the measurement noise. While this heuristic conceals

small bursts, we note that the long tail of the burst length

distribution, which establishes the LRD property of the traffic

[34], remains unaffected.

TABLE II
EXEMPLARY HURST PARAMETER ESTIMATES IN A 2 NODE SCENARIO.

estimated H on run #
1 2 3 4 5

{H1 = 0.6, H2 = 0.9} 0.87 0.89 0.89 0.90 0.90

{H1 = 0.9, H2 = 0.6} 0.87 0.88 0.88 0.90 0.90

{H1 = 0.6, H2 = 0.6} 0.59 0.62 0.64 0.63 0.63

{H1 = 0.9, H2 = 0.9} 0.92 0.92 0.89 0.92 0.89

D. Testbed measurements

We deploy H-probe in our Emulab testbed, in order to verify

its functionality in a controlled environment. We use synthetic

traces to be able to repeat the experiment for statistical validity.

First, we inject synthetic LRD traffic with H ∈ [0.6, 0.9]
on link 1 and collect 106 samples using our software. In

order to compare the covariance of the traffic traces to the

measurement results we do not inject traffic on the return

path. Each experiment is repeated 25 times. We compare the

covariance of the full traffic traces calculated offline (denoted

trace) to the covariance extracted offline from a sampled

process (denoted passive sampling) as well as from probes

using H-probe (denoted active probing). To this end, we

estimate the Hurst parameter using a least square regression of

the estimated covariance on lags τ ∈ [1, 103]. The lag range

for the regression as well as the probing process parameters

are chosen according to the constraints in Sect. III-B. We show

boxplots of the corresponding Hurst parameters in Fig. 7. It is

evident that H-probe correctly estimates the configured Hurst

parameters.

In a second experiment we inject LRD traffic with differing

H along links 1 and 2 denoted H1 and H2 respectively. In

Tab. II we show exemplary Hurst parameters obtained for

all combinations of H1 = {0.6, 0.9} and H2 = {0.6, 0.9}.

We note that our method correctly characterizes the dominant

correlations, respectively, H along end-to-end paths from a

probing rate of as low as 70 kbps.

E. Internet measurements

We perform measurements over multiple weeks using

H-probe from our lab that is connected to the German research

network targeting a number of worldwide PlanetLab nodes, in

8
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order to estimate the correlations on end-to-end paths across

the Internet. Traceroute results show stable paths to each

target, e.g., with {15, 17, 16} hops for the targets in Fig. 8(a),

8(b), 8(c) respectively. We provide extended results in the

technical report [25]. The complex correlation structure along

exemplary Internet paths is illustrated by the covariance plots

in Fig. 8. First, we observe LRD covariance decay depicted

in Fig. 8(a) and 8(b). We point out that the correlation and

hence the Hurst parameter vary significantly throughout the

day. Moreover, we find that the correlation structure varies

strongly across different paths. Additionally, for some targets

we observed distinct periodicities on different timescales, as

exemplified in Fig. 8(c). While periodic behavior in offline

Internet traces, due to various protocol implementations has

been previously reported, e.g., in [5] H-probe provides a new

tool enabling researchers to shed light on the complex structure

of traffic correlations without requiring the availability of

traffic traces from Internet service providers.

V. CONCLUSIONS

In this paper, we derived estimators for the correlations

of network traffic, given limited traffic samples obtained

by passive monitoring or active probing. We explored the

impact of different sampling strategies on observed traffic

correlations and quantified the impact of sampling on the

observations. We showed that for finite sample sizes there

are intrinsic limitations on the accuracy of the estimates and

showed the influence of different sampling parameters. We

found a non-linear tradeoff between sampling duration and

sampling intensity. Further, we inferred the Hurst parameter

H from covariance estimates to quantify LRD. We devel-

oped and deployed an active probing method that estimates

traffic correlations from end-to-end measurements without

network support. The corresponding software is made publicly

available. Finally, we presented measurement results from a

controlled testbed environment as well as Internet paths. We

observe a complex correlation structure on Internet paths. The

correlation structure as well as H significantly vary across time

and paths. In addition to LRD we observe periodic behavior

at different time scales.
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