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Abstract—In practice most service-provider and enterprise
networks are designed incrementally over time. This ongoing
and heuristic design process is driven by changes in the un-
derlying objectives and constraints (the “environment”). We
first formulate the incremental network design approach as the
constrained minimization of a certain modification cost, and
compare that with the classical design approach in which the
objective is to minimize the total network cost. We evaluate the
cost overhead and the evolvability of incremental designs under
two network expansion models (random and gradual), evaluating
incrementally designed networks in terms of cost, performance
(propagation delay) and robustness. Even though incremental
design has some cost overhead, this overhead does not increase as
the network grows. In the case of mesh networks, the incremental
design process leads to networks with larger link density, lower
average delay and improved robustness.

I. INTRODUCTION

Complex technological systems, such as transportation and

communication networks, manufacturing processes, micropro-

cessors and computer operating systems, are rarely designed

“from scratch.” Instead, they are often subject to an evolution-

ary process in which existing designs are incrementally mod-

ified every time there is a change in the desired functionality

or in the underlying constraints and objectives (the “design

environment”). There are numerous examples and they span

every engineering discipline. For instance, consider a wide-

area communication network that expands over time to reach

new locations, increasing its capacity depending on the offered

load, and occasionally providing new services.

Even though the optimized design of communication net-

works has been studied in depth for several decades, the

literature rarely considers that the design process is often

incremental. Instead, it is typically assumed that the network

is built tabula rasa. The corresponding problems are typically

formulated as optimizations with multiple constraints, none

of which is imposed by an earlier network however. In the

relatively few previous studies that consider evolving networks

(see section VIII), the focus has been on design algorithms

and the corresponding optimization problems, rather than to

compare incremental and optimized designs.

In this paper, we attempt a specific instance of the pre-

vious comparison in the context of communication network

topology design. We ask the following question: how does

This research was supported by the National Science Foundation under
Grant No.0831848.

an incrementally designed network topology compare to an

optimized topology, when both networks interconnect the same

set of locations under the same reliability and performance

constraints? We are interested in comparisons that relate to

cost, performance and topological robustness. We further limit

(admittedly in a simplified manner) how the design environ-

ment changes with time: the set of interconnected network

locations gradually expands at each time step. In an earlier

publication, we focused on ring networks, where some of the

previous questions can be answered analytically [2]. Here, we

focus on general mesh networks, and the analysis is mostly

based on numerical results.

This network topology design problem allows us to examine

some fundamental questions about incremental versus opti-

mized designs. First, how can we mathematically formulate

the incremental design problem, and how is that formulation

different from more traditional optimized topology design

formulations? How costly is it to modify an existing design,

relative to the cost of re-designing the network from scratch?

What is the “price of evolution”, i.e., the cost overhead of an

incremental design relative to the corresponding optimized de-

sign? When is it better to abandon incremental changes on an

existing topology and start fresh? Does the incremental design

process perform better when the design environment varies

in a gradual manner as opposed to randomly? How does an

incremental network design compare with the corresponding

optimized design in terms of performance (propagation delay

in this context)? How do the two networks differ in terms of

topological properties, and in particular in terms of robustness

to failure?

Section II presents a formulation for the optimized and

incremental design problems. Section III provides a summary

of the earlier results for ring networks, as a reference point.

Section IV describes the optimized and evolved mesh network

design algorithms. Section V compares the incremental and

optimized design processes in terms of cost and performance

under a single-node expansion model. Section VI examines

a faster expansion model in which multiple nodes are added

simultaneously. Section VII compares the topological robust-

ness of the optimized and evolved networks in terms of a node

centrality metric. We review the related work in section VIII

and conclude in section IX.
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II. FRAMEWORK AND METRICS

In this section, we present more formally the optimized and

incremental design problems. Even though these formulations

are quite general, in the rest of the paper we apply them in

the context of topology design for communication networks.

