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Abstract—Cloud computing can offer virtually unlimited re-
sources without any upfront capital investment through a pay-
per-use pricing model. However, the shared nature of multi-
tenant cloud datacenter networks enables unfair or malicious
use of the intra-cloud network by tenants, allowing attacks
against the privacy and integrity of data and the availability
of resources. In this paper, we introduce a resource allocation
strategy that increases the security of network resource sharing
among tenant applications. The key idea behind the strategy
is to group applications of mutually trusting users into virtual
infrastructures (logically isolated domains composed of a set of
virtual machines as well as the virtual network interconnecting
them). This provides some level of isolation and higher security.
However, the use of groups may lead to fragmentation and
negatively affect resource utilization. We study the associated
trade-off and feasibility of the proposed approach. Evaluation
results show the benefits of our strategy, which is able to offer
better network resource protection against attacks with low extra
cost.

I. INTRODUCTION

Cloud Computing has become the platform of choice for
the delivery and consumption of IT resources. It offers several
advantages, such as pay-per-use pricing model, on-demand
self-service, broad network access and rapid elasticity. In this
model, providers avoid allocating physically isolated resources
for each tenant. Instead, they implement cloud datacenters
as highly multiplexed shared environments, with different
applications coexisting on the same set of physical resources
[1]. Therefore, they can increase resource utilization, reduce
operational costs and, thus, achieve economies of scale.

Providers, however, lack mechanisms to capture and control
network requirements of the interactions among allocated vir-
tual machines (VMs) [2]–[4]. For example, congestion control
mechanisms used in intra-cloud networks (including TFRC [5]
and DCCP [6]) do not ensure robust traffic isolation among
different applications, especially with distinct bandwidth re-
quirements [7]. Thus, communication between VMs of the
same application takes place in an uncontrolled environment,
shared by all tenants. This enables selfish and malicious use
of the network, allowing tenants to perform several kinds of
attacks [1], [8], [9]. Selfish attacks are characterized by the
consumption of an unfair share of the network (i.e., perfor-
mance interference attacks [1]), while malicious ones include
man-in-the-middle, extraction of confidential information from
tenants and denial of service (DoS).

Such attacks hurt both tenants and providers. Tenants have
weaker security guarantees and unpredictable costs (due to

potential attacks against network availability), since the total
application execution time in the cloud is influenced by
the network [3]. Providers, in turn, lose revenue, because
attacks can affect network availability and reduce datacenter
throughput [10].

Vulnerabilities of cloud network resource sharing have been
studied in [8], [9]. Recent proposals try to increase network
security through network-aware resource allocation strategies
[1], [11], [12]. Nonetheless, these schemes can neither protect
the network from malicious insiders nor prevent selfish behav-
ior by other applications running in the cloud environment.

In this paper, we propose a resource allocation strategy for
Infrastructure as a Service (IaaS) providers. Our approach
increases the security of network resource sharing among
tenant applications by mitigating selfish and malicious be-
havior in the intra-cloud network. Unlike previous work, we
investigate a strategy based on grouping of applications in
virtual infrastructures1 (VIs).

Grouping applications into VIs has two benefits, as follows.
The first one is related to security: grouping can provide
isolation among applications from mutually untrusted tenants.
That is, the system becomes more resilient against tenants
that would try to cause disruption in the network, capture
confidential information from other applications or use a
disproportionate share of resources. The second benefit regards
performance, since grouping allows cloud platforms to provide
performance isolation among applications with distinct band-
width requirements. In summary, security and performance
isolation increase network guarantees for applications and
reduce tenant cost. Moreover, the proposed approach does not
require any new hardware. In fact, it can be deployed either by
configuring network devices or by modifying VM hypervisors,
similarly to [3], [10].

On the other hand, the number of groups created is pragmat-
ically limited by the overhead of the virtualization technology.
Moreover, groups may lead to internal resource fragmentation
while allocating requests and negatively affect resource utiliza-
tion. Therefore, we study different strategies to group tenants
based on their mutual trust and on the network requirements
(bandwidth) of their applications.

Overall, the main contributions of this paper are summarized
as follows:

1The term virtual infrastructure is used to represent a set of virtual machines
as well as the virtual network interconnecting them. This concept is formally
defined in Section IV-B.
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• We develop a security- and network-performance-aware
resource allocation strategy for IaaS cloud datacenters.
It aims at improving network security and performance
predictability offered to tenant applications by grouping
them into virtual infrastructures.

• We formally present the proposed strategy as a Mixed-
Integer Programming (MIP) optimization model and in-
troduce a heuristic to efficiently allocate tenant applica-
tions in large-scale cloud platforms. Our strategy can be
applied on different datacenter network topologies, such
as today’s multi-rooted trees [10] and richer topologies
(e.g., VL2 [13] and Fat-Tree [14]).

