
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Optimal OSPF Traffic Engineering using Legacy
Equal Cost Multipath Load Balancing

Krisztián Németh∗, Attila Kőrösi†, Gábor Rétvári∗
∗High Speed Networks Laboratory, Dept. of Telecommunications and Media Informatics

Budapest University of Technology and Economics (BME), Budapest, Hungary
†MTA (Hungarian Academy of Science) – BME Information Systems Research Group

Email: {krisztian.nemeth, korosi, retvari}@tmit.bme.hu

Abstract—In this paper, an optimal traffic engineering tech-
nique is proposed that uses only unmodified OSPF shortest
path routing with stock ECMP (Equal-Cost MultiPath) load-
balancing. The main problem with OSPF ECMP is that it can
only divide the traffic in equal proportion among the least-cost
paths. Our proposal works around this limitation by setting up
virtual links alongside existing physical ones, this way adjusting
the effective splitting ratio. In this paper, we study the special
case of full-mesh MPLS overlays, which already promises with
important practical applications yet turns out rather untrivial
to solve. We formulate the problem of how to provision the
virtual links to approximate the desired traffic splitting ratio,
thereby minimizing congestion, we solve this problem under
various restrictions arising from present OSPF practice, and
finally we present extensive numerical evaluations suggesting that
our technique effectively emulates optimal traffic engineering
using only off-the-shelf IP routing technology.

I. INTRODUCTION

The Traffic Engineering refers to the art and science of
performance optimization in operational networks (TE, [1]).
The most important objectives are to advance users’ service
experience and the profitability of the valuable infrastructure,
by reducing the overall congestion and improving resource uti-
lization across the network. TE is, accordingly, fundamentally
concerned with carefully managing the traffic distribution on
network links, avoiding traffic hotspots, and improving service
stability and robustness.

Realizing optimal traffic distribution, subject to the limited
transit capacity of network links, is simple in theory: with a
suitable traffic matrix at hand [2] just solve a simple mul-
ticommodity flow problem. This problem is polynomial time
solvable if the flows are allowed to be fractional [3], while it is
NP complete under integrality requirements [4]. Bringing the
solution into effect, however, requires a separate connection
oriented infrastructure, like MPLS RSVP-TE, dedicated solely
for the purposes of TE, which often operators are reluctant to
deploy [5].

On these grounds, many service providers choose “poor
man’s traffic engineering” and deploy traffic engineering right
on top of the traditional IP routing protocols, like OSPF [6],
that are already available in the network anyways. The basic
idea is to adjust the administrative link costs in a way as
to ensure that the shortest paths calculated by OSPF will
map to exactly the ones chosen by the administrator [7].
OSPF TE can accommodate a surprisingly broad set of path

selection strategies, the only requirement is that the selected
paths be representable as shortest paths over properly chosen
link costs [8], [9]. Unfortunately, the problem of calculating
a path set that is shortest path representable and optimizes
some traffic engineering goal at the same time is generally
NP-hard [10]. Nevertheless, in this same paper the authors
propose a heuristic that runs fast in the practical cases, and
later several other authors followed suit [11].

The question still remains open how close OSPF TE can
approximate optimal TE. Easily, there must be some perfor-
mance loss, because in OSPF TE the paths selected for a user
are intrinsically coupled with those of other users through the
link costs. Hence, selecting an optimal path for some user
may deteriorate the performance offered to another, or interfere
with a third one, or might straight-out block a fourth. Another
limitation stems from the fact that OSPF, at the moment,
implements only a very restricted form of load balancing
called Equal Cost Multipath (ECMP), where traffic between
multiple equal cost shortest paths is split roughly evenly. As
the optimal traffic allocation usually involves multiple paths
with different flow shares, the solution obtainable by ECMP
can deviate substantially from the ideal. This is so much so
that, in certain networks, the quality of OSPF TE can become
arbitrarily poor compared to optimal TE [10].

Interestingly, despite these limitations there is now strong
empirical evidence that OSPF TE can perform pretty close to
optimal TE [12]–[14]. It turns out that the fundamental limita-
tion is not that the paths must be shortest path representable,
but much rather that they must also be compatible with equal
load splitting. In particular, it has been shown that optimal
TE is both theoretically and practically feasible over OSPF,
provided that ECMP is substituted with a more sophisticated
load balancing scheme [15].

The most important contribution of our paper is to show
that optimal TE is feasible even without touching ECMP in
any ways. The idea is to provision a carefully chosen virtual
overlay in order to trick ECMP into realizing exactly the traffic
splitting ratio chosen by us. Perhaps it is easiest to understand
this idea through an example (see Fig. 1(a)). Suppose the
optimal traffic allocation (obtained, for instance, from solving
a multicommodity flow linear program) would require that we
split traffic along two equal cost shortest paths branching at
router A in 1 to 2 proportion, that is, put 1/3 part of the traffic

Networking 2013 1569702993

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

2

A

B C

1 2

(a) original topology

A

B C

1 11

(b) topology augmented
with a virtual link

Fig. 1. OSPF flow splitting with virtual links

to the link towards router B and 2/3 part to the link to router
C1. Easily, ECMP will not provide such a splitting ratio and
rather distribute traffic in an 1/2 : 1/2 proportion, which will
most probably lead to congestion somewhere down along the
paths. But if we provision a virtual link on the A − C link,
say, an Ethernet VLAN (see Fig. 1(b)), and expose this as an
IP link to OSPF, then OSPF will happily use that link and
distribute traffic in equal 1/3 : 1/3 : 1/3 proportion amongst the
three paths, realizing exactly the required traffic splitting ratio
on the physical links. This is because the traffic brought to the
two virtual links on the A− C link add up, yielding that 2/3
fraction of the traffic will flow through this link.

