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Abstract—Reputation mechanisms are widely used in online
networks to rank users or products, but despite their importance,
very few studies have been done or published on their real
behavior. In this paper, we study an Internet-deployed distributed
reputation mechanism called BarterCast that is specifically
designed for peer-to-peer file-sharing systems. The BarterCast
mechanism is based on building a weighted directed graph from
the data transfers that have occurred among the peers, and on
employing the Maxflow algorithm in this graph to evaluate repu-
tations. In this paper, we study this mechanism from the network
perspective and we provide a detailed analysis, which includes
such network topology measures as the degree distribution, node
interconnectivity, the clustering coefficient, community structure,
and distance measures. Besides, we study the geographical spread
and content sharing behavior of the system participants and
correlate the results with their connectivity in the network. We
interpret each evaluated measure in the scope of reputation and
file-sharing mechanisms and propose relevant implications and
prospective applications for future designs. All the measurements
are based on data that we have collected during two years
of crawling the Tribler file-sharing network, which employs
BarterCast as its reputation mechanism.

I. INTRODUCTION

Despite much interest in reputation systems over the last
few years, there are hardly any studies of the real behavior
of Internet-deployed decentralized reputation systems. In this
paper, we study the Internet-deployed distributed reputation
mechanism called BarterCast [1], which builds a graph struc-
ture for its operation, from a network science perspective,
and employ many network measures to understand its behav-
ior. BarterCast is used in the BitTorrent-based peer-to-peer
content-sharing system Tribler [2] to rank the peers based
on their sharing behavior. In this study, using a number of
datasets from a real operational environment, we build a
network of content-sharing activities. Employing this network,
we calculate a number of appropriate measures to comprehend
the network structure and the operational behavior of the
underlying reputation mechanism. We interpret each calculated
measure in the scope of reputation mechanism or content-
sharing system and provide an explanation of its implication.
For some of the measures we elaborate on their prospective
applications for further improving the reputation mechanism.

In BarterCast, peers exchange messages about their upload
and download actions, and they use the collected information
to evaluate the reputations of other peers. From the Barter-
Cast messages it receives, each peer builds a local weighted

directed graph with nodes representing peers and edge weights
representing amounts of transferred data. This subjective graph
is then used by each peer to calculate the reputation values of
other peers by applying the Maxflow algorithm to the graph,
interpreting the edge weights as “flows”.

To collect the required data, we started a Tribler network
crawler in September 2010, which still is running; Tribler is a
BitTorrrent-based peer-to-peer file sharing client that is used
for peer-to-peer file-sharing and video-on-demand services [2],
and that uses BarterCast to rank peers. The main task of the
crawler is to discover peers and to collect data transfer records
from them. Using the permanent identifiers of the peers we are
able to correctly group the collected records from different
peers and to generate a global network, which we call the
work-graph. Moreover, in the Tribler network, there are four
so-called super peer nodes which are used for bootstrapping.
We employ the data recorded by these super-peer nodes to
generate two sets of valuable information about peers. The
first of these sets contains the IP addresses of the peers, which
enable us to do a geospatial analysis of the network. The
second contains the content swarms peers have participated in,
which allow us to perform a content-based similarity analysis
of neighbor peers in the network.

We perform an analysis of the topological characteristics
of the work-graph, which include the degree distribution, the
nodes interconnectivity, the clustering coefficient, the com-
munity structure, and centrality and distance measures. The
degree analysis of the work-graph shows that, like social
network graphs, it has a long-tail power law distribution.
We test the hypothesis of it being obeying a power law and
check it against similar distributions. The interconnectivity
analysis shows that the graph has star-shape structures and
is far from a scale-free graph; this result is confirmed by
the low clustering coefficient of the graph. Complementary to
clustering coefficient, it is observed that the graph has strong
communities. Moreover, we observe that there is a strong
correlation between the node degree and the betweenness
and closeness centrality measures. This observation suggests
that node degree is a good approximation for these complex
measures. Finally, using the temporal graphs that we build
over time, we can observe how the diameter, the average path
length, and the density of the graph change over time. These
measures are covered in Section IV.

