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Abstract—OpenFlow is a popular network architecture where
a logically centralized controller (the control plane) is physically
decoupled from all forwarding switches (the data plane). Through
this controller, the OpenFlow framework enables flow level
granularity in switches thereby providing monitoring and control
over each individual flow. Among other things, this architecture
comes at the cost of placing significant stress on switch state size
and overburdening the controller in various traffic engineering
scenarios such as dynamic re-routing of flows. Storing a flow
match rule and flow counter at every switch along a flow’s path
results in many thousands of entries per switch. Dynamic re-
routing of a flow, either in an attempt to utilize less congested
paths, or as a consequence of virtual machine migration, results
in controller intervention at every switch along the old and new
paths. In the absence of careful orchestration of flow storage
and controller involvement, OpenFlow will be unable to scale to
anticipated production data center sizes.

In this context, we present SwitchReduce - a system to reduce
switch state and controller involvement in OpenFlow networks.
SwitchReduce is founded on the observation that the number
of flow match rules at any switch should be no more than
the set of unique processing actions it has to take on incoming
flows. Additionally, the flow counters for every unique flow may
be maintained at only one switch in the network. We have
implemented SwitchReduce as a NOX controller application.
Simulation results with real data center traffic traces reveal that
SwitchReduce can reduce flow entries by up to approximately
49% on first hop switches, and up to 99.9% on interior switches,
while reducing flow counters by 75% on average.

Keywords: Datacenter networks,OpenFlow, Routing and
traffic engineering, New networking architectures

I. INTRODUCTION

The OpenFlow [1] architecture physically decouples the
control plane from the data plane in a network. A logically
centralized controller (the control plane) independently con-
trols every single flow in the network by installing customized
flow-rules in forwarding switches (the data plane). A flow-
rule comprises of a Match field that matches the given flow, an
Instructions field that details the actions to be taken on the flow,
and Counters that maintain flow statistics. OpenFlow therefore,
via Counters, also enables fine-grained monitoring of traffic
from every individual flow. This architecture has the distinct
advantage of providing central visibility into the network,
thereby allowing various traffic engineering schemes [2] to be
implemented, as well as centralized control, allowing security
schemes [3] and networks policies to be microscopically
enforced.
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Fig. 1. Repetition of match entries and flow counters at every hop in the
network

OpenFlow, with this centralized control and flow-level
granularity, offers an attractive design option for data center
networks. However, there are several important concerns such
as increased switch memory requirement, controller bottleneck
and high first packet latency which must be addressed before
OpenFlow can be deployed at the scale of production data
centers.

Increased Switch Memory requirements : Flow-level gran-
ularity places enormous stress on switch state size. Storing a
flow rule for every flow that passes through a switch results in a
linear increase in switch state with the number of flows through
it. According to Curtis et al. [4], a Top-of-Rack (ToR) switch
might have roughly 78,000 flow rules (if the rule timeout is 60
seconds). This means each ToR switch will store 78,000 Match
Entries and 78,000 flow counters. This number is likely to be
even higher on Aggregation and Core switches. With regards
to flow counters especially, it is straightforward to observe
that there is a lot of repetition throughout the network. As
an example, if a flow passes through 4 hops, then there are 4
switches in the network where counters are provisioned for this
flow. If there are 1,000,000 flows in the network, for an average
of 4 hops per flow, there are 4,000,000 counters throughout the
network. This increases RAM requirements of switches and
contributes to bloated switch state.

Figure 1 demonstrates with a simple example how the total
number of rules and counters in the network increase linearly
with number of hops. Two sets of flows (m and n) traverse from
the left side nodes to the right side nodes through the core of
the network, with each flow requiring 5 hops. While the total
number of flows are only (m+n), flow-level granularity results
in a total of 5(m+n) match entries and 5(m+n) flow counters
in the network.
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Failure to compress switch state will render large scale
OpenFlow data centers infeasible. According to Mysore et
al. [5], with the emergence of ‘mega data centers’ with
100,000+ compute nodes housing a cloud environment with
virtual hosts, the number of flows in the network will be in
millions. Even with Layer 2 forwarding, MAC forwarding
tables in such a scenario will need to hold hundreds of
thousand to millions of entries - impractical with today’s
switch hardware. OpenFlow rules also use TCAMs (Ternary
Content Addressable Memory), which are very costly and
as a result most commercial switches do not support more
than 5000 or 6000 TCAM based OpenFlow rules [4]. In an
OpenFlow network, the number of entries in a switch is even
higher than layer 2 since it is governed by the number of flows
passing through it and not just the number of destination MACs
being served by it. Also the size of each entry, 356 bits for
OpenFlow v1.1, is larger than the corresponding 60-bit entry
for layer-2 forwarding. All these facts suggest that today’s
switch hardware will not be able to sustain the demands of
OpenFlow enabled mega data centers. Any optimization which
compresses the number of Match Entries and Flow Counters
in a switch will have a direct impact on switch state Size.