• We evaluate the trade-off between the gain in security and
performance for tenants and the cost imposed on cloud
providers by our solution. Evaluation results show that
the proposed approach can substantially increase security
and performance with low extra cost.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work. Section III defines the threat
model considered, while Section IV defines basic formulations
related to the problem and which are later used throughout the
paper. Section V presents our resource allocation strategy, and
Section VI introduces a heuristic to efficiently allocate tenant
applications. The evaluation of the proposed strategy appears
in Section VII, and Section VIII closes the paper with final
remarks and perspectives for future work.

II. RELATED WORK

Providers use VLANs [15] in an attempt to isolate tenants
(or applications) in the network. However, VLANs are not
well-suited for cloud datacenter networks for two reasons.
First, they use the Spanning Tree Protocol (STP), which
cannot utilize the high capacity available in datacenter network
topologies with rich connectivities (e.g., VL2 [13] and Fat-
Tree [14]) [16]. Second, VLANs do not provide bandwidth
guarantees.

Some recent work [8], [9] exploit the shared nature of
the intra-cloud network to show how selfish and malicious
tenants can perform several kinds of attacks, including DoS
in the network. These attacks are made easier by the fact that
providers do not charge for network traffic inside the cloud
[3], [4].

HomeAlone [17], from another perspective, explores vul-
nerabilities of physical co-residence of VMs to increase the
security of computational resources, which may end up im-
proving application network performance as well. Therefore,
HomeAlone is mostly orthogonal to our paper; in fact, it can
be used together with our approach to improve application
security and performance in cloud platforms.

Current resource allocation algorithms employed by cloud
providers do not handle network security [18]. Such algo-
rithms use round-robin across servers or across racks, taking
into account only computational resources (processing power,
memory and storage).

In this sense, the design of security- and network-
performance-aware resource allocation strategies for cloud
computing is a major research challenge. Recent work focuses
on providing fair network sharing in accordance with weights

assigned to VMs (or tenants) [1], [11] or on VM placement
techniques [12], [19], [20]. These schemes, however, cannot
protect the network from malicious insiders and may not
prevent selfish behavior by applications running in the cloud
platform. In particular, [1], [11] require substantial manage-
ment overhead to control each VM network share, wasting
resources.

SecondNet [4], Oktopus [10] and CloudNaaS [21], in turn,
propose to allocate each application (or tenant) in a distinct vir-
tual network (which is typically implemented by rate limiting
techniques or by the Software Defined Networking approach).
Nonetheless, these approaches present three drawbacks: i) low
utilization of network resources, since each virtual network
reserves bandwidth equivalent to the peak demand, yet most
applications generate varying amounts of traffic in different
phases of their execution [3], [7]; ii) high resource man-
agement overhead; and iii) (internal) fragmentation of both
computational and network resources upon high rate of tenant
arrival and departure (i.e., churn) [1]. These drawbacks hurt
provider revenue and, ultimately, translate to higher tenant
costs.

In general, cloud network resource sharing presents two
shortcomings: i) network resources are scarce and often
represent the bottleneck when compared to computational
resources in datacenters [3], [13]; and ii) the lack of network
isolation provide means for malicious parties to launch attacks
against well-behaved tenants. Hence, our strategy addresses
these issues in two ways. First, it minimizes the amount of
bandwidth used by communication among VMs from the
same application, thus saving network resources. Second, it
is aware of both types of resources and isolates network
ones among different application groups. This way, it may
prevent attacks from untrusted tenants (or make these attacks
ineffective), specially performance interference and denial of
service threats.

III. THREAT MODEL

We consider an IaaS tenant that operates one or more
applications2. Each tenant has the same privileges as the
others, similarly to [8]. In our model, adversaries are selfish
and malicious parties. Selfish tenants launch performance
interference attacks against other applications, increasing the
network throughput of their VMs [22]. Malicious parties,
in turn, cast several kinds of attacks on previously defined
targets, including the extraction of confidential information
from victims, man-in-the-middle, and DoS. To increase the
effectiveness of an attack, malicious adversaries make use of
placement techniques [8] to collocate their VMs near to the
target.

Attacks against the availability of network resources are
performed in two ways: i) by increasing the number of flows
in the network, exploiting the lack of traffic isolation among
applications [3]; and ii) by sending large UDP flows. Since all
tenants share the same network (they compete for bandwidth

2Basically, each application consists of a collection of VMs. We will define
an application in Section IV-A.
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in the intra-cloud network), such attacks are not limited to their
targets, but rather can affect a large number of applications.

The attacks considered can only be launched by an insider,
that is, a tenant registered with the cloud. This requirement
reduces, in theory, the likelihood of an attack, since the user
should be accountable. However, in some platforms, accounts
can be easily obtained (no strict requirements for accounts), or
to compromise (user behavior) [23]. Furthermore, the detection
of such attacks is not simple because of two reasons. First, an
attacker can conceal malicious traffic as well-behaved [1]. Sec-
ond, a persistent attacker is not easily deterred by obfuscation
schemes [1] (i.e., techniques used by providers to hide resource
location, for instance against network-based VM co-residence
checks and internal cloud infrastructure mapping [8]).