In this paper, we are not concerned with how the paths are
computed or which L2 tunneling technique is used to provision
the virtual links (e.g., Ethernet VLANs, IP-IP tunnels, GRE
tunnels, stacked MPLS LSPs, etc.). We are only concerned
with the so called OSPF TE virtual link provisioning problem,
which asks how to allocate the right number of virtual links so
that the traffic splitting ratios realized by ECMP match some
required ideal splitting ratios the most closely.

As a first step in discovering this new intriguing problem
area, in this paper we solve it for the special case of full-
mesh MPLS overlays. This setting is still highly relevant in
practice [13] yet challenging enough mathematically. Again,
see a sample scenario in Fig. 2. In this simple transit network,
there are three edge routers A, B, and C, and a full mesh
MPLS overlay is realized between them containing two paths
per router pair. This MPLS overlay, in turn, is seen as an
IP topology deployed on top, which runs plain OSPF as a
routing protocol. Easily, if the ideal traffic splitting ratios are
like the ones given in the figure, then this traffic allocation
is impossible to implement with ECMP. With the proposed
technique, however, we can set up 4 virtual links (one between
A−B and three between A−C) to obtain exactly the required
splitting (see later). Our solution is deployable right away with
no HW/SW modification to the existing IP infrastructure, with
a one time minor management intervention of setting up the
virtual overlay. As such, ours is the first theoretically and
practically viable TE scheme using stock IP network gear.

In this paper, we study the OSPF TE virtual link provi-
sioning problem in the above setting that we call the single
commodity case. We give a precise mathematical formulation

1This example is taken from the infamous “fish topology”, a textbook
example to demonstrate the limitations of OSPF TE [16]

A

B

C

3

1

1
⋅f

3

2

1
⋅f

5

3

2
⋅f

5

2

2
⋅f

2

3
f

2

3
f

Fig. 2. MPLS TE full mesh overlay with given flow splitting ratios.

of the problem and we give various algorithms to solve it
first in an ideal, non-restricted setting, and then under various
practical limitations arising from present OSPF practice. We
also give extensive numerical evaluation of the proposed
algorithms.

The rest of this paper is organized as follows. In Section II
we provide a thorough mathematical model and a problem
statement. In Section III and Section IV we present optimal
and approximate algorithms to solve the problem under various
realistic assumptions, in Section V we present the results of
our numerical studies, and finally Section VI concludes the
paper and sketches future research directions.

II. PROBLEM STATEMENT

This paper is concerned with the OSPF TE virtual link
provisioning problem in the following single commodity case.
Suppose we are given a pair of routers S and T and a set of
p1, p2, . . ., pk paths provisioned between them (as for example
the A−B pair in Fig. 2). Furthermore, assume that OSPF link
costs have been set (e.g., using the techniques in [8]–[12]) so
that p1, p2, . . ., pk are exactly shortest paths between S and
T . Alternatively, we may only be interested in the first-hop
link along p1, p2, . . ., pk (as is the case for Fig. 1); from the
perspective of this paper these settings are equivalent. Suppose
further that the traffic allocation that is to be realized, that is,
the amount of subflows to be placed to each path is given as
g1, g2, . . ., gk, where G =

∑k
i=1 gi is the total volume of the

traffic to be carried. (See Table I for a list of notations.)
Then, our objective is to route G amount of traffic over

the p1, p2, . . ., pk paths using OSPF ECMP, such that the
actual ĝ1, ĝ2, . . ., ĝk subflow values that emerge are as close
as possible to the required g1, g2, . . ., gk subflow volumes.
Here, “closeness” between the i-the subflows is defined as

Ui =
ĝi − gi

gi
,

and the global error metric is the maximum of the per-flow
errors:

U = max
i=1...k

{Ui} . (1)

Within the context of this paper, we intend to reach the
above objective by setting up virtual links or paths so that
ECMP is tricked into realizing gi by ĝi, i = 1 . . . k. Thus, we

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

3

TABLE I
LIST OF NOTATIONS

number of next hops/paths used k
desired traffic volume per next hop/path g1, g2, . . ., gk
total traffic volume G =

∑k
i=1 gi

actual traffic volume per next hop/path ĝ1, ĝ2, . . ., ĝk
number of allocated links e1, e2, . . ., ek
total number of allocated links E =

∑k
i=1 ei

upper bound on the total number of allocated links Q

provision for every link/path i another ei − 1 pieces of vir-
tual links/paths, thus having altogether ei parallel links/paths.
For simplicity, we shall henceforth not differentiate between
whether the problem is defined in terms of links or paths,
neither we distinguish the physical substrate that carries the
virtual links and the virtual links themselves, and we shall say
that we have altogether ei parallel links.

OSPF ECMP now sees ei links and the volume of traffic
sent to each of the physical links is given as

ĝi = G · ei∑k
j=1 ej

=
Gei
E

, i = 1 . . . k (2)

with the notation

E =

k∑
j=1

ej .

The goal is to have ĝi as close as possible to gi for all
i = 1 . . . k in terms of the error metric (1). This brings us to
the following problem statement:

Definition 1. OSPF TE virtual link provisioning problem,
single commodity case (OSPF-TE-Virt): given a set of target
flows g1, g2, . . . , gk, find integers e1, e2, . . . , ek, so that the
resultant ECMP flows ĝi = Gei

E , i = 1 . . . k minimize the
flow error

U = max
i=1...k

{
ĝi − gi

gi

}
= max

i=1...k

{
Gei
Egi

− 1

}
.