As in any design problem, there is a desired function (e.g.,

construct a communication network to interconnect a given set

of locations), some design elements (e.g., routers, wide-area

links), constraints (e.g., related to performance and robustness)

as well as an objective (e.g., to minimize the total cost of

the required design elements). The design process aims to

use the appropriate elements so that we achieve the desired

function, while satisfying the constraints and meeting the given

objective. It is often assumed that this process is conducted

only once in an otherwise static environment. Instead, we

consider the case that the design takes place in a dynamic

environment. In the context of communication networks, the

network may expand to new locations, the cost of design

elements may fluctuate, or the constraints may become more

stringent over time. We consider a discrete-time model and

we refer to the k’th time epoch as the k’th environment. At a

given environment k, we assume that all inputs of the design

problem are known and constant.

How can we design a communication network in such a dy-

namic environment? We identify two fundamentally different

approaches. In the optimized approach we aim to minimize in

every environment the total cost of the network subject to the

given constraints. In the incremental approach we aim instead

to minimize the modification cost relative to the network of the

previous environment, again subject to the given constraints.

We refer to the former network as optimized and to the latter

as evolved.

More rigorously, let N (k) be the set of acceptable networks

at environment k, i.e., networks that provide the desired

function and meet the given constraints at environment k. The

cost of a particular network N ∈ N (k) is C(N). C(N) is the

sum of the costs of all design elements in N . We assume that

there are no other costs associated with N ; for instance, there

is no monetary cost to compute the design or to interconnect

its elements.

In optimized design, the objective at each environment k is

to identify an acceptable network Nopt(k) from the set N (k)
that has the minimum cost Copt(k),

Copt(k) ≡ C(Nopt(k)), Nopt(k) ≡ arg min
N∈N (k)

C(N). (1)

If the optimized network is not unique, we break ties with

secondary objectives (for instance, minimize the total number

of links). Designing such networks is computationally in-

tractable (NP-hard), and so they are often solved heuristically,

approximating the previous optimization objective. For this

reason, we do not refer to Nopt(k) as optimal but as optimized.

The former would be the actual solution to the previous

problem if we could compute it; the latter is the best solution

we can compute given a certain design heuristic. We present

our optimized design algorithms in section IV.

In the incremental design approach, on the other hand,

we design the new network Nevo(k) based on the network

Nevo(k−1) from the previous environment k−1. The objective

of the incremental design process is to identify an acceptable

network N(k) ∈ N (k) that minimizes the modification cost

Cmod(Nevo(k−1);N(k)) between networks Nevo(k−1) and

N(k). For simplicity, we denote the previous modification cost

as Cmod(k).
To define the modification cost precisely we first need to

answer the question: what should we do with design elements

that are present in Nevo(k− 1) but not in N(k)? We identify

three options. First, we keep them active in N(k) even though

they are not necessary - this is the Ownership option. Second,

they can be removed from N(k) (even though they could be re-

used in a future environment) - this is the Leasing option. The

third option is that there is a Surplus S(k) of design elements

that have been purchased prior to environment k but are not

needed in N(k). Any design elements in the surplus can be

moved later back to the network at zero cost. The ownership

option increases the cost of the evolved network relative to the

surplus option, while the leasing option increases the modi-

fication cost relative to the surplus option. In the rest of this

paper we focus on the surplus option, which is more common

in practice and conceptually interesting; the ownership and

leasing options are studied in the extended version of this

paper.www.cc.gatech.edu/∼sbakhshi/evodesign extended.pdf

In the presence of a surplus, the modification cost Cmod(k)
is defined as the cost of new design elements that are needed

in N(k) but are not present in Nevo(k − 1) or at the surplus

S(k−1). Formally, Cmod(k) is the cost of the design elements

in the set

N(k) \ [Nevo(k − 1) ∪ S(k − 1)] (2)

slightly abusing the notation N(k) to also refer to the set of

design elements in the network N(k). Similarly, the surplus

at environment k includes the design elements that are present

in Nevo(k − 1) but are not present in N(k),

S(k) = [Nevo(k − 1) ∪ S(k − 1)] \N(k). (3)

Let Csrp(k) be the total cost of all design elements in the

surplus at environment k.

With the previous definitions, we can now formulate the in-

cremental design process as a minimization of the modification

cost across all acceptable networks:

Cevo(k) ≡ C(Nevo(k)), Nevo(k) ≡ arg min
N∈N (k)

Cmod(k)

(4)

The evolved network Nevo(k) may not be unique in general.