IV. SYSTEM MODEL

In this section, we define fundamental formulations used
to model our strategy. The notations are represented by the
following rules: i) superscripts s, v and r denote entries related
to the physical substrate of the cloud platform, the virtual
infrastructures and the requests from tenants, respectively; ii)
subscripts are indices from attributes, variables or elements of
a set. The notation is similar to that employed in [24].

A. Application Requests
The set of applications is denoted by Ar. An application

request a ∈ Ar from a tenant is defined by < Mr
a , Band

r
a >.

The number of virtual machines is represented by Mr
a . Without

loss of generality, we assume an homogeneous set of VMs,
i.e., equal in terms of CPU, memory and storage consumption.

Apart from specifying the number of VMs, a request is
extended to express network requirements. We provide tenants
with a simple abstract view of the virtual network topology
in which they reside. All VMs from the same application
are represented as being connected to a virtual switch by a
bidirectional link of capacity Bandra ∈ R+, as shown in
Figure 1. This abstraction is motivated by the observation that,
in private environments, tenants typically run their applications
on dedicated clusters, with computational nodes connected
through Ethernet switches [10].

Virtual Switch

VM1 VMMr
a

......

B
an

d
r a B

and ra

Request:
< M  , Band  >r

a
r
a

Fig. 1: Tenant’s view of an application’s network topology.

Trust relationships between applications are represented by
T r
ai,aj

, which denotes whether application ai from one tenant
trusts application aj from another tenant. We assume that trust
relationships are direct, binary and symmetric. In other words,
a tenant may or may not trust another tenant, with whom he
interacts. If there is trust, then it is reciprocal.

These relationships can be established in two ways. First,
they can be created based on the web of trust concept,
similarly to a PGP-like scheme [25]. Second, the creation of
trust relationships can be materialized by matching properties
contained within SLAs signed by different customers and
providers. This process would be assisted by the front-end
responsible for receiving the requests and transferring them to
the allocation module.

B. Virtual Infrastructures
A Virtual Infrastructure is composed of a set of virtual

machines interconnected by a virtual network (virtual network
devices and virtual links). It is a logically isolated domain
with arbitrary topology (i.e., independent of the underlying
cloud substrate). We model the set of VIs by Iv , where
each VI i ∈ Iv is a weighted bidirectional graph Gv

i = <
Sv
i , M

v
i , E

v
i , Band

v, Oversubv >. Without loss of generality,
we assume the set of network devices (Sv

i ) in i as switches,
similarly to [10] and [3]. The subset of Top-of-Rack switches
(ToR), in turn, is represented by Rv

i ⊂ Sv
i . The set of virtual

machines in i is indicated by Mv
i , and the set of virtual

links by Ev
i . Each link ev = (u,w) ∈ Ev

i connects nodes
u and w (u,w ∈ Sv

i ∪Mv
i ). Moreover, each link ev ∈ Ev

i

has a bidirectional bandwidth Bandv(ev) ∈ R+ and an
oversubscription factor Oversubv(ev) ∈ Z+ employed by the
provider to increase network resource utilization.

C. Physical Infrastructure
The physical substrate is composed of servers, net-

work devices and links, similarly to [4]. This infras-
tructure is represented as a weighted bidirectional graph
Gs =< Ss, Ms, Es, Bands, Slotss, Costs, Caps >, where
Ss is the set of network devices (switches), Ms is the set of
servers, and Es is the set of links. Each server ms ∈Ms has
Slotss(ms) ∈ Z+ slots. Each switch ss ∈ Ss has an associ-
ated number of virtual switches it can host (Caps(ss) ∈ Z+),
and a cost (Costs(ss) ∈ R+) per virtual switch. The cost is
proportional to the importance of the physical switch in the
network (i.e., switches closer to the network core have higher
utilization costs). The subset of ToR switches is represented
by Rs ⊂ Ss. Each link es = (u,w) ∈ Es | u,w ∈ Ss ∪Ms

between nodes u and w is associated with a bidirectional
bandwidth Bands(es) ∈ R+. Finally, Ps and Ps(u,w)
denote, respectively, the set of all substrate paths and the set
of substrate paths from source node u to destination node w.

V. RESOURCE ALLOCATION STRATEGY

In this section, we formally present our approach to al-
locate resources for incoming application requests at cloud
platforms, which takes security and network-performance into
account. Our strategy aims at mitigating the impact of attacks
performed within the intra-cloud network. This is achieved
by grouping applications into logically isolated domains (VIs)
according to trust relationships between pairs of tenants and
traffic generated between VMs of the same application.