In this formulation, OSPF-TE-Virt is a combinatorial opti-
mization problem. It is sufficiently broad to capture all single-
commodity formulations of flow problems, ranging from arc
oriented formulations like single source–single sink (as of
Fig. 1) and multiple source–single sink problems, to the single
source-destination pair setting of MPLS full mesh overlays
(Fig. 2). However, it is not suitable for describing inherently
multi-terminal cases, where different commodities might pose
different, and often conflicting, traffic splitting requirements
that would be difficult to describe within the above framework,
let alone solve. This multi-commodity case is, therefore, left
herein for further study.

Some fundamental practical issues must still be clarified.
First, it is of question how many virtual links one can

provision at an IP router, that is, how large E can become.
We shall see that the larger the E the smaller the error, to the
point that for the case of E = G the problem becomes trivial.
In practice, however, the number of virtual links one can
provision for a particular destination entry in the routing table

is limited by the OSPF implementation, in line with the OSPF
RFC [6]. For example, in some Cisco IOS implementations
this limit is adjustable but the maximum allowed setting is
E ≤ 6 [17], while this maximum is 16 in some Cisco NX-
OS Softwares, Ericsson and Juniper routers [18]–[20]. On that
ground, we shall also study the version of OSPF-TE-Virt when
we are given an upper limit Q on E and are curious as to how
to choose ei with

∑
i ei = E ≤ Q so as to minimize the error.

It is also a crucial question whether ei can become zero or
not. In many cases, having ei = 0 for some links is beneficial
as it reduces the overall error. We demonstrate this with a
simple example: let k = 3, g1 = 100, g2 = 100, g3 = 1, and
let Q = 4. If we allow ei to be 0, then the optimal solution
of OSPF-TE-Virt is e1 = 1, e2 = 1, e3 = 0, and the error is
U = U1 = U2 = 0.005. If, however, ei = 0 is not allowed,
then the best we can achieve is e1 = 2, e2 = 1, e3 = 1, with
error U = U3 = 49.25, which is clearly worse than in the
previous case. In practical terms, allowing ei = 0 means that
a link is administratively disabled in the router. Whether this
can be done or not is a network administration decision, which
is well beyond the scope of this paper, so in the sequel we
shall treat these cases separately and give respective solutions.

III. OPTIMAL LINK ALLOCATION: ERROR BOUNDS

In this and the next section, we seek solutions to the OSPF-
TE-Virt problem. First, we search for bounds on the error under
different circumstances.

A. Unlimited Number of Links

We start with the case where the number of virtual links
that can be allocated on the router is unlimited. First, we
show that in this case if the desired traffic volume is given
with rational numbers, then an optimal solution can always be
reached. Formally:

Theorem 1. Let Q = ∞ and let gi ∈ Q+. Then, ∃ei : (i =
1 . . . k), so that U = 0.

Proof. The proof is constructive: we show an actual setting
for ei. As gi ∈ Q+ we can write:

gi =
ai
bi

(i = 1 . . . k) ,

such that for all i the greatest common divisor GCD(ai, bi) =
1. Furthermore let N = LCM({bi}) (LCM: least common
multiple). Let

g′i =
aiN

bi
(i = 1 . . . k, g′i ∈ Z+) ,

and let M = GCD({g′i}), and so

g′′i =
g′i
M

=
giN

M
(i = 1 . . . k) .

It is easy to see that g′′i ∈ Z+ and that

GCD({g′′i }) = 1 . (3)

Now let G′′ =
∑k

j=1 g
′′
j , and simply let

ei = g′′i =
giN

M
(i = 1 . . . k) . (4)

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

4

Then for each i = 1 . . . k the error is:

Ui =
Gei
giE

− 1 =
Gei

gi
∑k

j=1 ej
− 1 =

Ggi
N
M

gi
∑k

j=1 gj
N
M

− 1 = 0 ,

so the problem can be solved optimally.

Next, we also show that the solution obtained above is
in fact minimal, in the sense that no different virtual link
allocation exists that attains zero error with fewer virtual links.

Theorem 2. Select ei : (i = 1 . . . k) as of (4). Then, @{e′i}
for which U = 0 such that E′ =

∑k
j=1 e

′
j < E.

Proof. Suppose the opposite, i.e., there are such {e′i}. We can
also suppose that GCD({e′i}) = 1 (otherwise one can divide
the ei’s with the GCD). We also know from (3) and (4) that

GCD({ei}) = 1 . (5)

With e′i’s the actual traffic volumes are for each i = 1 . . . k

ĝ′ =
G′′e′i
E′ =

Ee′i
E′ .

Knowing that U = 0 and using (4):

Ee′i
E′ = g′′i = ei (i = 1 . . . k) ,

so
e′i
ei

=
E′

E
(i = 1 . . . k) .

Let
s

t
=

E′

E
, s < t; s, t ∈ Z+; GCD(s, t) = 1 .

As a consequence, t > 1. From the latter two equations:

e′i =
eis

t
(i = 1 . . . k) .

From e′i, ei, s, t ∈ Z+ and GCD(s, t) = 1 follows that t|ei
(i = 1 . . . k), which contradicts (5).

We note that if the desired traffic volumes are given by reals
(gi ∈ R+), then the optimal solution can be approximated with
arbitrary precision using the above technique, meaning that the
error U can be smaller than any ϵ > 0. The proof is based on
the fact that there is a rational number arbitrary close to any
given irrational number, but it is omitted due to lack of space.