Ties are broken by considering a secondary objective: if two

networks minimize the modification cost, select the network

with the minimum total cost.In our computational experiments,

two modification costs are rarely equal because link costs are

based on distance and they are real numbers. As in the case of

optimized design, we compute the solution of the incremental

design problem with a heuristic, described in section IV.
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The cost of the evolved network at environment k consists

of three terms: a) the cost of all design elements at the evolved

network and at the surplus at enviroment k − 1, b) plus the

cost of any newly purchased elements at environment k, c)

minus the cost of any remaining elements at the surplus at

environment k. Mathematically,

Cevo(k) = Cevo(k−1)+Csrp(k−1)+Cmod(k)−Csrp(k) (5)

for k ≥ 1. We assume that the initial evolved network and its

cost Cevo(0) is known, and that the initial surplus is empty

(Csrp(0) = 0). Expanding (5), we can write the cost of the

evolved network as:

Cevo(k) = Cevo(0) +

k∑

i=1

Cmod(i)− Csrp(k). (6)

Thus, the cost of the evolved network at environment k is the

cost of the initial network plus the cost of all design elements

that were purchased in the last k environments, minus anything

that remains in the surplus at time k.

A. Metrics

We now introduce three metrics to compare a sequence of

optimized and evolved networks.

First, the cost overhead v(k) of the evolved design Nevo(k)
relative to the corresponding optimized design Nopt(k) at

environment k is:

v(k) =
Cevo(k)

Copt(k)
− 1 ≥ 0 (7)

where the inequality is expected from the definition of

Copt(k). What is more important however is whether the cost

overhead of the incremental design process increases with

k, i.e., whether the evolved networks become increasingly

more expensive compared to the corresponding optimized

networks. If that is the case, the incremental design process

would diverge over the long-term towards extremely inefficient

designs. The reader should note that the cost overhead metric

is different than the well-known approximation ratio in online

algorithms.

Second, the evolvability e(k) is defined as:

e(k) = 1− Cmod(k)

Copt(k)
≤ 1. (8)

The evolvability represents the cost of modifying the evolved

network from environment k − 1 to k, relative to the cost

of redesigning the network “from scratch” at time k. High

evolvability, close to 1, means that it is much less expensive to

modify the existing network than to re-design a new network.

On the other hand, when the evolvability becomes negative it

is beneficial to stop the incremental design process and design

a new optimized network.

Third, the surplus overhead r(k) is defined as:

r(k) =
Csrp(k)

Cevo(k)
≥ 0. (9)

The surplus overhead quantifies the cost of design elements

that have been previously purchased but are now left unused,

relative to the current cost of the evolved network. An in-

cremental design process that leads to a gradually increasing

surplus overhead would be inefficient in terms of its cumula-

tive cost over time.

B. Expansion models

We consider only one way in which the environment can

change with time: expansion. Specifically, the set of locations

that the network has to interconnect at any time k is increasing

with k. This is probably the most natural way the environ-

ment can change with time in the context of communication

networks.

In the simplest form of expansion, the network size in-

creases by only one node at each environment; we refer to

this as single-node expansion.

We also consider a multi-node expansion scenario in which

the network size increases once by a multiplicative factor ρ,

which we refer to as expansion factor. Specifically, if the

network size increases from n nodes to n + m nodes, the

expansion factor ρ is

ρ =
n+m

n
≥ 1. (10)

We compare two expansion models: random and gradual.

In both models the set of all possible locations L is the same.

The locations are randomly placed on a bounded region of

the Euclidean plane. The two expansion models differ in how

they select the new locations that the network will expand to.

In random expansion, the new locations are selected randomly

from L. In gradual expansion, we select iteratively each of the

new locations from L so that it is the closest location to either

one of the existing nodes in network or to any new location

we have added to the network.