Complementary to the general topological analysis, in Sec-
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tion V, we present results on the geographical spread of nodes
at the granularity of ISPs, and we evaluate the correlation
of ISP co-location and having an edge (content sharing) in
the graph. Finally, in Section VI, we present our findings
about user upload and download behavior and measure the
content-based similarity of neighbor nodes in the graph. These
similarities are based on the complementary data that we have
about the content that peers have shared with others.

II. RELATED WORK

For years, social scientists have studied human relations
and have made interesting discoveries, e.g., the small-world
phenomenon by Milgram [3] and the partitioning social rela-
tions into strong and weak ties by Granovetter [4]. Recently,
due to the fast growth of online social networks, researchers
have put a lot of effort in studying the static and dynamic
properties of these networks. Kumar et al. [5] have studied
friendship relations in Flickr and Yahoo360, and they have
shown that these networks have a large Strongly Connected
Component (SCC). An analysis and comparison of the social
networks of Flicker, YouTube, LiveJournal, and Orkut by
Mislove et al. [6] confirms the power law, small-world, and
scale-free properties of these networks. Recently, the Facebook
network, due to its high popularity and size, has attracted
many researchers. Orthogonal to other studies, which are more
focused on general network properties, Viswanath et al. [7]
and Wilson et al. [8] have studied this network from the user-
activity and link-reliability perspectives. They have clarified
that despite the high number of links (friendship relations),
only a small portion of the links of a node are reliable,
meaningful, and useful for real-life applications.

Besides social networks, analyzing the structure of the Web
and Internet links has led to many interesting findings as well.
Analysis of the Autonomous System (AS) level of the Internet
by Mahadevan et al. [9] has revealed that the joint degree
distribution can characterize Internet connections. Falatous
et al.[10] have shown that the Internet topology follows a
power law degree distribution; a claim that has raised criticism
as well [11]. Besides the study of general network structures,
there are some studies on the geographical properties of the
Internet infrastructure [12], [13], which study the geographical
spread and node distances. Regarding the Web network, a
study of the Web links by Broder et al. [14] shows that links
have a “bow-tie” shape, with a large SCC and many small
groups of nodes connected in one-way to SCC.

Researchers have proposed wide applications of social
networks in other systems, e.g., defense mechanisms [15],
recommendation systems [16], reputation systems [17], and
many others. Despite many proposals only a few of them
have gone beyond design into a real application, and even
for those who reached that level, there is no real large-scale
study of their behavior. Our study is distinguishable from
similar works in two folds. First, we perform a thorough
analysis of a large scale and deployed mechanism from a
network perspective. Second, despite pure social network
studies, which only present a number of general measures, we

look at the calculated measures from the reputation mechanism
perspective and provide valuable hints for future designs.

III. THE BARTERCAST MECHANISM

The BarterCast mechanism belongs to a class of peer-
to-peer incentive mechanisms where a contributing peer is
rewarded by other peers in the network and direct compen-
sation is not expected. This mechanism is used in the Tribler
BitTorent client to rank peers according to their upload and
download behavior. In this mechanism, a peer whose upload
is much higher than its download gets a high reputation, and
other peers give a higher priority to it when selecting a content
bartering partner. In BarterCast, when two peers exchange
content, they both log the cumulative amount of transferred
data since the first data exchange along with their identities in
a BarterCast record. In Tribler, peers regularly contact other
peers in order to exchange BarterCast records.

From the BarterCast records it receives, each peer creates its
own current local view of the upload and download activity in
the system by gradually building its partial graph. The partial
graph of peer i is the weighted directed graph Gi = (Vi, Ei),
where Vi is the set of peers whose activities peer i has been
informed about through BarterCast records, and Ei is the set
of edges (u, v, w), with u, v ∈ Vi and with w the weight
representing the total amount of data transferred from u to v.
Upon the receipt of a BarterCast record (u, v, w), peer i adds
the edge u → v to Gi if it did not exists, otherwise it updates
the weight of this edge.