To provide security- and network-performance-aware re-
source allocation, there is a fundamental challenge to be ad-
dressed: resource allocation with bandwidth-constrained net-
work links is NP-Hard [16].
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For this reason, we solve the problem by breaking it in two
smaller steps (sub-problems), propose an allocation strategy
for each one of them and, lastly, combine their results. An
abstract view of the allocation process is shown in Figure 2,
which contains three functions and a given set of virtual
infrastructures. Function H : Ar → Gs is the approach
employed by current public cloud providers, which maps ap-
plications directly into the physical substrate (considering only
computational resources). Unlike this approach, we consider
the network in the allocation process and decompose H in F
and G, as follows. Function F : Ar → Iv distributes and maps
applications into virtual infrastructures. Function G : Iv → Gs

allocates each virtual infrastructure onto the physical substrate.
Note that, in theory, F and G can be executed in arbitrary
order, but in practice G can be used first to allocate the VIs
on the cloud substrate whereas F can be used later to allocate
every incoming application request.

F
unction F

F
unction G

F
un

ct
io

n 
H

...

Gs

Iv

Fig. 2: Cloud resource allocation overview.

In this paper, we focus on the problem of solving both
F and G for a given set of virtual infrastructures. In doing
so, we take as input the set of virtual infrastructures (more
specifically, how many and of which size each). This could
be determined arbitrarily by the provider, or for example
based on the resource utilization history [19], with information
from already allocated applications collected by tools such
as Amazon CloudWatch3. The next two subsections describe,
respectively, functions G and F .

A. Mapping VIs onto the Physical Substrate

The mapping of virtual infrastructures on the cloud substrate
(virtual to physical mapping) is performed by Function G.
It addresses a problem similar to Virtual Network Embed-
ding (VNE) [24], which allows the strategy to deal with
the heterogeneity of virtual topologies in comparison to the
physical substrate topology. Unlike VNE, the allocation also
takes computational nodes (physical and virtual machines) into
account.

Input. This function receives as inputs the set of virtual
infrastructures (Section IV-B) and the physical substrate (Sec-

3http://aws.amazon.com/cloudwatch/

tion IV-C). Furthermore, parameter α(w1,w2) quantifies the
importance of link (w1, w2) within the (0, 1] range.

Variables. The main variables used by Function G are:
• xi,sv,ss ∈ B: indicates if virtual switch sv ∈ Sv

i from
virtual infrastructure i ∈ Iv is allocated at physical switch
ss ∈ Ss;

• yi,ev,(w1,w2) ∈ B: indicates if virtual link ev ∈ Ev
i , which

belongs to virtual infrastructure i ∈ Iv , uses physical link
(w1, w2) ∈ Es.

Objective. Equation (1) minimizes the amount of physical
resources used to allocate the virtual infrastructures. That is,
we seek to minimize the total amount of bandwidth consumed
from the substrate. By dividing α(w1,w2) by the total capacity
of link (w1, w2), we ensure that links with lower importance
and greater capacity are preferred.

Z = Min
∑

(w1,w2)∈Es

α(w1,w2)

Bands(w1, w2)
∗

∑
i∈Iv

∑
ev∈Ev

i

yi,ev,(w1,w2) ∗Band
v(ev) (1)

The set of constraints guide the allocation process. The
assignment of each VI to the substrate can be decomposed
in two major components, as follows.

Node assignment. Each virtual node (virtual switch or VM)
is assigned to a substrate node by mappingMn : (Mv

i ∪Sv
i )→

(Ms ∪ Ss), ∀i ∈ Iv from virtual nodes to substrate nodes:

Mn(m
v) ∈Ms | mv ∈Mv

i or

Mn(r
v) ∈ Rs | rv ∈ Rv

i or

Mn(s
v) ∈ Ss | sv ∈ Sv

i \Rv
i

Link assignment. Each virtual link is mapped to a single
substrate path (unsplittable flow) between the corresponding
substrate nodes that host the virtual nodes at the ends of the
virtual link. The assignment is defined by mapping Me :
Ev

i → Ps, ∀i ∈ Iv from virtual links to substrate paths such
that for all ev = (w1, w2) ∈ Ev

i , ∀i ∈ Iv:

Me(w1, w2) ⊆ Ps (Mn(w1),Mn(w2))

subject to Resid(ps) ≥ Bandv(ev) | p ∈ Me(e
v), where

Resid(ps) denotes the residual (spare) capacity of substrate
path ps.

The constraints from Function G ensure the correct mapping
of virtual resources to the physical substrate, but are omitted
due to space limits.

B. Mapping Applications into Virtual Infrastructures
Function F maps applications into VIs according to the

mutual trust among tenants and the bandwidth consumed by
communication among VMs of the same application.