We choose to study these two expansion models because

they represent two qualitatively different ways in which the

environment changes with time. In random expansion, the new

locations can be anywhere and so it may be costly for the

incremental design to adjust the previous network with only

minor modifications. In gradual expansion, the environment

changes in “smaller steps” because the new locations are

as close as possible to nodes of the existing network. In

other words, random expansion represents a more challenging

dynamic environment in which “anything can happen” while

the gradual expansion model represents a more predictable

environment.

III. RING NETWORKS

In this section, we summarize the results of the first part of

this work [2], mostly for completeness and for comparison

with the mesh network results. Ring networks are widely

used mostly in metropolitan-area networks, where the delay

constraints are less stringent, as they are robust to single-node

failures (two node-disjoint paths exist between any pair of

nodes) and they are typically less costly than mesh networks.

In the incremental ring design process, the minimum modi-

fication cost under single-node expansion can be computed as

follows. Suppose that the existing ring Nevo(k − 1) has size

3
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n and we add a single extra node z at time k. The minimum

modification cost will result if we connect z to two adjacent

nodes x and y of Nevo(k − 1), such that

Cmod(k) = min(x,y)∈Nevo(k−1)(||z − x||+ ||z − y||) (11)

also removing the link (x, y).This process is illustrated in

Figure 1(a).

In the case of multi-node expansion, we use an iterative

heuristic that aims to minimize the modification cost. Suppose

that the existing ring Nevo(k− 1) has size n and we add a set

Z of more than one new nodes at time k. In each iteration,

we select the node z from Z that minimizes the expression

(11), connect z to the existing ring as in the case of single-

node expansion, and then move z from Z to the set of nodes

in Nevo(k− 1). This process is illustrated in Figure 1(b). The
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Fig. 1. Connecting new nodes to an existing ring: (a) single-node expansion,
(b) multi-node expansion (we show the order in which nodes are connected).

detailed derivations for the case of ring networks can be found

in [2]. Here, we only summarize the key results for various

ring expansion types in Table-I. The notation x ∼ f(n) means

that x tends to become proportional to f(n) as n increases.

The results for multi-node expansion assume that the number

of new nodes m is much lower than the number of existing

nodes n (i.e., ρ is close to 1).

IV. MESH NETWORK DESIGN

We now summarize the algorithms that we use to design

optimized and evolved mesh networks. A detailed descrip-

tion (pseudocode) of the two algorithms is included in the

extended version of this paper.www.cc.gatech.edu/∼sbakhshi/

evodesign extended.pdf

In terms of reliability, the design constraint is that every

pair of nodes should be connected through at least two node-

disjoint paths, the primary and the secondary. The primary

path is the path with the minimum propagation delay, i.e.,

the shortest path when the link cost is equal to the link’s

propagation delay.We assume that the propagation delay of a

link is proportional to its straight-line length on the Euclidean

plane. The secondary path is also the shortest path, but after

we have removed the nodes that participate in the primary

path (except the source and destination nodes). In terms of

performance, the constraint is that the propagation delay of

both paths should be less than a given threshold D. We say

that a network is acceptable if it meets the reliability and

performance constraints for every pair of nodes. Note that

depending on the node distances and the threshold D an

acceptable network may not exist.

Given a set of locations that we need to interconnect, we

should only consider the cost of links (edges). The routers

(nodes) introduce the same cost in optimized and evolved

networks, and they can be ignored. We assume that the cost

of a link is proportional to its length. That cost is typically

much larger than the cost of the router interfaces at the two

terminating points of the link, it usually does not depend on

the capacity of the link, and it increases roughly linearly with

distance (at least for transcontinental links).

Because the problem of minimum-cost topological design

for mesh networks with reliability and delay constraints is NP-

Hard [11], we rely on heuristics. Even though there are some

approximation bounds for special networks, mostly trees, we

are not aware of such bounds and approximation algorithms

for general mesh networks under the previous design con-

straints. Our objective is not to develop new network design

algorithms but to compare optimized with evolved designs,

and so we use two rather simple algorithms referred to as

OPT and EVO. Both algorithms are probabilistic and iterative,

they are quite similar in terms of how they add and remove

links, but they differ in their objective function. Additionally,

the EVO algorithm makes use of surplus links.