To calculate the reputation of an arbitrary peer j ∈ Vi at
some time, peer i applies the maxflow algorithm [19] to its
current partial graph to find the maximal flow from itself to
j and vice versa. Maxflow is a classic algorithm in graph
theory for finding the maximal flow from a source to a
destination node. In the original Maxflow algorithm, all paths
are considered in carrying flow, but in BarterCast paths longer
than h are ignored. This limited version of the algorithm is
called h-hops Maxflow. When applying Maxflow to the partial
graph, we interpret the weights of the edges as flows. If
Φh(x, y) is the h-hops maxflow from x to y, then the subjective
reputation of peer j at peer i is calculated as:

Ri(j) =
arctan(Φh(j, i))

π/2
× (1− arctan(Φh(i, j))

π/2
), (1)

and so Ri(j) ∈ [0, 1). If the destination node j is more than
h hops away from i, then its reputation at i is zero.

In our previous work [18], we presented a dissemination
mechanism for BarterCast records, that provides nodes a near-
complete view of the generated records in the network. Apply-
ing the targeted dissemination the partial graphs converge to a
graph that contains all the edges and nodes. In this paper, we
base our analysis on this graph that is called the work-graph.

IV. TOPOLOGICAL CHARACTERISTICS

In this section, we study the work-graph of BarterCast from
the network topology perspective, and we present a number of
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Fig. 1. The cumulative coverage of the connected components ranked
according to decreasing size.

relevant measures that help us to understand the connectivity
pattern of the nodes. For ease of reading, the terms graph and
network are used interchangeably.

A. The Undirected Work-graph

In the BarterCast work-graph, an edge indicates the amount
of data transferred from one peer to another, but from the
interaction perspective, its direction is not important. So, for
the following analysis we remove the edge directions, and
we add the weights if there are edges in both directions
between two nodes. The original directed graph contains of
73,201 nodes and 352,042 edges; after removing directions,
the number of edges is 283,973. In Section IV-C, we present
some measures on the edge and weight symmetry, but unless
stated otherwise, our analysis is based on the undirected
work-graph.

Furthermore, since most of the graph measures, like the
clustering coefficient, only make sense when the underlying
graph is connected, we consider the Largest Connected Com-
ponent (LCC) of the work-graph. In total there are 939 con-
nected components, out of which 780 contain only two nodes.
Figure 1 plots the cumulative percentage of the nodes covered
by the largest 20 connected components ranked according to
decreasing size. As the plot shows, 93.55% of the nodes belong
to the LCC. The number of nodes and edges in the LCC
are 68,315 and 265,033, respectively. In conclusion, since the
LCC is a good representative of the whole graph, we base our
analysis on the LCC unless stated otherwise.

B. Degree Distribution

The original work-graph is directed, and in such a graph
a node has three types of degrees: the in-degree, the out-
degree, and the total degree, which is the sum of in-degree
and out-degree. Figure 2 shows the degree-frequency plot
for these three types of degrees. Visually, after a threshold
degree of about 30, the plot looks like a straight line. Based
on this observation some researchers conclude that such a
distribution follows a power law, and interpret the graph as a
preferential attachment graph. But for two reasons this method
is not a reliable way to conclude that a distribution follows
a power law. First, due to high data (node degree) diversity,
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Fig. 2. The degree frequency of the LCC of the work-graph (both axes are
in log-scale).

many values appear once and the frequency values are not in-
formative. Secondly, using the frequency plot, non-power law
driven data, e.g. exponential, can be misleadingly interpreted
as power law [20]. Due to these limitations, using the CDF or
the Complementary Cumulative Distribution Function (CCDF)
is more common [20], [21], [9], [6].