Input. This function receives as input an incoming applica-
tion request (Section IV-A), the set of virtual infrastructures
(Section IV-B), two parameters (γ and δ) and sets Pv

i , ∀i ∈
Iv , as follows. γ and δ are used to balance both components of
the optimization objective. Set Pv

i consists of all pairs of racks

4
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from VI i ∈ Iv [p = (r1, r2) ∈ Pv
i | r1, r2 ∈ Rv

i and r1 6= r2]
and is used to calculate the maximum bandwidth necessary
for communication between VMs of the same application
allocated at distinct racks.

Variables. The main variables are:
• Hi,a1,a2 ∈ B: indicates whether applications a1 and a2

are allocated at VI i ∈ Iv;
• Fa,i,(w1,w2),p ∈ R+: indicates the total amount of band-

width required by application a at link (w1, w2) ∈
Ev

i | w1, w2 ∈ Sv
i for communication between its VMs

allocated at racks r1, r2 ∈ Rv
i | p = (r1, r2) ∈ Pv

i from
VI i ∈ Iv . The amount of bandwidth is defined according
to the number of VMs of application a at r1 and r2 and
will be explained later [Equation (3)].

Objective. Equation (2) addresses two keys properties of
cloud computing: security and performance. Security is in-
creased by minimizing the number of mutually untrusted rela-
tionships inside each VI (i.e., maximizing mutual trust among
applications inside VIs). Performance, in turn, is increased
because of two reasons. First, we cluster VMs from the same
application, reducing the amount of network resources needed
by communication between these VMs. Second, we isolate
mutually untrusted tenant applications in distinct VIs. Thereby,
applications are less susceptible to attacks in the network,
specially performance interference and DoS.

Z = Min γ ∗

(∑
i∈Iv

∑
a1∈Ar

∑
a2∈Ar

(1− T r
a1,a2

) ∗Hi,a1,a2

)

+ δ

∑
a∈Ar

∑
i∈Iv

∑
(w1,w2)∈Ev

i

∑
p∈Pv

i

Fa,i,w1,w2,p

 (2)

Next, we discuss two aspects of our model: inter-rack
bandwidth consumption and path selection.

Inter-rack bandwidth consumption. The cost of com-
munication between VMs positioned in the same rack is
negligible, since traffic remains internal to the rack and uses
only links that connect those VMs to the ToR switch. In
contrast, traffic between VMs from different racks imposes
a cost, which is given by the bandwidth consumed and the set
of links used.

We minimize the latter cost by employing the concept of
VM clusters4. A VM cluster consists of a set of VMs of the
same application located in the same rack. Therefore, we aim
at allocating each application into few, close VM clusters to
avoid spending extra bandwidth for communication. This also
benefits future allocations by saving network resources.

When all VMs of the same application are placed into
the same VM cluster, all traffic is kept within the ToR (i.e.,
negligible cost). However, if the set of VMs is distributed
into more than one VM cluster, we must ensure that there
is enough available bandwidth for communication between
these clusters. For instance, consider the scenario presented in
Figure 3, where two applications have two VM clusters each:

4This concept is similar to that of VM grouping, used in [10]. We prefer
the term VM cluster so to avoid confusion with application grouping.

Access (ToR)

Aggregation

CoreVirtual Switch

VM11 VM15

......

B
an

d
r 1

Application a1

VM11 VM12 VM13 VM21 VM14 VM15 VM22 VM23 VM24 VM25

Virtual Switch

VM21 VM25

......

Application a2

B
an

d
r 2

B
and r1

B
and r2

2 Band. r
a1 1 Band. r

a2

Band r
a2

Band r
a1

Ca1,1 Ca2,1 Ca1,2 Ca2,2

Fig. 3: Communication between VM clusters.

we must guarantee network bandwidth in all links of a path
connecting the pairs of VM clusters from each application.
Since a single VM of application a1 cannot send or receive
data at a rate greater than Bandra1

, traffic between the pair
of clusters Ca1,1 and Ca1,2 is limited by the cluster with
the lowest rate: min(|Ca1,1|, |Ca1,2|) ∗ Bandra1

. Thus, the
bandwidth required by one VM cluster to communicate with
all other clusters of the same application is given by the
following expression:

Bax,ci = min

|ci| ∗Bandrax
,

∑
c∈Cr

ax
,c 6=ci

|c| ∗Bandrax


∀ci ∈ Cr

ax
(3)

where Bax,ci denotes the bandwidth required by the ith VM
cluster to communicate with other clusters from application
ax.

Path selection. The model presented in this paper considers
the use of one path for communication between pairs of
VM clusters from the same application. That is, datacenters
typically have networks with rich connectivity, such as multi-
rooted trees [26] and Fat-Tree [14]. Cloud network devices
are usually connected with several links that are balanced
by multipathing techniques, such as Equal-Cost Multi-Path
(ECMP) [7] and Valiant Load Balancing (VLB) [3]. Nev-
ertheless, given the amount of multiplexing over the links
and the limited number of paths, these multiple paths can be
considered as a single aggregate link for bandwidth reservation
[10].