In the OPT algorithm the objective function is to minimize

the total network cost, i.e., the sum of all link costs. In the

EVO algorithm, the objective is to minimize the modification

cost relative to the previous network, re-using any required

surplus links.If the link between nodes X and Y is in surplus

at environment k, those two nodes were connected at an earlier

environment but the link between them is not required at

environment k and so it is not “lit” in the corresponding

network. In EVO, the modification cost is the total cost for

all new links that are required in the evolved network. That

cost does not include the cost of existing links in the previous

network, or any surplus links that are re-used in the new net-

work. In both algorithms, we use the same stopping criterion.

Because the algorithms are probabilistic, each iteration may

result in a different acceptable network (if such a network

exists). If the new network is not better, in terms of the

optimization objective of each algorithm, than the best network

that has been computed up to that point, we move to the next

iteration. The algorithms terminate if we cannot improve the

optimization objective of each algorithm for a number (10) of

successive iterations.

Each iteration of the OPT algorithm aims to find an ac-

ceptable network. At the end we select the network with

minimum total cost among all designed acceptable networks.

Each iteration has two phases. In the first phase, the algorithm

adds links probabilistically, in order of increasing cost, until

an acceptable network is computed. In the second phase,

the algorithm attempts to remove as many existing links as

possible, in order of decreasing cost, as long as the network

remains acceptable. That stage is also probabilistic. The pre-

vious process starts from an optimized ring that interconnects

all given locations, computed using the Concorde TSP solver

4
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Expansion type Cmod Cevo Copt 1− e(n) v(n)

Random Single Node ∼ 1
√

n
∼

√
n ∼

√
n ∼ 1

n
∼ constant

Gradual Single Node ∼ constant ∼ n ∼ n ∼ 1

n
∼ constant

Random Multi Node ∼ m/
√
n - ∼

√
n+m ∼ ρ−1

√
ρ

∼ ρ−1
√

ρ

Gradual Multi Node ∼ m× constant - ∼ n+m ∼ 1− 1

ρ
∼ 1− 1

ρ

TABLE I
SUMMARY OF RING RESULTS

[6].

We found empirically that the two probabilities padd and

pdel do not have a strong impact on the resulting minimum

network cost, as long as they are between 0.8 and 1; we use

padd=pdel=0.9.

The EVO algorithm is similar to OPT in the way it adds

and deletes links, but with three important differences. First,

EVO connects the set of new nodes to the previous network

using the iterative process; recall that that algorithm aims to

connect each new node to the existing network introducing

the lowest modification cost. Second, EVO attempts to re-use

surplus links as much as possible so that we minimize the

cost of new links that must be acquired at each environment.

Third, EVO has two link deletion phases. It first removes

(probabilistically) new links that are not necessary in order

of decreasing cost. Any link deletions in this phase reduce the

modification cost. Then, it removes (again, probabilistically

and in order of decreasing cost) existing links that are not

necessary – those links become part of the surplus. Any link

deletions in this phase do not reduce the modification cost,

but they reduce the cost of the evolved network. Note that the

latter is a secondary objective, and it is pursued only after we

have reduced the modification cost as much as possible. We

use the same values for padd and pdel as in OPT.

V. SINGLE-NODE MESH EXPANSION

We now present computational results for mesh networks

under single-node expansion. We focus on comparisons be-

tween optimized and evolved networks, as well as between

random and gradual expansion.

The network expansion process is performed as follows. We

consider a rectangular area of length 3000 and width 1500

(roughly the aspect ratio of the continental US) and 500 po-

tential locations in that area. We start from a randomly chosen

location and in each step we grow the network (according to

the random or gradual expansion model) by adding one more

location to the network. The optimized and evolved networks

always interconnect the same set of locations. The largest

network consists of 60 locations - this is a realistic scale for the

backbone of a nation-wide service provider. The experiments

are repeated 20 times, and we report 90% confidence intervals

for all results.

The delay bound is set to D = 1.3 × d, where d is the

length of the diagonal of the previous rectangle. With this

delay bound, the designed networks are sparse (the number of

links is typically less than twice the number of nodes), which

is also a characteristic of physical-layer backbone connectivity

in practice [7]. Further, with this value of D we can always

compute an acceptable network using the algorithms of the

previous section.