Controller Bottleneck : Enforcing the aforementioned flow-
level granularity through a centralized control plane overbur-
dens the controller and creates a processing bottleneck at the
controller. In a dynamic network where various traffic engi-
neering strategies may need to be deployed such as re-routing
of flows, the controller becomes heavily overloaded with the
task of updating flow entries on every switch belonging to
the old and new paths of each re-routed flow. If the older
route for a flow had five hops and the new route has four
completely different hops, the controller has to send nine
OpenFlow flow mod/add/del messages. This clearly limits the
ability of the controller to dynamically alter routes at the scale
of a production data center with millions of concurrent flows.

Involving the controller in the setup of every flow results
in a large volume of control channel traffic. One packet-in
message of at least 128-bytes must be sent to the controller
for each new flow in the network. Additionally, one flow-mod
message of 56-bytes must be sent by the controller to each
switch lying along the new flow’s path, as determined by the
controller. For an average of 100,000 flows per second at a
ToR [6], 100 ToRs in the network, and an average of 4 hops per
flow, this results in over 10Gbps of control channel traffic from
packet-in messages alone and over 4Gbps of control channel
traffic from flow-mod messages alone.

High first packet latency - Packets that do not match a flow
rule at a switch are redirected to the controller resulting in
first packet latency of the order of several milliseconds (com-
pared to microseconds for subsequent packets). The dominant
component of this latency is the need to transition from the
data plane to the control plane [4]. Pre-populating flow rules
in switches with infinite timeouts (permanent rules) is the
currently the only way possible to reduce latency. However,
switch memory (mainly TCAM) becomes a constraint.

In this context, we present SwitchReduce - a system for
reducing switch state and controller involvement in OpenFlow
networks. SwitchReduce leverages the central visibility pro-
vided by OpenFlow to facilitate cooperation between switches
which results in a division of labor and subsequently a reduc-
tion in switch state size as well as controller involvement. This

co-operation between switches also enables pre-population
of flow rules in the interior switches of the network which
helps in reducing run-time control channel traffic, controller
involvement and end-to-end latency as well.

SwitchReduce relies on two important observations. First,
the number of match entries at any switch should be no more
than the set of unique processing actions it has to take on
incoming flows. Second, the flow counters for every unique
flow may be maintained at only one switch in the network.
SwitchReduce imposes no requirement on underlying switch
hardware or software other than that the switches be OpenFlow
v1.1+ enabled and implement the currently optional Push
VLAN ID , Set VLAN ID and Pop VLAN ID actions.

We make the following contributions in this paper:

C1: We present a detailed design of SwitchReduce and de-
scribe its implementation as a NOX controller application.

C2: We present simulation results based on real data center
traffic traces for two different topologies that demonstrate the
potential savings that can be obtained through SwitchReduce.

C3: We present a case study that highlights the efficacy
of SwitchReduce in reducing flow-setup latencies through
proactive installation of OpenFlow rules, and easing the burden
on the controller while dynamically rerouting flows.

The rest of this paper is organized as follows. Section II
details the SwitchReduce system design. In section III, we
describe our implementation of SwitchReduce as a NOX
OpenFlow controller application. Section IV describes our
simulation results. In section V, we present a case study
profiling the applicability of SwitchReduce in real data center
scenarios. Section VI presents an overview of related research.
Finally, we conclude in section VII.

II. SYSTEM DESIGN

SwitchReduce is based on three founding principles:

1) Wildcard identical action flows
2) RouteHeaders : First-hop based routing to facilitate

the aforementioned wildcarding
3) Division of labor : Collectively maintain traffic statis-

tics across all switches

We explain each of these principles one by one and how
we achieve them using current OpenFlow specifications.

A. Wildcard Identical Action Flows

The fundamental idea behind an OpenFlow rule is to be
able to apply a customized action on every flow. Therefore,
optimally, the number of flow rules should be bounded by the
cardinality of the action space. This is the premise of our first
founding principle.

At this point we would like to point out that, for ease
of explanation, we limit our discussion in this section to
forwarding rules only, although the principles described here
can be extended to more diverse flow rules too as we discuss
in Section V. For a forwarding flow rule, the Action field is
basically a mapping of the flow to an outport.

We observe that the number of flows passing through a
switch is several thousands. Also, the number of ports on
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Fig. 2. RouteHeaders and use of Push VLAN ID and Pop VLAN ID operations in SwitchReduce

most commercial switches is less than 128. In fact most ToR
switches typically have less than 64 ports, while aggregation
and core switches have even fewer ports (albeit with much
higher bandwidth). In some diverse topologies like FatTree
[7], the switches used could have 52 ports for ToRs and 96
ports for Aggregation and Core [5]. Effectively, while there
are several thousand flows through a switch, there are only
a handful of ports that they can use. In other words, there
are only a handful of actions that all flows must share. If we
install one entry for every unique flow in a switch, we would
end up with several thousand exact-match SRAM entries.
In data centers that house several hundreds of thousands of
servers [8] [9] [10], each possibly running several VMs, this
would actually require millions of exact-match SRAM entries.
This is not achievable with existing hardware. If on the other
hand we install one entry for every unique action, we would
end up with only a handful of wildcard TCAM entries.