Figure 3 shows the CCDF of the node degree in the LCC
of the work-graph. In this plot, it looks as if the tail of the
plot follows a power law distribution. A distribution is power
law if it is driven from p(x) ∝ x−α, where α is a fixed value
called the scaling parameter. Using the method proposed by
[22], we estimate the parameters α and xmin, where only
for values larger than xmin the power law holds. To estimate
the parameter α, first xmin is fixed at some value, and then
using maximum likelihood estimation and assuming that the
data are driven by a power law distribution, the value of α
is estimated. To find xmin, starting from the lowest possible
value, the Kolmogorov-Smirnov distance between the data and
the estimated distribution (for the selected xmin) is calculated.
The xmin that gives the lowest distance is chosen as the best
value. Applying these methods we estimate α = 2.88 and
xmin = 42.

So far, we were able to fit a power law distribution to the
degree values and to estimate its parameters, but whether it is a
good fit or not is still a question. To evaluate the quality of the
fit, using the estimated values for α and xmin, we calculate the
p-value of the goodness-of-fit test for power law, and compare

1e−04

1e−02

1e+00

1 5 10 50 500 5000
Degree

CC
DF

Fig. 3. The complementary cumulative distribution function (CCDF) of the
total degree in the LCC of the work-graph (both axes are in log-scale).
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TABLE I
VUONG LOG LIKELIHOOD RATIO TEST RESULTS

Poisson Log-normal Exp. Powerlaw+cut off Yule
R +2.78 +0.008 +3.30 +9.03e-6 -0.97
p 0.005 0.993 0.001 1 0.330

it with a threshold value. For the degree values the obtained
p-value is 0.067. In the conservative approach [22], the p-value
threshold for rejecting the power law hypothesis is set to 0.1,
but generally in a more lenient approach it is set to 0.05. In
conclusion, in the conservative approach the hypothesis that
the work-graph has a power law degree distribution is rejected,
but with the lenient approach this hypothesis is not rejected.

We now further analyze whether with the lenient appraoch,
other types of distributions, e.g., the exponential distribution,
give a better fit than the power law or not. The likelihood
ratio test is a simple test for comparing the likelihoods of a
dataset of belonging to a number of distributions. The sign of
the logarithm of the ratio of two likelihoods, R, can determine
which distribution is a better representative for the given data.
In practice, relying just on the sign of R is subject to random
fluctuations around zero. To make a solid decision we use the
method of Voung [23] that gives a p-value on the significant of
the sign of R, for small p-values the hypothesis that the sign
of R is due to random fluctuations is rejected, and vice-versa.
Table I presents the results of comparing the power law with
four other distributions; a positive R indicates that the power
law should be favored over the other distribution. As the table
shows, the power law is reliably favored over the Poisson and
Exponential distributions. For Yule, it seems that it is better
than power law, but like the Powerlaw+cut off the sign of R
is not reliable.

Summary & Implication: Our analysis of the degree
distribution of the work-graph shows that it has a long-tail
distribution. Depending on the application behind the network,
having a high degree can have different reasons. For example,
in a Web network, the popularity of a site can be the main
reason for having many links to it. In our work-graph, having
only a few very high-degree nodes means that a few peers are
responsible for most of the content sharing in the network.
Indeed, these are peers who stay online for a long time and are
discovered by other peers more often. On the other hand, many
low-degree nodes indicate the presence of many short-time
users or even free-riders. A study of why there are so many
short-time users will help to increase the quality of service in
the whole network. Finally, a non-random structure means that
the network is vulnerable to targeted strategic attacks on highly
connected nodes. If an attacker provides the highly connected
nodes with a contaminated content, then the content is spread
very fast in the network. This is a concern that should be taken
into account in future designs.

C. Node Interconnectivity
The degree distribution provides information on the in-

dividual connectivity of the nodes but it does not provide
information on the relation between the degrees of neighbor-
ing nodes. In this section we provide some results on one-

hop connectivity of the nodes as captured by the Average
Neighborhood Degree, the Assortativity, and the Rich Club
Community (RCC) metrics.