We have also experimented with other delay bounds be-

tween 1.2 × d and 2.5 × d, without observing significant

qualitative differences. As D increases, the resulting networks

get sparser and after a certain point they become rings. As D
approaches d, on the other hand, it becomes likely that there

are no acceptable networks for a given set of locations or the

networks become unrealistically dense.

The costs of the optimized and evolved networks for random

and gradual are shown in Figure 2(a). We have confirmed that

these costs scale as
√
n in the case of random expansion, and

as n in the case of gradual expansion (the regression lines are

omitted for clarity). Interestingly, these are the same scaling

expressions with the case of ring networks [2].

Even though there is significantly higher variability in

mesh networks. Specifically, the modification cost decreases

as 1/
√
n under random expansion, and it remains practically

constant under gradual expansion (Figure 2(b)). All previous

costs are higher in random than in gradual expansion. This is

because gradual expansion leads to much shorter links (Figures

3(a) and 3(e)).

In terms of cost overhead, the scaling analysis for rings [2]

predicts that v(n) should not increase with the network size,

at least for large values of n. Figures 2(d) and 2(e) show the

cost overhead for mesh networks under random and gradual

expansion, respectively. The variability across different expre-

riments is large, and so we use the non-parametric Mann-

Kendall hypothesis test for trend detection. Indeed, when we

focus on the larger values of n, say n > 20, the test cannot

reject the null hypothesis that the cost overhead shows no trend

(p-value = 0.36 expansion and 0.34 for gradual expansion).

So, we expect that the cost overhead does not increase under

single-node expansion, even in the case of mesh networks. The

cost overhead is significantly lower under gradual expansion

than under random expansion; gradual expansion leads to

networks that are much closer to optimized, in terms of cost,

than random expansion.

Figures 2(d) and 2(e) also show the evolvability under

random and gradual expansion. The evolvability increases fast

in both cases until it becomes approximately one. So, it is

less costly to incrementally modify an existing network that

to re-design it from scratch.

The surplus overhead is shown in Figure 3(b). There is a
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Fig. 2. Results for mesh networks under random and gradual single-node and multi-node expansions.

decreasing trend under both random and gradual expansions.

The fact that the surplus overhead does not increase means

that the surplus does not become increasingly more costly

relative to the cost of the evolved network. If that was the case,

the evolved network would gradually accumulate a “baggage”

of unused links with increasing cost relative to the cost of

the network itself. The opposite happens: even though the

cost of the surplus increases in absolute terms, it decreases

relative to the cost of the network. It should be noted, however,

that the surplus overhead can be significant in absolute terms,

especially in the first few environments. For instance, in the

first ten environments the average surplus overhead is often

as high as 3-5, meaning that the total cost of surplus links is

3-5 times higher than the cost of the links that are actually

“lit.” This implies that many of the links that are added early

in the expansion process quickly turn out to not be necessary

and they are moved to surplus.

A. Performance comparisons

We have also compared the performance of evolved and

optimized networks in terms of the path propagation delay

metric. Which networks give lower-delay paths and why?

When there are no failures, each (directed) pair of nodes

communicates through its primary path. Figure 3(c) shows the

ratio of the average primary path delay between the optimized

and evolved networks.

The key observation here is that, under random expansion,

evolved networks have a significantly lower average path delay

than the corresponding optimized networks. After the network

size has reached about 20 nodes, the primary path delay in

evolved networks is about 50%-70% of the primary path delay

in optimized networks.

There are two factors that contribute to path delays: the

individual link delays and the number of links in each path

(the path hop-count). The average link delay is only slightly

higher in evolved networks compared to optimized networks

(Figure 3(a)). The average primary path hop-count, however,

is significantly lower in evolved networks (Figure 3(d)). This

is because evolved networks have few nodes with large degree

(hubs), as shown in section VII. Those nodes appear in

a large fraction of primary paths, providing interconnection

“shortcuts” for many pairs of nodes. Optimized networks, on

the other hand, do not have hubs (see section VII) and their

average primary path hop-count is about twice as large (for

n > 20) compared to evolved networks.