B. Limited Number of Links

If the total number of links used by the OSPF ECMP is
limited (E ≤ Q < ∞), the problem becomes more interesting.
For the sake of simplicity, let us suppose that gi ∈ Z+,
and GCD({gi}) = 1. Using Theorem 1 and Theorem 2, we
conclude that optimal solution (U = 0) can be reached in this
case if and only if Q ≥ G. So let us now focus on the case
when Q < G and search for ei that minimizes U .

First, we give a simple universal upper bound on the error
U for this setting.

Lemma 3. U ≤ G− 1.

Proof. Using (2) we get

Ui =
Gei
Egi

− 1 =
G

gi
· ei
E

− 1

and since gi ≥ 1 (as gi ∈ Z+) and ei ≤ E

Ui =
G

gi
· ei
E

− 1 ≤ G− 1 .

Let us now study the case when links are not allowed to be
disabled, that is, ei > 0 (i = 1 . . . k). We found that for large
G’s, the error can become arbitrarily large in this case.

Lemma 4. If ei > 0 (i = 1 . . . k) is required and G
is unbounded, then U can become arbitrarily high for any
Q > 1.

Proof. Consider the below example. Let

k = 2, g1 = 1, g2 = xQ (x > 1, x ∈ Z) , (6)

(k = 2 is allowed as Q > 1).
Then G = xQ+1 and the optimal allocation of links (which

minimizes the error) along with the error is:

e1 = 1, e2 = Q− 1,

ĝ1 = 1 · xQ+ 1

Q
, ĝ2 = (Q− 1) · xQ+ 1

Q
,

U = U1 =
xQ+ 1

Q
− 1 = x− 1 +

1

Q
,

which can be arbitrary high, as x is unbounded.

Interestingly, if ei = 0 is allowed then the problem de-
scribed in (6) can be solved with bounded error as follows.
Let e1 = 0 and e2 = 1. Then

ĝ1 = 0, ĝ2 = xQ+ 1,

U = U2 =
ĝ2
g2

− 1 =
xQ+ 1

xQ
− 1 =

1

xQ
,

which goes to 0 as x → ∞. In fact allowing ei = 0, for any g1
and g2 the error can never exceed 1, which is a consequence
of the following lemma:

Lemma 5. If ei ≥ 0 (i=1. . . k) is required, then for any
Q, k, {gi}: U ≤ k − 1.

Proof. Let gj be te maximal element of the {gi} set (or one of
the maximal elements, if there are more than one), so gj ≥ gi,
for all i = 1 . . . k. Then let

ei =

{
0 if i ̸= j

1 if i = j ,

which is shown in Fig. 3. Then

U = Uj =
ĝj
gj

− 1 =

∑k
i=1 gi
gj

− 1 ≤

≤
∑k

i=1 gj
gj

− 1 = k − 1 .

Observe that Lemma 5 characterizes the error in terms of k.
The question remains to be decided whether or not the error

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

5

1g kg

1e je 1je + ke…

…

…

0ei =

1je −

0ei =1e j =

jg …

Fig. 3. Link allocation for Lemma 5

1g1 = 1gk =

1e Qe 1Qe + ke…

…

…

1ei = 0ei =

Fig. 4. Unbounded k

can indeed become unbounded with k going to infinity. The
below result answers this question in the affirmative:

Lemma 6. If ei ≥ 0 (i=1. . . k) is required and k and G
are unlimited, then for any fixed Q the error U can become
arbitrary high.

Proof. Again, consider an example. Let k > Q and let gi = 1
for all i = 1 . . . k. Then the error is minimal if for Q links we
set ei = 1, e.g., for i = 1 . . . Q we have ei = 1, and we set
ei = 0 for the rest (see Fig. 4). Then the error is:

U = U1 =
ĝ1
g1

− 1 =
G · e1∑k

i=1 ei

1
− 1 =

G

Q
− 1 =

k

Q
− 1 .

As Q is fixed and k is unbounded, U is unbounded as well.

IV. OPTIMAL SOLUTIONS

We turn now to discuss how to actually solve the OSPF
TE virtual link provisioning problem. Again, we suppose that
gi ∈ Z+, and GCD({gi}) = 1.

Easily, if Q ≥ G then the problem is trivial: just allocate
G virtual links so that there are exactly gi links for each i
(i.e., ei = gi), and the error becomes zero. However, this is
not particularly practical in many cases. Thus, in this section
we shall assume that Q < G.

First let us count the possible link allocations, denoted
henceforth by N .

Lemma 7. The number of possible virtual link allocations if
ei ≥ 0 is N =

(
Q+k
k

)
− 1.

Proof. We have to distribute the Q links among k+1 places:
there are k places for the k links, plus one place for the unused
ones. Note that we have to subtract one, as having 0 on all of
the links is not allowed. Using the formula of combinations
with repetitions, we got

N =

(
Q+ (k + 1)− 1

(k + 1)− 1

)
− 1 =

(
Q+ k

k

)
− 1 .

Lemma 8. The number of possible allocation if ei > 0 is
N =

(
Q
k

)
.

Proof. This proof is similar to the previous one, but in this
case we have to put at least one link for each of the k places,
and the remaining Q−k links have to be distributed among the
k+1 places: k places for the k links, plus for the unused ones.
In this case, however, it is allowed to put all the Q− k links

to the k + 1th place (meaning that none of them is used), as
still there is a link one each place. This is again combinations
with repetitions with the number of possibilities being:

N =

(
(Q− k) + (k + 1)− 1

(k + 1)− 1

)
=

(
Q

k

)
.