Our first founding principle then is the following:

All flows in a switch that have identical actions associated
with them, with the exception of flows at the first hop switch,
can and should be compressed into one wildcard flow rule.

When paraphrased specifically for forwarding rules, the
above statement becomes :

All flows in a switch that have the same outport, with the
exception of flows at the first hop switch, can and should be
compressed into one wildcard flow rule.

The first hop switch will be an OpenFlow enabled virtual
switch (vswitch), like openvswitch [11]. This vswitch runs
inside a hypervisor and connects all the VMs running inside the
hypervisor to the network. In the absence of a virtual switch,
the top-of-rack switch (ToR) will serve as the first hop.

At switches that are not first-hop switches, all flows with
the same action get compressed into one wildcard flow entry.
At the first hop, flows originating from directly connected VMs
are not wildcarded but all other flows are. Note that a switch
that serves as the first hop for some flows also serves as the
last hop for some other flows. Flows for which this switch
serves as the first hop switch are not wildcarded, but those for
which it serves as the last hop switch are.

Flows at their first hop aren’t wildcarded because of the
following reason: We require one exact-match entry, a unique
identity, for every flow at its first hop to both carry out the
above mentioned wildcarding as well as to maintain flow level
control and statistics. We discuss this in detail in sections II-B
and II-C.

Optimally, the number of flow rules should be bounded by
the cardinality of the Action space. Each wildcard flow rule
should map all intended matching flows to the right action.
Creation of these wildcards is a problem in itself that we
address in section II-B. Maintenance of flow statistics in the
absence of exact-match flow rules is another problem that we
address in the section II-C.

B. RouteHeaders: First-hop based routing

To construct a wildcard rule, there must be some com-
monality (in terms of an OpenFlow header field) that is both
exhaustive and exclusive to the flows being wildcarded. The
wildcard can then be created on this common field. However,
there is a high chance that such commonality may not exist
between flows at a switch that share the same outport and
therefore need to be wildcarded. In this section, we present an
answer to the question: How to create a wildcard when there is
no inherent commonality between the flows being wildcarded?
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To achieve wildcarding, we exploit these underlying prop-
erties of OpenFlow:

• Centralized visibility makes the controller aware of
the entire path from source to destination

• Centralized routing gives the controller complete free-
dom to choose any routing technique

The controller leverages these attributes to facilitate coop-
eration between switches such that each switch informs the
next switch of the outport to use when forwarding the packet.
The algorithm, detailed herein, divides a packet’s path into 3
zones: The First Hop, The Intermediate Hops, The Last Hop.
We explain this with the assistance of the example shown in
Figure 2. In this example, we consider a three layer topology
and assume that ToR switches form the lowermost layer. In
a virtual environment, the ToR layer will be replaced by a
vswitch layer, and Aggregation layer will be replaced by a
ToR layer.

1) The First Hop: When a new flow originates at its first
hop, the controller installs in it an exact match rule with
Action:

• Forward packets belonging to this flow out on this
designated port.(Port 7 for Flow F1 in our example
on Figure 2)

• Use Push VLAN ID, Set VLAN ID to add a certain
number of VLAN headers (collectively referred to
hereafter as RouteHeader) onto packets belonging to
this flow.

The number of added VLAN headers is equal to the number
of remaining hops on the packet’s path from the first hop to
the destination. In Figure 2, the RouteHeader for Flow F1 is
the 4-element array [6,2,4,3] corresponding to 4 newly added
VLAN headers, one for each hop after ToR1. The RouteHeader
is basically a concatenation of the appropriate number of 12-bit
VLAN headers each uniquely identifying the action that has
to be taken at every subsequent hop along the packet’s path.
Since we are specifically considering forwarding rules in this
section, each VLAN ID in the RouteHeader uniquely identifies
the outport for the packet at every subsequent hop along its
path. For simplicity, we choose the value of the VLAN ID to be
the same as the value of the outport on the corresponding hop.
Thus, if the outport for a packet at a switch is X, the VLAN ID
in the packet’s RouteHeader for this hop will also have value
X. In practice, this need not necessarily be the case. There just
needs to be a one-to-one mapping between the space of VLAN
IDs and the space of Actions. In other words, the VLAN ID
would contain a unique Action ID. 12-bits can accommodate
up to 4096 unique actions.