Consider the k×k Joint-Degree Distribiution (JDD) matrix
M = (mij), where k is the largest node degree and mij is the
number of edges that connect nodes with degree i to nodes
with degree j. Dividing M by the total number of edges gives
the probabilities that a randomly selected edge connects nodes
with degrees i and j. For large and sparse graphs, the JDD
matrix is highly sparse and not very informative. Instead, the
average neighbor degree of the nodes of degree x, knnk(x), is
a more informative statistic for sparse graphs. An increasing
knnk(x) is an indication of the tendency of higher degree
nodes to connect to other higher degree nodes and vice versa.
We plot knnk(x) in Figure 4, where due to its decreasing trend
it seems that higher degree nodes tend to connect to lower
degree nodes. A similar but more summarized metric than
knnk(x) is the degree assortativity of the graph, which takes
values between -1 and +1, values close to +1 indicating the
tendency of similar degree nodes to connect to each other and
vice versa. For our graph, the degree assortativity is −0.062.
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Fig. 4. The average neighbor degree of the graph (both axes are in log-scale).

The last metric for evaluating the connectivity pattern of the
nodes is densely connected core or rich club community [9].
A core is defined as a small group of well connected nodes
that connect the remaining nodes. In order to understand the
importance of the core nodes, we do a similar experiment as
Mislove et al. [6]. In this experiment, we remove a number
of the highest-degree nodes (a rich club) from the LCC and
count the resulting number of disconnected components; the
higher this number, the higher the importance of the removed
nodes. Figure 5 presents the fragmentation results of removing
different fractions of the high-degree nodes; it shows the
cumulative percentage of nodes included in the components
ranked according to decreasing size, with components of the
same size having the same rank (and counted multiple times in
the coverage). Especially for small sizes, there may be multiple
components. In this figure the right-most point of each curve
represents the single-node components. As can be observed,
for every removal ratio, almost all nodes either are part of
the LCC or they become single-node components. Such a
phenomenon occurs when there is a high number of star-shape
structures with the removal of the central, high-degree node

4



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

5

leaving many single-node components.

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Component rank

Cu
m

ul
at

ive
 %

 o
f n

od
es

Removal
 ratio

5e−05
1e−04
0.001
0.01
0.1

Fig. 5. The rich club community removal effect.

Summary & Implication: The knnk measure has a de-
creasing trend, which means that lower degree nodes and new
comers tend to connect to nodes that have many links. This
trend is similar to user connectivity in YouTube [6], which
according to the authors is due to the “celebrity” effect, where
popular users have many followers. A similar interpretation
holds for the Tribler network as well, since users with many
links have more content to share with others and they are
more often discovered by those who look for content. Also, a
decreasing knnk means a low likelihood of having a scale-
free graph [20]. This finding is confirmed by the degree
assortativity which similarly to the degree assortativity of the
Internet and Web networks is negative [24]. Notice that every
scale-free graph is power law but not vice versa.

Finally, the RCC analysis shows a connectivity of the
network that is very resilient against the removal of high-
degree nodes. For example, in the extreme case of removing
10% of the highest-degree nodes, still more than half of the
nodes remain in the LCC, which is in contrast to hub-like
graphs where highly connected nodes play a critical role in
connecting nodes. In conclusion, it seems that there are some
strong community structures in the network, and many nodes
are gathered around a few nodes.

D. Clustering & Communities
The degree distribution of a graph indicates the local

connectivity of nodes, and the average neighbor degree knnk
gives information on the connectivity of similar degree nodes,
but neither gives information on how the neighbors of a node
are connected among themselves. In this section we provide
results on the local clustering coefficients and the global
clustering coefficient, which indicate whether the neighbors of
nodes are tightly connected or not. Figure 6 shows the average
clustering coefficients of nodes with the same degrees in the
whole graph. The global clustering coefficient of the graph,
which is the average of all clustering coefficients, is 0.0066.

Besides the clustering coefficient, we can look for com-
munities in the graph. A community is simply a group of
nodes with high internal and low external connectivities [25].
Depending on the application behind the network, there can
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Fig. 6. The average clustering coefficient vs. the node degree (horizontal
axis is in log-scale).

be different reasons for the formation of communities, for
example, geographical locality, similar taste, and etc. Since
the number and the structure of communities are not known
in advance, we need a way to evaluate the quality of a group of
communities. Newman et al. [26] have introduced the concept
of modularity, which quantifies the quality of partitioning a
graph into communities. This measure is defined as:

Q =
1

2m

∑

ij

(
Aij −

kikj
2m

)
δ(ci, cj), (2)

where m is the number of edges, A is the adjacency matrix,
ki is the degree of node i, ci is the community id of i, and δ
is the Kronecker delta function. For modularity values close
to zero, the partitioning is meaningless, and values between
0.3 and 0.7 are reasonable for quality partitioning [27].