A. Integer Linear Program for OSPF-TE-Virt

Next, we turn to the actual algorithms to solve OSPF-TE-
Virt. One way to obtain a solution would be a brute force
method, but the above results about N practically eliminate the
chance that such an approach could be successful. Therefore,
first we provide an Integer Linear Program (ILP) to obtain a
solution, and then we shall also give alternatives.

The ILP below is formulated for the case when ei ≥ 0.

variables: ei i = 1 . . . k

yi i = 1 . . . Q

α

parameters: gi i = 1 . . . k

G =

k∑
i=1

gi

r (a small number, e.g., 10−5)

M (a large number, e.g., 105)

objective function: minα+ r

k∑
i=1

ei (7)

constraints:
Q∑

j=1

yj = 1 (8)

k∑
i=1

ei =

Q∑
j=1

jyj (9)

eiG

gi
≤ (α+ 1)j +M(1− yj),

i = 1 . . . k, j = 1 . . . Q (10)
ei ≥ 0, ei ∈ Z i = 1 . . . k (11)
yj ∈ {0, 1} j = 1 . . . Q

The idea is to minimize the error U , by requiring for each
link error Ui ≤ α:

Ui =
ĝi
gi

− 1 =
Gei
Egi

− 1 ≤ α i = 1 . . . k (12)

and minimizing α. The yi variables help to find the optimal E:
yi = 1 if E = i and yi = 0 otherwise, which is enforced by
constraints (8) and (9). The (10) system of constraints is only
effective if E = j, and then results in inequality (12). The
second term of the objective function (7) ensures that if there
are several optimal solutions, then the solver would choose the
one with the smallest number of links altogether.

When ei = 0 is not allowed, a slight modification of the
above ILP is enough: constraint (11) should be substituted
with ei ≥ 1, ei ∈ Z i = 1 . . . k.

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

6

B. Iterative Algorithm for OSPF-TE-Virt

While the ILP is a practical solution method in many cases,
theoretically it is not guaranteed to run in polynomial time.
Therefore we present an iterative algorithm that can solve
the link allocation problem in pseudo-polynomial time. In the
following, we suppose that ei = 0 is allowed.

First we describe an algorithm that, for a given α, {gi} and
E, checks whether or not it is possible to assign the links with
U ≤ α. If the assignment is feasible, then this algorithm also
provides the solution:

Algorithm 1. Error reachability: For each i = 1, . . . , k, let

xi =
⌊ (α+ 1)giE

G

⌋
. (13)

Solve the following set of equations to find {ei}:

0 ≤ ei ≤ xi, ei ∈ Z, i = 1 . . . k (14)
k∑

i=1

ei = E . (15)

It is easy to see that there is exactly one solution if
∑k

i=1 xi =

E, no solution if
∑k

i=1 xi < E, and there are multiple
solutions if

∑k
i=1 xi > E.

Theorem 9. The link allocation problem can be solved with
U ≤ α if and only if

k∑
i=1

xi ≥ E . (16)

Proof. For any solution {ei},

α ≥ U = max
j=1...k

{
ĝj
gj

− 1

}
≥ ĝi

gi
− 1 =

Gei
Egi

− 1, i = 1 . . . k

thus
(α+ 1)giE

G
≥ ei, i = 1 . . . k

and since ei ∈ Z,

(α+ 1)giE

G
≥

⌊ (α+ 1)giE

G

⌋
= xi ≥ ei, i = 1 . . . k . (17)

So if (16) holds, then we can find ei values such that (14) and
(15) are satisfied, and then due to (17) we will have a valid
assignment, where U ≤ α.

On the other hand, if (16) does not hold, then we cannot
find ei’s such that (15) is satisfied, and U ≤ α. To see this,
suppose the opposite. Then (17) still must be true, and then
the supposed

∑k
i=1 xi < E contradicts (15).

As calculating xi’s according to (13) is simple (i.e., O(1)),
this algorithm has a complexity of O(k).

With the Error reachability algorithm in place, we would
like to use it in a binary search framework for finding a
minimal α that is satisfiable, given gi’s and E. To start the
binary search, first we need an upper bound on U . For this,
we shall use the upper bound k − 1 as of Lemma 5. To
stop the iteration, we also need a lower bound on |Ui − Uj |,

i, j = 1 . . . k. This lower bound should consider all possible
allocations of the E links, so Ui and Uj can be part of
different allocations. This means that

∑k
n=1 en = E does not

necessarily hold, it is even possible that ei + ej > E.
Now, we show that 1

GE is such a lower bound. Let’s suppose
Ui > Uj . Then

∆U =

(
G

E

ei
gi

− 1

)
−
(
G

E

ej
gj

− 1

)
=

=
G

E

eigj − ejgi
gigj

≥ G

E

1

G2
=

1

GE
, (18)

since eigj − ejgi is a positive integer.
Note for (18) that it is possible, that Ui = Uj . An example

for this is the following: k = 2, g1 = 1, g2 = 1, E = 3. One
possible allocation is e1 = 2, e2 = 1, where U1 = 1/3. Another
possible allocation is e1 = 1, e2 = 2, where U2 = 1/3. This
has no effect on the lower limit given in (18): if these U ’s
happen to be the optimal errors for two different allocations,
just like in our example, then finding the optimal α results
in

∑k
i=1 xi > E, which means that there are more than one

optimal solutions.
The binary search method is summarized as follows.