The RouteHeader, as the name suggests, carries the entire
route that a flow will take based on a routing decision taken
by the central controller. The outermost VLAN ID (right-most)
contains the Action ID (simply the outport in our example) for
the action taken by the second hop, the next VLAN ID contains
the Action ID for the next hop and so on.

This is shown in Fig. 2. Since we consider only forwarding
actions in this section, we use the outport itself as the Action
ID. The outermost VLAN ID from the RouteHeader (shown
as the rightmost 12-bit value ’3’ for Flow F1 in Figure 2)

contains the outport for the second hop (Port 3 on Switch A1
- first hop after ToR1), the next VLAN ID ’4’ contains the
outport for the third hop (Port 4 on Switch C) and so on.

2) The Intermediate Hops: When the controller installs an
exact match rule for a flow in the first hop, it also installs a
wildcard rule for it in the intermediate hops. In the match field
of this wildcard rule, all fields except the VLAN ID are set
to Don’t Care while the VLAN ID is set to the Action ID
(outport) for the flow. The corresponding action field simply
contains the outport for the flow.

This wildcard rule can be either installed simultaneously
while installing the first hop rule or, even better, proactively.
Since there are only a handful of wildcard rules in SwitchRe-
duce which are all known in advance, it is indeed possible
and advisable to pre-populate the interior switches with these
rules (“Interior” switches refer to switches in the core layers
of the network, i.e. all switches except the edge switches).
In a virtual environment (where the first hop is a vswitch),
SwitchReduce makes it possible to proactively pre-populate all
physical switches in the data center network with OpenFlow
rules. SwitchReduce, therefore, presents a pragmatic way of
pre-populating OpenFlow rules in switches (which is currently
the only way to reduce flow-setup latencies in any OpenFlow
network). OpenFlow literature [12] has recommended pre-
populating rules as a means for reducing latencies but this
has been hard to achieve in practice since rules are not known
in advance.

According to the OpenFlow v1.1 specification [1], it is
the outermost VLAN header of a packet that will be used by
the switches to perform a VLAN-based match. Thus, when
the packet arrives at the switch, it automatically matches the
wildcard entry corresponding to the outermost VLAN ID of
its RouteHeader.

The flow rule installed by the switch in the intermediate
hop then is

• Set the outport for the packet to the specified value
when the VLAN header contains the given value.(e.g.
set outport to 3 when VLAN ID is 3 for flow F1 at
Switch C in Figure 2.

• Use the Pop VLAN ID to pop the outermost VLAN
ID.

The first action item above selects an outport based on
the outermost VLAN header. The second action removes
the outermost VLAN header from the RouteHeader before
forwarding the packet to the outport. The new outermost
VLAN header for the packet is therefore modified so that
it corresponds to the Action ID for the next hop. Thus, in
addition to forwarding the packet, each switch also prepares
the packet for a match with the correct wildcard rule on the
next switch. This cooperation between switches enables the
wildcarding mechanism outlined in II-A. All packets that need
to be forwarded out to a particular outport enter a switch with
their outermost VLAN ID pre-set (by the previous hop) so that
they all match the right wildcard entry.

3) The Last Hop: The last-hop also contains a wildcard
rule for the given flow. The corresponding action is:

• Set the outport for the packet to the specified value
when the VLAN header contains the given value.(e.g.
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Fig. 3. Wireshark snapshot of a ping message from Host H1 to Host H2 -
RouteHeader is [1,3,3,3]

set outport to 6 when VLAN ID is 6 for flow F1 at
ToR4 in Figure 2.

• Use the Pop VLAN ID to pop the outermost VLAN
ID.

In this particular context, where forwarding is the only
action being performed by the switches, the last hop is identical
to the intermediate hops. In fact, even these last hop rules can
be pre-populated in a forwarding-only scenario. In Section V,
we discuss a scenario where the last hop performs a role
different than that of the intermediate hops and consider its
implications.

So, in this fashion, RouteHeaders help realize the wild-
carding idea that was introduced in Section II-A. Let us look
at Figure 2 closely to understand how this wildcarding is
being accomplished. Examine flows F2 and F3. F2 and F3 are
between two separate source-destination pairs and have very
diverse paths in the network. However, their paths cross at one
link in the network, namely the link joining A3 to ToR4. Thus,
A3 performs the same action on both F2 and F3. SwitchReduce
seeks to install a wildcard rule in A3 such that both F2 and F3
match that wildcard. To do so, it creates a rule that says If the
VLAN ID is 2, output to port 2. Now ToR2 installs in packets
belonging to flow F2 the RouteHeader [1,2,3,3]. Switch A1
pops the outermost VLAN ID to send [1,2,3] to Switch C.
Switch C then pops the outermost VLAN ID again to send
[1,2] to Switch A3. Thus, when packets from flow F2 reach
A3, the outermost VLAN ID is already set to ’2’ and hence a
match with aforementioned wildcard rule happens. Similarly,
ToR3 installs in packets belonging to flow F3 the RouteHeader
[5,2]. Since A3 is the first hop (after ToR3) for flow F3, the
outermost VLAN ID is already set to ’2’. Thus, once again, a
match with the aforementioned wildcard rule happens. In this
manner, both F2 and F3 match the same wildcard at Switch
A3.