VI. EMBEDDING HEURISTIC

Based on the formal model presented in Section V, in this
section we introduce a constructive heuristic for Function F
to efficiently allocate tenant applications in cloud platforms.
Note that we do not present a heuristic for Function G for
two reasons. First, Function G is executed only when VIs
are allocated on the cloud substrate. Thus, we can use a
solver, such as CPLEX5, to optimally perform this operation.
Second, should a heuristic be necessary, there are several
virtual network embedding algorithms in the state-of-the-art,

5http://www-01.ibm.com/software/integration/optimization/
cplexoptimization-studio/
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for instance [24]. These algorithms can be easily adapted to
embed VIs in cloud infrastructures.

Function F , in turn, may take a considerable amount of time
to allocate one application in the cloud when executed by a
solver, specially in large-scale cloud datacenters. However, the
high rate of tenant arrival and departure requires the operation
to be performed as quickly as possible. Hence, we design a
constructive heuristic, which is shown in Algorithm 1.

The key ideia is based on two factors. First, we quantify
the number of mutually untrusted relationships inside each
VI for the incoming request (we seek to increase security
by avoiding mutually untrusted tenants to be allocated in the
same VI). Second, in the VI with the lowest number (that
is, the highest security), we allocate the application VMs as
close as possible to each other and in the smallest number of
VM clusters. Thus, we can increase security and, at the same
time, minimize bandwidth consumption for intra-application
communication.

Algorithm 1: Application allocation algorithm.
Input : Application a, Virtual infrastructure set Iv

1 unvisitedV Is ← GetVIs(Iv);
2 while true do
3 i ← SelectVI(unvisitedV Is, T r

a,x);
4 if not i then return false;
5 unvisitedV Is ← unvisitedV Is \ {i};
6 Cr

a ← ∅;
7 rv ← FindBestRack(i, Mr

a);
8 maxVMs ← MaxAvailableCluster(rv , Mr

a , Bandra);
9 Cr

a ← Cr
a ∪ {Cluster(rv , maxVMs)};

10 allocatedVMs ← maxVMs;
11 if allocatedVMs < Mr

a then
12 switchQueue ← FindNeighborSwitches(rv);
13 while allocatedVMs < Mr

a do
14 sv ← GetSwitch(switchQueue);
15 if not sv then break;
16 switchQueue ← FindNeighborSwitches(sv);
17 torQueue ← FindRacks(sv);
18 while torQueue not empty do
19 rv ← GetToR(torQueue);
20 maxVMs ← MaxAvailableCluster(rv ,

(Mr
a − allocatedVMs), Bandra);

21 Cr
a ← Cr

a ∪ Cluster(rv , maxVMs);
22 allocatedVMs ← allocatedVMs + maxVMs;
23 if allocatedVMs == Mr

a then break;
24 end while
25 end while
26 end if
27 if allocatedVMs == Mr

a and AllocBandwidth(Cr
a) then

28 return true;
29 end if
30 end while

The algorithm works as follows. First, it creates a list
(unvisitedVIs) of all VIs with enough available VMs to
hold the request (line 1). Then, it verifies one VI at a time
from the list in an attempt to allocate the incoming application
(lines 2 – 30). To this end, function SelectVI selects one
VI based on two factors: i) the number of mutually untrusted
relationships; and ii) the number of available VMs (line 3). It
selects the VI with the lowest number of mutually untrusted
relationships between the incoming request and the tenant
applications already allocated in the VI. If there are more

than one VI with the lowest number, it will choose the one
with the largest number of available VMs. In doing so, we
take security into account while augmenting the possibility of
allocating all VMs from the application close to each other in
order to address network performance as well.

The algorithm, then, initializes the set of VM clusters Cr
a

for the application (line 6) and calls function FindBestRack
(line 7). This function selects one rack in the following way:
if the number of unallocated VMs is smaller than the number
of VMs per rack, it tries to find a rack with the closest number
of available VMs (which must be enough to allocate the entire
application), in order to create a single cluster; otherwise,
it employs a greedy behavior, that is, it selects one of the
racks with the largest number of available VMs. When a rack
is chosen, function MaxAvailableCluster verifies the
maximum cluster size that the rack can hold (line 8) and the
cluster is created (line 9).

Next, if there are still unallocated VMs, the algorithm will
search for racks close to the already allocated VM cluster
(lines 13 – 25). This step is performed by verifying directly
connected switches (function FindNeighborSwitches)
from rv and racks connected to the topology lower levels
of these switches (function FindRacks). When a rack with
available capacity is found, a new VM cluster is created for
the application. This process is repeated until all requested
VMs are allocated.

Finally, after all VMs have been mapped inside the VI,
function AllocBandwidth calculates and allocates the
bandwidth necessary for communication among VM clusters
from the incoming application (line 27). Upon successfully
allocating the bandwidth required by communication among
the clusters, the algorithm returns a success code. In contrast,
if the selected VI was not able to hold the request due to the
lack of available resources, the algorithm attempts to allocate
the incoming application to another VI. In case that all VIs
were verified and none of them had enough residual resources
to allocate the request, the operation fails and the request is
discarded.