Algorithm 2. Binary search for minimal error: Initialize
α = k − 1. Do a binary search for the minimal α for which
Algorithm 1 answers affirmative, that is, finds an allocation
ei : i ∈ 1 . . . k satisfying U ≤ α. Stop if the difference for α
in the last two iterations falls below 1

GE .

After the algorithm terminates, it delivers the optimal {ei}
setting, along with the corresponding error U . This can be done
in log(kGE) steps, yielding an overall in O(k log(kGE))
complexity.

What remained to be done is to actually find the value of
E subject to the given Q that yields the smallest error. This
is done by the below simple algorithm:

Algorithm 3. Iterative OSPF-TE-Virt algorithm: Run binary
search for minimal error algorithm for each E = 1 . . . Q and
choose the solution with the smallest error.

Note that this is theoretically not a polynomial time algo-
rithm as the complexity is O(Qk log(kGE)), which is not
polynomial in Q (as the size of the input parameter Q is
log(Q)). For a fixed Q, however, as it is the case in practice,
the algorithm is indeed polynomial. Moreover, as shall be
described in the next section, we found this algorithm easily
tractable for all practical use cases.

This algorithm is easy to tweak for the case when ei ̸= 0
must hold. In Algorithm 1, (14) has to be replaced by
1 ≤ ei ≤ xi, ei ∈ Z, i = 1 . . . k. Additionally, in the
iterative search we cannot use k − 1 as an upper bound for
the error but, by Lemma 3, G − 1 can be used. Finally, we
have to search for the best allocation in the E = k . . . Q space
instead of E = 1 . . . Q. The complexity of this version is then
O(Qk log(G2E)).

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

7

V. SIMULATION EXPERIMENTS

We have validated our idea using simulation experiments.
Our main questions were how the error U depends on the
maximum number of links in practical scenarios and what the
implications on the network congestion are.

A. Simulation Scenario

We have chosen to implement Iterative OSPF-TE-Virt algo-
rithm instead of the ILP as it offers fast running time. We have
implemented the algorithm in C++ using the Lemon Graph
Library [21]. In order to get realistic input data relevant to the
case of OSPF Traffic Engineering, that is, to obtain k and a
set of gi flow requirements to be fed to the algorithm, we have
used two different traffic engineering schemes.

Maximum Multicommodity Flows (MCMF): In this ap-
proach we have selected a set of source-destination pairs and
we have set up flows between them, such that the total sum
of the flows is maximal. Flows between the source-destination
pairs were allowed to split at the intermediate nodes. We have
formulated the problem as an ILP, and solved it using the free
GLPK solver [22]. This resulted in flow values for each link
and for each source-destination pair, which we decomposed
into subflows. The number of the subflows gave us the k
parameter, while the value of the subflows was used as gi
(different for each source-destination pair).

Maximum Arc-disjoint Paths (MADP): In this approach we
were looking for the maximum number of arc-disjoint paths
between two random nodes of a capacitated network. For
this we have used the Lemon implementation of Suurballe’s
algorithm [23]. k has been set to the number of the returned
paths. On each of the paths we have searched for the link with
the minimum capacity, corresponding to the capacity of that
path, which has then been assigned as gi.

We have used several input topologies for the evaluations.
For the sake of brevity, in this paper we provide the results
for two selected topologies (the rest produced quite similar
results). The first one was taken from the inferred ISP data
maps of the Rocketfuel dataset [24] (AS3967). We obtained
approximate POP-level maps by collapsing the topologies so
that nodes correspond to cities and we eliminated leaf-nodes.
This network comes with inferred link costs. The resulting
graph contained 21 nodes and 72 capacitated edges, with an
average node degree of 3.43. The second topology was a larger
one, modeling the ITC Deltacom fiber backbone network (as
of 2010) with 113 nodes and 322 capacitated edges (average
node degree of 2.85), taken from the Topology-Zoo project’s
dataset [25].

For the maximum multicommodity flow scenario we se-
lected 8 source-destination pairs randomly according to a
uniform distribution. For the maximum arc-disjoint paths case
the source-destination pairs were again randomly selected
according to a uniform distribution. The experiments were
repeated 5000 times. This meant 5000 input sets (k, {gi}) for
the Iterative OSPF-TE-Virt algorithm for the maximum arc-
disjoint paths selection software, but more for the maximum
multicommodity flow, as it resulted in up to 8 input sets in

one run. We have examined the Q = 6 . . . 16 range, which is
the most relevant in current practical scenarios.

The parameters we measured were as follows. First, we
observed the error U , as produced by the Iterative OSPF-TE-
Virt algorithm (alg. err.). Second, we were interested in the
extent of congestion that would arise should we deploy the
virtual overlay as provisioned by the algorithm. For this, we
fed the calculated ĝi subflow volumes to the network instead of
the ideal gi’s, and we measured the link overloads (load

capacity −1)
inside the network. The parameters we calculated were the
average congestion (link avg. err.) and the maximum of the
congestion (link max. err.), taken over all links.

B. Results

The results are given in Fig. 5 and Fig. 6. The dots are
the averages of the results, while the error bars show the
5th and 95th percentile of the data. For each plot, the first
term in the caption shows the algorithm used to determine
the algorithm’s input, i.e., maximum multicommodity flows
(MCMF), or maximum arc-disjoint paths (MADP); the second
term shows if ei = 0 was permitted; and finally third stands
for the measured parameter, i.e., either the error given by the
algorithm (alg. err.), the average congestion (link avg. err.),
or the maximum congestion (link max. err.), each one plotted
against the upper bound on the number of links Q. Thus, the
caption “MCMF, ei > 0, alg. err.” of Fig.5(a), for instance,
indicates that this diagram shows the average of the error U
produced by the algorithm, taken over all inputs produced
by MCMF, in the case when physical links/paths cannot be
disabled (i.e., ei > 0). The MADP results for the Deltacom
topology have been excluded for brevity.