C. Division of Labor

With the first two founding principles, we ensure that flow-
level routing decisions can still be taken by the controller even

though there are not as many flow-specific entries. To ensure
that the sanctity of flow-level granularity, which is a salient
property of OpenFlow, is not disturbed we must ensure that
the controller is still able to gather flow level statistics.

This is automatically achieved by design. Recall that in
our first founding principle, we chose not to wildcard flows
at the first hop. This means that there is an exact-match rule,
a unique identity, for every flow at its first hop - the switch
where this flow first appears in the network. The controller can
simply gather flow statistics from these first hop (vswitch or
ToR) switches. The rest of the switches only need to collect
port level statistics (which could be used to detect congestion
in the network), and should not be involved in collection of
flow level statistics. For any reliable delivery protocol like TCP,
the end-to-end throughput is a constant therefore flow statistics
would yield the same information regardless of which hop they
are polled from.

As an example, suppose the link from core switch C (Port
3) to Aggregation switch A3 in figure 2 is congested. The
controller simply needs to look at port statistics for port 3,
which it still can, to detect congestion. Once it does that, it
can look at all flows in the network that are being sent to
that port. The controller has access to this information since it
installed RouteHeaders for each flow. It can simply maintain
a list of all flows that use any given port on any given switch.
Then, it only needs to look at respective first-hops to figure
out how much traffic is being contributed by each flow. This
way it can control misbehaving hosts.

III. IMPLEMENTATION

We have implemented SwitchReduce as a NOX [13] con-
troller application. We use an OpenFlow 1.1 User Switch
Implementation [14] inside a Mininet [15] testbed. Mininet is
a platform that enables creation of OpenFlow based software
defined networks on a single PC using Linux processes in
network namespaces.

SwitchReduce NOX application is a complete end-to-end
implementation of SwitchReduce. Given any network, the ap-
plication first learns its entire topology which includes the lo-
cation of all switches in the network and their interconnections,
as well as a mapping of hosts to ToR switches. The host to ToR
mapping is obtained by tracking the first OFPT PACKET IN
event at the controller from every ToR switch, which in the
case of Mininet happens to be an ARP packet. This event
also triggers a pro-active route computation algorithm within
our controller which pre-computes the shortest available route
between every possible pair of hosts. This is done to minimize
controller processing time once actual traffic begins.

The controller also pre-populates all interior switches in
the network as well as the last hops with all possible wildcard
rules upon completion of the pro-active route computation al-
gorithm. Thus, before traffic in the network begins, all switches
except the first hop switches have wildcard rules installed in
them. These wildcard rules have all bits except VLAN ID set to
’x’. The VLAN ID is set to one of the outport numbers. Thus,
the number of wildcard rules is equal to the number of outports
on each switch. The corresponding actions installed by the
controller for these rules are OFPAT POP VLAN which pops
the outermost header post a match, and OFPAT OUTPUT
which forwards the flow to its designated outports. At the
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destination ToR, the last added VLAN header is removed and
the flow is delivered to its destination.

When a new flow arrives at the first hop switch, it sends
an OFPT PACKET IN to the controller. The controller simply
looks-up the pre-computed route for this flow and installs
an exact match rule in the ToR with corresponding actions
OFPAT PUSH VLAN and OFPAT SET VLAN VID to push
and set the requisite number of VLAN headers onto the flow.
It also installs an OFPAT OUTPUT action which forwards the
packet out from the designated port.

We used ping to verify the functionality of our algorithm
and used ‘Wireshark’ to trace the RouteHeader as a packet
made its way through the network (refer Figure 3 for Wireshark
snapshots of a ping packet as it is routed from Host H1 to H2
via Switches S1, S2, S3, S4 and S5 - RouteHeader is [1,3,3,3]).

IV. SIMULATION RESULTS

Currently, none of the hardware switches support Open-
Flow v1.1+. Hence, a full blown evaluation of SwitchReduce
in a hardware testbed can not be done right now. Instead,
we evaluate SwitchReduce using simulations to quantify the
savings in switch state.

We developed a simulator that simulates a data center
network. The simulator creates a network topology using as
input the number of servers, servers per rack, switches and
their connections, and type of topology. The simulator then
maps a user specified number of VMs randomly onto the
servers. It then takes a traffic matrix and stores all flows in
the network as (Source VM, Destination VM) pairs. To route
each flow, it uses Djikstra’s shortest path algorithm. Finally, it
polls the switches to examine the number of flows through each
switch and groups them based on outport. This analysis reveals
the overlap in flow rule actions and quantifies the compression
that SwitchReduce accomplishes. To clearly demonstrate the
switch state problem and a microscopic view of the gains
achieved by SwitchReduce, we first present results for a
modest tree topology comprising of 400 servers distributed
uniformly over 40 racks. We use a real, dense traffic matrix
for these results.