Finding community structures is closely related to the notion
of graph partitioning and hierarchal clustering, and there are
numerous algorithms for detecting communities [28], [29].
The proposed algorithms mainly vary in their computational
complexities, and only a few of them are appropriate for
graphs of the size of our work-graph. In this paper we use
four algorithms for detecting communities:

• Fast Gready (FG) [27], which is an efficient imple-
mentation of the hierarchal edge-betweenness community
algorithm of Newman et al. [25].

• Multi Level (ML), which is based on local optimization
of the modularity measure around a node [30].

• Spin Glass (SG), which is a simulated annealing heuristic
method to optimize the modularity measure [31].

• Label Propagation (LP), which is a near-linear algorithm.
First, it uniquely labels the nodes, then updates them by
majority voting among the neighbors of a node [32].

Figure 7, presents the induced community graphs along with
the number of communities and modularity values, obtained
by applying the above algorithms. In these graphs, each node
represents a community and an edge exists between two nodes
if there is at least one inter-community edge, i.e., an edge
between nodes in the work-graph from either community. The
size of the nodes and the width of the edges correlate with
number of nodes in each community and the number of inter-
community edges, respectively. As can be observed, the FG
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Fig. 8. The density of the length of the shortest paths.

algorithm gives the highest modularity measure but the number
of communities is too high. Considering both modularity and
the number of communities, the ML method gives the best
partitioning.

Summary & Implication: The decreasing trend of the
clustering coefficient in Figure 6 confirms the previous finding
of decreasing knnk, Section IV-C, that high-degree nodes play
a crucial role in connecting many of their neighbors. Due to
this phenomenon, the data exchange and presence of the high
degree nodes is important for the operation of the system.

Regarding the community structures, the main reason for
the formation of communities is that the work-graph grows
in time, and the nodes that belong to a community are those
nodes that were active in a specific period of time. When the
time passes, most of the peers leave the network, but a few
of them continue on sharing content with the new peers. In
network terminology, these peers act as a bridge between one
community to the next one(s), and since the number of such
long term active peers is not high they are not strong enough
to merge communities.

E. Distance Properties
We will now investigate the distance characteristics of

average path length and diameter of the work-graph. Figure
8 presents the probability density of the lengths of shortest
paths. It has a mean of 4.83 and 5.52 for the undirected
and directed graphs, respectively. In order to understand how
these measures change over time, we build temporal graphs
based on edges appearing in the network and calculate these
measures for them. A temporal study help us to understand
how these measures change over time and whether the concept
of densification [33] holds or not.

To measure the temporal features, starting from the first
day of crawling we build temporal graphs in different periods,
where the nodes and edges discovered in period n are added
to the graph of period n− 1. In our experiment, for the total
crawling period of two years we divide the records in 52 sets
of biweekly periods, and for each period we build a graph.
Figure 9 presents the diameter, the average path length, and the
density of the directed and undirected versions of the temporal
work-graphs, which are plotted against the number of nodes.
The density of a graph is the ratio of the number of edges
to the number of possible edges. As can be observed, despite
minor fluctuations, all these measures show a decreasing trend
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Fig. 9. The diameter, the average path length, and the density values of the
temporal graphs vs. the number of nodes (In Figure 9(c), since the difference
between the number of edges is not high we observer similar shapes).

over the long term. Besides, the undirected version of each
temporal graph has a lower diameter and average path length
than the directed version, but such a difference is not visible
for the density. The reason for this phenomenon is that there
are relatively few double edges between a pair of nodes than
the total number of edges, and when the direction is removed,
the density is not much affected.