Our main observations are as follows. The results indicate
that the larger the number of permitted virtual links Q the
smaller the error. This is easy to understand intuitively, as the
algorithm has immensely more allocations to choose from for
larger Q (recall Lemma 7 and Lemma 8). It can also be seen
that the error drops dramatically if we allow to disable physical
links/paths (the ei ≥ 0 case). We also found that the results are
somewhat better for the maximum arc-disjoint paths case. The
reason behind this is probably that the split ratios happened
to be more even in this case.

Regarding the congestion, the worst cases of link overload
belong to the maximum multicommodity flow generation with
the ei > 0 requirement. Even in this case the overload is only
50 − 100% on the most over-utilized link for all examined
Qs. This may seem prohibitively high at the first sight, but
in practice links are not planned to be utilized at 100%, and
for a planned 50% utilization an extra 50 − 100% means a
total utilization of 75 − 100%. Again, this is the worst case
in our results, and the average link overloads are orders of
magnitudes lower than that. For the rest of the cases the
congestion was in the range 5–15% even for very low Q.

To sum up the results, an overall acceptable error level is
realizable by our algorithms with just 6−16 virtual links and,
to the extent we are aware of, that many virtual links is allowed
on most commercial IP router offerings of our days.

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

8

 0

 1

 2

 3

 4

 5

 6

 7

 8

 6 8 10 12 14 16

E
rr

o
r

Q

(a) MCMF, ei > 0, alg. err.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 6 8 10 12 14 16

E
rr

o
r

Q

(b) MCMF, ei > 0, link avg .err.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 6 8 10 12 14 16

E
rr

o
r

Q

(c) MCMF, ei > 0, link max. err.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 6 8 10 12 14 16

E
rr

o
r

Q

(d) MCMF, ei ≥ 0, alg. err.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 6 8 10 12 14 16
E

rr
o
r

Q

(e) MCMF, ei ≥ 0, link avg. err.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 6 8 10 12 14 16

E
rr

o
r

Q

(f) MCMF, ei ≥ 0, link max. err.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6 8 10 12 14 16

E
rr

o
r

Q

(g) MADP, ei > 0, alg. err.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 6 8 10 12 14 16

E
rr

o
r

Q

(h) MADP, ei > 0, link avg. err.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 6 8 10 12 14 16

E
rr

o
r

Q

(i) MADP, ei > 0, link max. err.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 6 8 10 12 14 16

E
rr

o
r

Q

(j) MADP, ei ≥ 0, alg. err.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 6 8 10 12 14 16

E
rr

o
r

Q

(k) MADP, ei ≥ 0, link avg. err.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 6 8 10 12 14 16

E
rr

o
r

Q

(l) MADP, ei ≥ 0, link max. err.

Fig. 5. Results for AS3967

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 6 8 10 12 14 16

E
rr

o
r

Q

(a) MCMF, ei > 0, alg. err.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 6 8 10 12 14 16

E
rr

o
r

Q

(b) [MCMF, ei > 0, link avg .err.

 0

 5

 10

 15

 20

 25

 30

 6 8 10 12 14 16

E
rr

o
r

Q

(c) MCMF, ei > 0, link max. err.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 6 8 10 12 14 16

E
rr

o
r

Q

(d) MCMF, ei ≥ 0, alg. err.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 6 8 10 12 14 16

E
rr

o
r

Q

(e) MCMF, ei ≥ 0, link avg. err.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 6 8 10 12 14 16

E
rr

o
r

Q

(f) MCMF, ei ≥ 0, link max. err.

Fig. 6. Results for Deltacom Network

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

9

Regarding the running time, our algorithm has proven very
effective. The running time for the 5000 repetitions on an
average PC was 3 sec for the maximum arc-disjoint path case
and 10 sec for the maximum multicommodity flow scenario,
which includes both running times of the path calculation
and the Iterative OSPF-TE-Virt algorithm itself. The memory
consumption was also moderate: less than 80 MB in both
cases.

VI. SUMMARY AND FUTURE WORKS

In this paper an potentially optimal traffic engineering
solution is proposed that is built solely on legacy OSPF
ECMP technology. Using our proposal high quality IP TE can
be realized without any hardware or software modification,
engaging in only minor administrative settings.

Our premise was the observation that the main reason for
the inefficiency of OSPF for TE lies in the way it realizes
load balancing: ECMP can only divide the incoming traffic
into equal portions at the splitting nodes, which might cause
highly suboptimal traffic distribution in certain cases [12]. Our
proposed idea is to provision a virtual overlay, by setting up
virtual links properly, in order to trick ECMP into achieving
the desired uneven traffic split ratio. We analyzed the lower
and upper bounds on the attainable error in the resultant traffic
splitting ratios and we gave an optimal Integer Linear Program
and a pseudo-polynomial heuristics to realize desired splitting.
In practice, router implementations pose strict limitations on
the number of equal cost paths, which could jeopardize the
optimal solution. Therefore, we have proposed extensions to
our algorithms to find the best virtual link allocation in such
a constrained environment. Extensive numerical studies has
been carried out to evaluate the usefulness of our proposal.
The results are reassuring: in practical situations near-optimal
solutions can be reached with as few as half a dozen links,
which is easily realizable in today’s routers.