Subsequently, we present results for a large topology com-
prising of 11520 servers distributed uniformly over 288 racks.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

ToR Switch Number

N
u

m
b

e
r
 o

f 
F

lo
w

s

Height of each color = # flows with a given unique action

Fig. 5. Action overlap on destToRs

1 2 3 4 5 6 7 8 9 10
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Core (1) or Aggregate (2−10) switches

N
u

m
b

e
r 

o
f 

F
lo

w
s

 

 

Default

SwitchReduce
99.97% (395289 vs. 89 Rules) Average Percentage Decrease in Aggregation Flow Entries
99.99% (118583 vs. 9 Entries) Average Percentage Decrease in Core Flow Entries

Fig. 6. Compression achieved by SwitchReduce on Aggregation/Core
switches

This distribution of servers is adopted from [5] which in turn
interprets this from [10] [8] [9]. We evaluate the performance
of SwitchReduce here for both tree and fat-tree topologies.
Also, here we use a traffic matrix derived from real data center
traffic characteristics collected by Benson et al. [6].

In each of our simulations, we create a 3-layer network
topology comprising of a ToR layer, an Aggregation layer
and a Core layer. The ToR layer then comprises the first
hop. We do not consider a virtual environment for these
simulations so as to be able to demonstrate the effectiveness of
SwitchReduce even in the absence of vswitches. Therefore, the
results presented for ToR switches here are an underestimate.
In a real data center network, the gains on ToR switches will
also be as high as the gains on the Aggregation and Core
switches of our simulation.

A. 400 server topology:

In this topology, there are 40 ToR switches, 9 Aggregation
switches and 1 Core switch. Every ToR connects to two Aggre-
gation switches, and Core switch connects to all Aggregation
switches. We pack different number of VMs onto the servers
in our experiment runs. We used real and highly dense traffic
matrices from our earlier work [16] to drive the simulator.

The results in Figure 4-Figure 7 are for an input of 1000
VMs using a Real 1000x1000 dense traffic matrix. In Figure 4
- Figure 7, the X-axis represents switch number. The Core
switch is number 1, Aggregation switches are 2 to 10 (in
Figures 4 and 6), while ToR switches are 11 to 50 (in Figure
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4), and 1 to 40 (in Figures 5 and 7). For the traffic matrix
used, total number of flows in the network were 193,478.

Figure 4 and Figure 5 capture overlap in flow-rule actions.
Figure 4 captures the First Hop and Intermediate Hops. Fig-
ure 5 captures the last hop. Both Figure 4 and Figure 5 are
stacked bar graphs demonstrating the number of flows passing
through a switch and the number of unique actions taken on
those flows. The number of different colors per bar are the
number of unique actions, while the height of each color is
the number of flows on which that action is taken.

While Figure 4 contains ToR as well as Agg/Core switches,
Figure 5. contains only ToR switches. Note that the same
ToR switch would serve as first hop (hostToR) for some flows
and as last hop (destToR) for other flows. The total number
of flows through ToR switches is the sum of heights of the
corresponding bars in Figure 4(ToR switch numbers start from
11) and Figure 5.

Flows corresponding to ToR switches, numbers 11-50, on
Figure 4 are not wildcarded. This is because these flows have
their first hop at these corresponding ToRs so their unique
identity will be preserved at this point in the network. All re-
maining flows on Figure 4 as well as flows on Figure 5 will be
wildcarded. Figure 6 and Figure 7 show compression achieved
on Agg/Core and ToR switches respectively by SwitchReduce.
The Average compression on Agg/Core switches is more than
99%, while on ToR switches it is 49%.

Figure 8 shows the rate of increase of flow counters
and match field entries maintained throughout the network
(with and without SwitchReduce) as a function of number
of VMs. Both Flow Counters and ToR match fields increase
geometrically with increasing number of VMs. However, in
the absence of SwitchReduce, the rate of increase is higher
thereby causing the lines to diverge. Agg/Core match entries
increase geometrically too in the absence of SwitchReduce but
stay constant when SwitchReduce is used.

B. 11520 server topology

We first run SwitchReduce on a tree topology. This
topology has 288 ToR switches, 24 Aggregation Switches
and 1 Core Switch. Every ToR connects to two Aggrega-
tion switches, and Core switch connects to all Aggregation
switches. We pack 10 VMs on each server.

Next, we run SwitchReduce on a fat-tree topology. This is
identical to the topology interpreted by [5] from [10] [8] [9].
The racks are arranged in 12 rows with each row comprising
of 24 racks. There are 288 ToR switches, 12 Aggregation
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Fig. 8. Rate of increase of flow counters and match entries with VMs

Switches and 12 Core Switches. Each ToR connects to a single
Aggregation switch and each Aggregation switch connects to
all Core switches. We pack 10 VMs on each server.