VII. EVALUATION

In this section, we first describe the evaluation environ-
ment and then present the main results. The evaluation of
our approach focuses primarily on quantifying the trade-off
between the gain in security and performance to tenants and
the cost (internal resource fragmentation) it imposes on cloud
providers.

A. Evaluation Setup

To show the benefits of our approach in large-scale cloud
platforms, we developed a simulator that models a multi-tenant
shared datacenter. We focus on tree-like topologies such as
multi-rooted trees used in today’s datacenters [1]. The network
topology consists of a three-level tree topology, with 16,000
machines at level 0, each with 4 VM slots (i.e., with a total
amount of 64,000 available VMs in the cloud platform). Each
rack is composed of 40 machines linked to a ToR switch.
Every 20 ToR switches are connected to an aggregation switch,
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which, in turn, is connected to the datacenter core switches.
This setup is similar to [3], [10].

Workload. The workload is composed by requests of appli-
cations to be allocated in the cloud platform. Unless otherwise
specified, it is defined as follows. The number of VMs and
bandwidth of each request is exponentially distributed around
a mean of λ = 49 VMs (which is consistent with what is
observed in cloud datacenters [1]) and uniformly distributed in
the interval [1, 500] Mbps, respectively. Mutual trust between
tenants was generated through direct relationships between
them in a random graph with degree of each vertex (tenant)
following a distribution P (k) ∝ 1

k . Each virtual infrastructure
from the set Iv , in turn, is defined as a tree-like topology with
similar size in comparison to the other VIs from the set.

B. Evaluation Results

Improved security and performance for tenants. Security
is quantified by measuring the number of mutually untrusted
tenants assigned to the same VI. It is desirable to have
this value minimized, because it may expose applications to
several kinds of attacks, including performance interference
ones caused by untrusted tenants. We verify trust relationships
between tenants in two scenarios: when allocating batches of
applications (that is, when all application requests are known
beforehand, in an offline setting), and when applications
arrive without prior knowledge (i.e., in an online setting).
We further show how performance interference attacks are
reduced. Our results are compared to the baseline scenario
(current cloud allocation scheme) in which all tenants share
the same network.

Figure 4 depicts the variation of mutually untrusted relation-
ships for three batches of application requests in accordance
with the number of VIs offered by the provider. Results show
that the number of applications is not the main factor to
increase security, but rather the number of VIs offered by the
provider. In general, we find that the number of mutually un-
trusted relationships decreases, and thereby security increases,
with a logarithmic behavior according to the number of VIs.
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Fig. 4: Security when allocating batches of applications.

Next, we measure how security increases when application
requests arrive without prior knowledge. The arrival rate of
each request is given by a Poisson distribution (similarly to

[3] and [10]) with an average of 10 requests per time unit. In
this scenario, we adopt a common admission control (similar
to that of Amazon EC2), which rejects an application request
that cannot be allocated upon its arrival.

Figure 5 shows how the number mutually untrusted relation-
ships inside the cloud varies over 2,000 time units. The number
of mutually untrusted relationships (Y-axis) is represented in
logarithmic scale, as these numbers differ significantly for
different sets of VIs. At first, the number of mutually untrusted
relationships increases because all incoming applications are
allocated, since there are ample resources. As time passes and
the cloud-load increases (less available resources), this number
tends to stabilize, because new applications are allocated only
when already allocated applications conclude their execution
and are deallocated (which releases resources). We find that the
higher the isolation among tenant applications, the greater the
security, since the number of mutually trusting applications in-
side each VI is maximized and, thus, performance interference
attacks are minimized. However, the level of security offered
by the provider tends to stabilize after a certain number of
VIs, because security increases with a logarithmic behavior.
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Fig. 5: Security in an online setting.

We also verify the number of applications competing for
bandwidth in level-2 and level-3 links of the virtual tree
topologies. Figure 6 depicts the mean number of application
sharing level-2 links (i.e., links between ToR and aggregation
switches) over 2,000 time units, while Figure 7 shows the
mean number of applications sharing level-3 links (i.e., links
between aggregation and core switches). Level-3 links are
shared by a larger number of applications than level-2 links
because layer-3 switches interconnect several layer-2 switches
and, as time passes, the arrival and departure of applications
lead to dispersion of available resources in the infrastructure;
thus each incoming application may be allocated in several
racks from different aggregation switches (and VMs from
distinct racks communicate with other VMs of the same
application through level-3 links). We see that the use of
VIs can greatly reduce the number of applications competing
for bandwidth in level-2 and, in particular, in level-3 links.
This reduction greatly minimizes performance interference
attacks. Thereby, it can increase overall application perfor-
mance by improving application network performance, since
performance interference in the network is one of the leading
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causes for poor application performance in the cloud [1], [10].
We achieve this by completely isolating VIs from one another,
that is, there is no competition for network resources among
VIs, but rather only inside VIs.
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Fig. 6: Mean number of applications sharing a level-2 link.
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Fig. 7: Mean number of applications sharing a level-3 link.