Summary & Implication: The average shortest path of the
work-graph is very close to those of online social networks
[6], [21] and the AS-level Internet network [9]. Knowing the
average path length is useful, since in the reputation evaluation
process of BarterCast, the number of hops number in the
Maxflow algorithm can be based on it. In this case, since in
the final graph the directed average path length is 5.52, in the
Maxflow algorithm the number of hops can be set to 5 or 6.

LIke the graphs studies by Lescovec et al. [33], where they
have discovered densification effect on the studied graphs, we
also observe a similar behavior in our graphs. Figure 9(c),
plots the number of nodes versus the number of edges in the
temporal graphs in log-log scale. As it is observed there is
linear correlation between the log of the these two values,
and a linear regression fit shows the slope of 1.26, which is
greater than 1, and it means that the average degree of the
graph increases over time. Moreover, like the studied graphs
by Lescovec et al. [33], we observe that the diameter and the
average path length have a decreasing trend.
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(a) Fast Greedy (modularity= 0.84, #communities= 600) (b) Multi Level (modularity= 0.68, #communities= 58)

(c) Spin Glass (modularity= 0.59, #communities= 100) (d) Label Propagation (modularity= 0.23, #communi-
ties= 335)

Fig. 7. The community-induced graphs obtained through applying different community detection algorithms (nodes represent communities and edges indicate
inter-community edges in the work-graph).

F. Betweenness

The last general topological measures that we evaluate are
the betweenness and closeness centralities. The betweenness
centrality of a node is the number of shortest paths between
every pair of nodes that passes through the node, and it
measures how important the node is in connecting other
nodes. The closeness centrality is a measure of how a node is
located closely to other nodes. Figure 10 plots the average
normalized betweenness and closeness centrality measures
against the node degree. As can be seen, there is a strong linear
logarithmic correlation between the node degree and these
centrality measures, which makes the node degree a viable
approximation for the betweenness and closeness indices.

Summary & Implication: In our previous work [34], we
have shown that using the node with the highest between-
ness centrality as the start or end point in the Maxflow
algorithm can improve the reputation accuracy. A problem
associated with using this most central node is the high

complexity (O(|V ||E|)) for computing betweenness centrality
in unweighted graphs [35]. Although there are approximation
algorithms for this measure, but due to the high correlation
between the node degree and betweenness centrality, during
reputation evaluation process in BarterCast, we can easily use
the highest-degree node instead of the most central node.

V. GEOGRAPHICAL CHARACTERISTICS

In this section we consider the nodes in the work-graph
from the perspectives of Autonomous Region (AR) and Internet
Service Provider (ISP), and investigate the correlation of the
AR and the ISP of neighbor nodes. An autonomous region
is a country or a geographical region that according to the
IP-to-location mapping is considered as an independent body,
e.g., ”Virgin Islands of British”. To obtain the required locality
data we use the information collected by super-peer nodes
in Tribler. When a Tribler client starts, it contacts one of
the super-peer machines and gets a set of nodes to contact;
the contacted super-peer logs the peer information. Using the
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(a) Average betweenness centrality
(both axes are in log-scale).
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izontal axis is in log-scale).

Fig. 10. Average betweenness and closeness centrality vs. node degree.

TABLE II
COUNTRY AND ISP LEVEL TRAFFIC INFORMATION.

# AR intra-AR traffic ratio # ISPs intra-ISP traffic ratio
184 0.30 459 0.20

super-peer logged data we are able to find the IP addresses
of the peers and locate them at the granularity of ISP. For
mapping IPs to locations, we use the IP-to-location service
provided by MaxMind1. In total, we were able to detect nearly
75% of the peer locations. Using the location information
of the peers, we compute the ratio of the data exchanges
that happen inside the ARs or ISPs to the total traffic in
the network, which are presented in Table II. Besides, we
determine the AR and ISP assortativity measures in the work-
graph, which show a tendency of the peers to connect to peers
in the same AR or ISP. For the work-graph, the AR and ISP
assortativity values are 0.0085 and 0.039, respectively.