The solution of the OSPF TE virtual link provisioning
problem for the single commodity case, presented in this
paper, can be applied in several real-life scenarios, including
the MPLS multipath full-mesh overlay networks. While these
applications are very important by themselves, we plan to
continue exploring this interesting topic and solve the problem
for the general multicommodity case, when there are several
source-destination node pairs exchanging data concurrently,
sharing the resources of a single legacy OSPF ECMP domain.

ACKNOWLEDGEMENTS

The authors would like to thank the support of the Dept.
of Telecommunications and Media Informatics and the High
Speed Networks Laboratory, and especially their heads, Tamás
Henk and Attila Vidács.

Gábor Rétvari was supported by the MTA-BME Future
Internet Research Group and the OTKA/PD-104939 grant.
This work was partially supported by the European Union and
the European Social Fund through project FuturICT.hu (grant
no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013).

REFERENCES

[1] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao, “Overview
and principles of Internet traffic engineering,” RFC 3272, May 2002.

[2] S. Gunnar, M. Johansson, and T. Telkamp, “Traffic matrix estimation on
a large IP backbone: a comparison on real data,” in ACM SIGCOMM
conference on Internet measurement, ser. IMC’04, 2004, pp. 149–160.

[3] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and
Network Flows. John Wiley & Sons, January 1990.

[4] J. Evans, “The simplex method for integral multicommodity networks,”
Naval Research Logistics Quarterly, vol. 25, pp. 31–37, Mar 1978.

[5] Z. Wang, Internet QoS: architectures and mechanisms for Quality of
Service. Academic Press, 2001.

[6] J. Moy, “OSPF Version 2,” RFC 2328 (Standard), April 1998. [Online].
Available: http://www.rfc-editor.org/rfc/rfc2328.txt

[7] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
IP routing protocols,” IEEE Communications Magazine, vol. 40, no. 10,
pp. 118–124, Oct 2002.

[8] A. Farago, B. Szviatovszki, and A. Szentesi, “Inverse optimization in
high-speed networks,” Discrete Applied Mathematics, vol. 129, no. 1,
pp. 83–98, June 2003.

[9] G. Rétvári, J. J. Bı́ró, and T. Cinkler, “On Shortest Path Representation,”
IEEE/ACM Transactions on Networking, vol. 15, no. 6, pp. 1293–1306,
Dec. 2007.

[10] B. Fortz and M. T. At, “Increasing internet capacity using local search,”
Computational Optimization and Applications, vol. 29, pp. 13–48, 2004.

[11] G. Rétvári and T. Cinkler, “Practical OSPF traffic engineering,” IEEE
Commununications Letters, vol. 8, pp. 689–691, November 2004.

[12] B. Fortz and M. Thorup, “Internet Traffic Engineering by Optimizing
OSPF Weights,” in Proc. IEEE INFOCOM, 2000, pp. 519–528.

[13] Z. Wang, Y. Wang, and L. Zhang, “Internet traffic engineering without
full-mesh overlaying,” in Proceedings of INFOCOM 2001, vol. 1, April
2001, pp. 565–571.

[14] A. Sridharan, C. Diot, and R. Guérin, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,” in Proceedings
of INFOCOM 2003, vol. 2, March 2003, pp. 1167–1177.

[15] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-hop
forwarding can achieve optimal traffic engineering,” IEEE/ACM Trans.
Netw., vol. 19, no. 6, pp. 1717–1730, 2011.

[16] V. Vassiliou, “High speed multimedia and multiservice
networks: Traffic enginnering (slides),” available online:
http://www.cs.ucy.ac.cy/courses/EPL420/Slides/MPLS-TE.pdf.

[17] Cisco Systems, Inc., “Troubleshooting Load Balancing Over
Parallel Links Using Cisco Express Forwarding,” available online:
http://www.cisco.com/image/gif/paws/18285/loadbal cef.pdf, August
2005, Document ID: 18285.

[18] Cisco Systems, Inc, “Cisco Nexus 7000 Series NX-OS
Unicast Routing Command Reference,” available online:
http://www.cisco.com/en/US/docs/switches/datacenter/sw/6 x/nx-
os/unicast/command/reference/l3 cmd.pdf, August 2012, Section:
maximum-paths (OSPF).

[19] Current Analysis, Inc., “Product Assessment: Er-
icsson - SmartEdge Series,” available online:
http://archive.ericsson.net/service/internet/picov/get?DocNo=13/28701-
FGB101647&Lang=EN&HighestFree=Y, July 2009.

[20] Juniper Networks, Inc., “E-series and
JUNOSe Documentation,” available online:
http://www.juniper.net/techpubs/en US/junose9.3/information-
products/topic-collections/command-reference-a-m/maximum-
paths.html, 2010, Section: commands/maximum-paths.

[21] “LEMON – Library for Efficient Modeling and Optimization in
Networks, version 1.2.3.” [Online]. Available: http://lemon.cs.elte.hu/

[22] “GLPK: GNU Linear Programming Kit, version 4.43.” [Online].
Available: http://www.gnu.org/software/glpk/

[23] J. Suurballe, “Disjoint paths in a network,” Networks, vol. 4, no. 2, pp.
125–145, 1974.

[24] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link
weights using end-to-end measurements,” in ACM IMC, 2002, pp. 231–
236.

[25] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet Topology Zoo,” http://www.topology-zoo.org.

9