In each case, we derive our traffic matrices from real data
center traffic characteristics published by Benson et al. [6].
The data they collect from production data centers running
map-reduce style tasks and from university data centers reveals
that the median number of same-rack hosts that any host talks
to is 2, while the median number of out-of-rack hosts that
any host talks to is 4. Thus the traffic matrix that we use
is created by randomly choosing 2 same-rack communicating
hosts and 4 out-of-rack communicating hosts for every host.
The communication is assumed to be bi-directional.

The results from these experiments are shown in Fig-
ure 9 which depicts the percentage reduction obtained by
SwitchReduce in both the tree and fat-tree topologies. The
results for both topologies are mostly overlapping with some
small differences. The reduction percentage for the interior
switches in both topologies is in the high 90s. The gains
on Core switches in the fat-tree topology are slightly lesser
than the tree topology. This is expected because in fat-tree
the flows are balanced across 12 core switches, while they
all go through just 1 core switch in the tree topology. The
reduction percentage for ToRs in each topology is in the early
40s. This is about 8% smaller than the reduction obtained in
our 400 server topology. The reason for this difference is that
while there were only 10 servers-per-rack in the 400 server
topology, there are 40 servers-per-rack in the 11520 server
topology. Thus, each Switch has 40 downward facing ports in
use compared to only 10 in the previous case. This results in
a relatively bigger action space.

V. CASE STUDY - TRAFFIC ENGINEERING

In this case study, we consider some typical flow character-
istics within a data center. According to Kandula et al. [17] and
Benson et al. [6], most data center flows (80%) last less than
10s and in general 100 new flows arrive every millisecond.
They found that there are few long running flows (less than
0.1% last longer than 200s) contributing less than 20% of
the total bytes while more than half the bytes are in flows
that last no longer than 25s. Benson et. al. in [18] confirm
that the implications of the aforementioned statistics for traffic
engineering are that data center networks

1) Must scale to handle a large number of flows
2) Must accommodate both short and long lived flows

without making assumptions on the size
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Fig. 9. Compression achieved by SwitchReduce for fat tree (Portland) and
tree topologies

We have already discussed at length the explosion of switch
state with number of flows in the network. This problem is
further exacerbated by the fact that, as cited above, majority
of the flows are short lived and arrive in bursts with very
short inter-arrival times, followed by periods of dormancy. This
means that at any time, a switch has flow entries belonging to
flows that have recently expired (since they have not timed out
yet) while it is also trying to accommodate new flows. This
requires controller intervention to delete the old flow entries
which would lead to excessive controller involvement and
create processing bottlenecks at the controller threads as well
as bandwidth bottlenecks in the control channels connecting
the controller to switches. Alternately, it requires switches to
just wait (if they happen to run out of storage space) for
existing flow entries to time-out before they can add new
flow entries, or just use slower look-up memory (like software
tables) to store new flows.

SwitchReduce by design, as discussed in Section II, auto-
matically addresses this problem. The number of flow rules in
any switch is dictated by the number of unique actions taken
on flows passing through it and does not grow linearly with
number of flows. From the perspective of traffic engineering,
where one of the primary responsibilities of the controller is to
find optimal routes for new flows and hence the primary action
taken by switches on flows is forwarding, a SwitchReduce
enabled controller does not need to concern itself with switch
state while making a routing decision. This is because with
SwitchReduce, pushing a new flow through a switch will not
necessarily require adding a new flow rule. Even with reactive
flow installation instead of pro-active flow installation, once
the network has reached a ’reasonably busy’ state where some
traffic is flowing in all directions and therefore traffic is being
output to almost all ports of any switch, the entire set of
possible wildcard rules would have already been installed in
the switches. Thus routing a new flow through the network is
unlikely to require a new flow installation at any switch other
than its ingress switch.

In fact, like we mentioned in II-B, SwitchReduce is a very
practical way of pro-actively installing rules in the interior
switches of a network (or all physical switches of a network
in case the first hop switch or ingress switch is a vswitch).
This can be coupled with the topology discovery module of
the controller (like we do in our implementation in Section III).
When actual traffic arrives in the network, the controller only
needs to figure out the route for each flow and install a rule
at the ingress switch with the appropriate RouteHeader. In
essence, SwitchReduce gives the controller complete freedom
to choose the best possible path without worrying about
increasing the volume of flows being served by switches
lying along that path. Also, equally importantly, it limits the
involvement of the controller for flow installation to only the
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ingress switch. This means that there is no flow-installation
related control channel traffic in the interior switches which
prevents bottlenecks in both control channel bandwidth as well
as controller processing threads.