Resource fragmentation. The creation of VIs and grouping
of tenant applications may restrain the allocation of requests,
because of (internal) resource fragmentation. Specifically,
fragmentation happens when the sum of available resources
(considering all VIs) would be enough to accept the incoming
request, but no VI alone has the amount of resources available
to accept the request.

Figure 8 shows results regarding internal fragmentation of
resources. Figure 8(a) shows the overall acceptance ratio of
application VM requests according to the number of VIs. We
present results for applications with the number of VMs (λ)
exponentially distributed around different means. We verify
that the acceptance ratio decreases linearly according to the
number of VIs. For requests with exponential mean of λ = 29,
there exists negligible fragmentation, since the acceptance
ratio does not decrease with 128 VIs in comparison to the
baseline scenario. In contrast, there is some fragmentation
when the number of VMs is distributed around higher λ,
since there is a reduction in the acceptance ratio (2.92% with
λ = 89, 4.26% with λ = 69 and 6.06% with λ = 49) when
comparing the baseline with 128 VIs. Thus, the excessive use
of virtual infrastructures may lead to resource fragmentation
inside the cloud infrastructure. However, it is small even for
a worst-case scenario with 128 VIs.

Figure 8(b) depicts the acceptance ratio with cloud-load
between 70% and 80% (i.e., the usual load of public cloud
platforms, such as Amazon EC2 [27]). We see that the
acceptance ratio decreases according to the number of VIs
offered and the size of applications (that is, the bigger the
applications allocated, the worse the fragmentation). Although
the fragmentation tends to increase significantly with the
number of VMs distributed around λ = 89 (but still with
high acceptance ratio), note that this is a worst-case value.

Figure 8(c), in turn, shows the acceptance ratio of requests
for λ = 49 (i.e., a setting that is observed is cloud datacenters
[1]) according to the cloud-load for different sets of VIs.
Notice that the acceptance ratio drops significantly after the
cloud-load goes over 97% for 64 VIs (92% for 128 VIs). Since
providers usually operate their cloud datacenters at 70-80%
occupancy [27], we consider that this burden is pragmatically
negligible. Furthermore, our strategy minimizes resource frag-
mentation by assigning VMs from the same application to
VM clusters, thus reducing the amount of network resources
consumed for intra-application communication and saving
network resources for future allocations. Overall, it is possible
to substantially increase security with minimum addition of
resource fragmentation in comparison to the baseline scenario.
Providers do not need to offer a huge number of VIs, because
security increases with logarithmic behavior. The trade-off
between security and cost, if well explored, can lead to an
attractive configuration between the number of VIs offered
(security and performance) and resource fragmentation (cost).

Provider Revenue. Cloud providers, such as Amazon EC2,
charge tenants solely based on the time they occupy their
VMs. However, we envision that, in the future, cloud providers
will charge for VM-time and network bandwidth. Since it is
still ongoing research [28], we adopt a simple pricing model
similar to [3], [10], which effectively charges both computation
and networking. Hence, a tenant using Mr

a VMs for time T
pays Mr

a×T (kv+kb×Bandra), where kv is the unit-time VM
cost and kb is the unit-volume bandwidth cost. Such pricing
model can be used as long as the provider handles network
resource allocation. This way, we compare provider revenue
for the baseline scenario under today’s charging model against
our approach under both pricing models (with and without
considering bandwidth). Figure 9 shows the revenue of our
approach as a percentage of the baseline. We see that provider
revenue decreases around 3.5% with 64 VIs (6% with 128 VIs)
in comparison with today’s charging model. Nonetheless, it
can be substantially increased (about 17.5% for both 64 and
128 VIs) with a networking-aware pricing model.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a resource allocation strategy that
increases the security of cloud network resource sharing and
application performance. Security is increased by isolating
applications from mutually untrusted tenants, which reduces
the impact of selfish and malicious behavior in the network.
Application performance is augmented by clustering VMs
from the same application and by minimizing performance
interference attacks from untrusted tenants. Thus, the environ-
ment becomes more resilient against tenants that could hurt
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other applications. We evaluated and compared our strategy
with a baseline scenario, in which all applications share the
same network. Our results show that security and performance
are improved with little extra cost for the provider.

In future work, we intend to dynamically reduce or increase
virtual infrastructure size in order to improve security and
minimize resource fragmentation. We further aim at including
security requirements when mapping VIs onto the physical
substrate (i.e., function G), thus improving isolation among
VIs, and exploring virtual link embedding into multiple paths.
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