Summary & Implication: Considering the traffic ratios
presented in Table II, it seems that there is a tendency toward
having intra-AR and intra-ISP traffic. By further investigation
we observed that in a few countries like the USA, the UK, and
the Netherlands, the population of Tribler users is so high that
statistically encountering a peer in these countries high enough
to bias the ratio values. This argument applies to ISP ratio as
well, and some huge ISPs cover many peers. Therefore, using
the available traffic data we cannot confirm that there is a
strong correlation between being in the same AR or ISP and
doing a content exchange. Nevertheless, the positive AR and
ISP assortativity values indicate a tendency of peers to connect
to peers in the same AR or ISP, even though it is not strong.

VI. PEER BEHAVIOR AND SIMILARITY

In this section, we complement our previous findings about
the work-graph by analyzing it from the perspective of the
activity of peers. Moreover, using our complementary dataset
from the super-peers, we investigate the content-based simi-
larity of neighbor peers in the graph.

In the work-graph the directions and the weights of the
edges show the direction and the amount of the content sent
and received by a peer. Consequently, the sum of the weights

1http://www.maxmind.com

of the outgoing edges of a node shows its contribution to the
network, and dividing this value by the total amount of content
sent and received gives the sharing ratio of the node. Figure 11
shows the CDF of the sharing-ratio values, which vary between
the extreme situations of no uploading and only uploading.

0.0
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0.0 0.2 0.4 0.6 0.8 1.0
Sharing−raio

P[
X<
=x
]

Fig. 11. The CDF of the sharing ratio in the work-graph.

By using a complementary dataset about the activity of
peers, which contains the BitTorrent swarms peers have par-
ticipated in, we can derive the similarity between nodes in the
work-graph. These data are logged by the super-peers. Like
the locality information, we do not have the whole activity
of every peer, but we are able to extract this information for
nearly 80% of the nodes.

Based on the set of swarms of each peer and using the
Cosine similarity method [36], we study the correlation be-
tween having an edge in the graph and participating in a
common swarm. To investigate the relation between similarity
and having a common edge, we do a number of experiments
where we compare the similarity of neighbor nodes in the
work-graph with the similarity of neighbor nodes in random
isomorphs of this graph. Random isomorphs leave the structure
of the work-graph untouched, and nodes have different, but
the same number of, neighbors in each isomorph. Like for the
original graph, for each isomorph we calculate the similarity of
each node to its neighbors and average over each edge. Figure
12 presents the comparison of the CDFs of the similarity
values in the original work-graph and the average similarity
values obtained through 100 random isomorphs.

Fig. 12. The empirical CDF of the similarity of neighbor nodes in the work-
graph vs. the average similarities in the random isomorphs of the work-graph.

Summary & Implication: From Figure 11 we see that
nearly 12% of the nodes are purely passive (sharing-ratio = 0)
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and do not perform any work for the system, and that
nearly 4% are purely active (sharing-ratio = 1). The re-
maining nodes are divided nearly equally among passive
(sharing-ratio < 0.5) and active peers (sharing-ratio > 0.5).
Concerning the content-based similarity values, for nearly 80%
of the edges the Cosine similarity is roughly equal in the
original and the random graphs. For the remaining pairs of
neighbors, it is observed that the neighbor similarity in the
original graph is higher than the average similarity in the
random isomorph graphs. This means that in Tribler, peers
have a tendency to connect to similar peers.

VII. CONCLUSION

In this paper, through studying the BarterCast reputation
mechanism from the network science perspective we presented
a number of useful insights. In relation to the reputation calcu-
lation process in BarterCast, we conclude that if peers apply
5 or 6 hops Maxflow algorithm, they can reach significant
portion of the nodes in the network. Besides, instead of using
the node with the highest betweenness central value [34],
which is expensive to compute, peers can use the highest-
degree node as a replacement. Concerning the structure of the
network, our measures show that it has a power law degree
distribution, a relatively low diameter with strong community
structures. Moreover, we observed that there is a positive
tendency toward interaction with similar taste peers.
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