For long lived flows too, which contribute about 20% of
the traffic, SwitchReduce does not hamper performance in any
way. In fact, it gives the controller the freedom to choose multi-
path routing to speed up this flow without having to worry
about adding to switch state on each of the paths.

Lastly and most importantly, from a traffic engineering
standpoint, the controller might wish to re-route some flows to
constantly balance network load. It might need to examine net-
work state periodically and dynamically change the paths that
flows are taking [2]. This, however, is impractical in current
architectures as it requires too much controller involvement.
Not only does the controller need to figure out the new route,
it also needs to delete flows at multiple switches along the
original path and install flows at multiple switches along the
new path. With SwitchReduce, though, the controller doesn’t
even need to touch any switch other than the ingress switch
for dynamic re-routing of flows. It merely needs to re-write
the RouteHeader in accordance with the new route and the
intermediate switches will automatically forward this flow to
the new path. Thus the controller needs to merely modify the
flow rule at exactly one switch, and does not need to install
or delete any flows on any of the interior switches. This is
explained with the help of a figure 10

Consider a flow that is going from edge switch 1 to edge
switch 12. Initially, the controller chooses path 1 - 9 - 10 - 11
- 12 for this flow. However, for some reason, it later decides
to re-route the flow through 1 - 9 - 8 - 7 - 4 - 11 - 12 . In
the absence of SwitchReduce, the controller would first have
to delete the flow rules it has installed for this flow in switch
10 and modify the rule installed in switch 9. Further, it would
have to install new rules in switches 8,7 and 4. Thus there are
5 controller interventions that need to be performed. Again, if
the controller decides to re-route this flow through 1 - 2 - 3 -
4 - 11 - 12 , it would have to delete the rules in switches 9,
8, and 7, modify the rule in switch 1, and install new rules in
switches 2 and 3. Thus 6 controller interventions need to be
performed. If the controller was using SwitchReduce though,
the controller needs to perform just a single intervention for
each modification of flow path. It has to modify the flow rule
at the ingress switch only.
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VI. RELATED WORK

Several concerns around the idea of centralized flow-level
control [4] [19] in OpenFlow have been documented. Mogul et
al. [20] state that since OpenFlow rules are per-flow instead of
per-destination, each directly-connected host requires an order
of magnitude more rules than in traditional Ethernet lookup.
Greenberg et al. [17] report a 10:1 ratio of flows to hosts.

From a routing perspective alone, there are two works that
are conceptually similar to SwitchReduce. These are Multi
Protocol Label Switching (MPLS) [21] and SourceFlow [22].

MPLS provides a means to map IP addresses to simple,
fixed-length labels, and creates label-switched paths that make
high speed switching possible. A special label distribution
protocol(LDP) needs to be employed to exchange labels be-
tween the MPLS-enabled switches to convey labels that need
to be used. Packets are forwarded based on the label stacks
pushed onto them by the MPLS edge router. SwitchReduce on
the other hand leverages the centralized visibility and control
offered by OpenFlow to embed RouteHeaders onto packets
and avoids the need for any special distribution algorithms.
This makes it feasible to dynamically change the meaning of
RouteHeaders without disrupting traffic.

Chiba et al. [22] note in their work that OpenFlow action
space is much smaller than the flow space and therefore it is
advisable to not advisable to install per-flow rules in switches.
SwitchReduce also relies on this observation. However their
method reduces number of flow entries only on core switches
and not edge switches. Also, they don’t address the issue
of repetition of flow counters. Additionally, while they claim
their technique works with existing switches, switches need to
perform the added function of incrementing an index counter
and accessing the appropriate action from the action list.
Lastly the action list, which is carried as a header, can grow
indefinitely large resulting in potentially large overheads.

We provide an off-the-shelf OpenFlow solution and an
algorithm for reducing both match rule and flow counters
across the entire data center network, without requiring any
modification to commodity hardware. We also provide a feasi-
ble way of pre-populating rules in core switches of the network
with the aim of reducing controller involvement, control chan-
nel traffic and end-to-end latency. We also provide extensive
experimental results on a simulator to measure switch state
reduction.

VII. CONCLUSION

Flow-level granularity in OpenFlow comes at the cost of
placing significant stress on switch state size and controller
involvement. In this paper, we presented SwitchReduce - a
system for reducing switch state and controller involvement in
OpenFlow networks. SwitchReduce leverages central visibility
of OpenFlow to facilitate cooperation between switches. It
mandates that the number of flow rules be bounded by the
cardinality of the Action space. Furthermore, flow counters
for every flow may be maintained at only one switch in the
network. Our implementation of SwitchReduce as a NOX con-
troller application with software OpenFlow switches validates
its realizability. Our evaluation on a simulator with real traffic
traces demonstrated the potential reduction in switch state size
that can be obtained through SwitchReduce. We are currently
evaluating SwitchReduce on larger data center topologies with

real hardware. We are also working on handling failures and
topology changes.
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