The previous performance advantage of evolved networks

does not hold, however, under gradual expansion (Figure 3(a)).

In those evolved networks, the effect of the lower average path

hop-count is smaller in magnitude, and it is offset by a slightly

higher average link delay relative to optimized networks.

VI. MULTI-NODE MESH EXPANSION

In this section, we consider multi-node expansion in mesh

networks. An expansion factor ρ means that the network

expands at a single environment from an initial size of n nodes

to ⌊ρ n⌋ nodes. In the following experiments, n=15 nodes.

The initial evolved network (before the multi-node expan-

sion) is designed using single-node expansion until it reaches

n nodes. We focus on the effect of ρ on the evolvability e(ρ)
and cost overhead v(ρ).
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Fig. 3. Mesh network properties under single-node expansion.

Figure 2(c) shows the evolvability under random and grad-

ual expansion as ρ increases. The evolvability decreases with

ρ, and the decrease is faster under random expansion. The

critical expansion factor ρ̂ at which the evolvability becomes

zero under random expansion is larger than four. Thus, at

least based on these computational results, it is less costly

to modify the existing network incrementally than to redesign

it from scratch if the network size is increased by less than

a factor of four. On the other hand, the evolvability under

gradual expansion remains positive in the range of network

sizes that we could design. It is an open question whether the

evolvability can ever be negative under gradual expansion.

Figure 2(f) shows that the cost overhead increases with ρ
under both random and gradual expansion. The latter leads to

significantly lower values. The increase of the cost overhead

is concave under both random and gradual expansion, and it

does not exceed 100% when ρ is less than four, at least in

these computational results.

The scaling expressions that were derived for ring networks

[2] assuming that ρ is close to one also give accurate regression

curves for mesh networks (when ρ < 3.5). Recall however

that these expressions should not be used to examine the

asymptotic behavior of the evolvability or cost overhead as

ρ increases.

VII. CENTRALITY AND ROBUSTNESS

The generated networks are robust to single node failures

because they have two node-disjoint paths (primary and sec-

ondary) between each pair of nodes. We could compare the

robustness of the designed topologies by considering multiple

node or link failures. We rely instead on a network analysis

approach that is based on the node betweenness centrality met-

ric [9]. Specifically, let us define the Betweenness Centrality

of a node (node-BC) as the fraction of primary paths that

traverse that node, among all primary paths in the network.

The nodes with the highest BC values can be thought of as

the network’s most critical components; if they are somehow

perturbed (without necessarily failing), the impact on the entire

network will be more severe. We can compare the robustness

of two networks X and Y that have the same number of nodes

(and thus the same number of primary paths) using the BC

metric. If the average node-BC across all nodes in X is higher

than in Y, network X is more susceptible (or less robust) to

node perturbations than network Y.

In the following, we compare the robustness of evolved and

optimized networks under the single-node random expansion

model. Figure 4(a) shows the empirical CDF of the BC metric

across all nodes in networks of size n=50. These empiri-

cal CDFs are constructed from 20 independently generated

networks (thus, the sample size is 1000 node-BC values).

Note that the nodes of the optimized network have higher

betweenness centrality than the nodes of the evolved network,

at least when the BC is less than 20%. The average node-BC

is 0.15 in optimized networks and 0.10 in evolved networks.

So, the expectation is that an evolved network will be more

robust to node perturbations than an optimized network of the

same size.

There is an interesting difference between the two networks

however, which is not evident in the previous CDFs. Fig-

ure 4(b) shows a scatter plot for the node degree and node-
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Fig. 4. Robustness results under single-node random expansion (n=50).

BC in the 20 evolved networks, while Figure 4(c) shows the

corresponding scatter plot for the 20 optimized networks. In

the evolved networks, there is a strong positive correlation

(Pearson’s correlation coefficient: 84%) between node degree

and node-BC; there is no significant correlation in optimized

networks (Pearson’s correlation coefficient: 11%). In other

words, in the evolved networks, the most critical nodes (high-

est BC values) are also the nodes that have the largest number

of connections; this is not the case in optimized networks.

The previous observation implies that even though evolved
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Fig. 5. Degree distribution of evolved and optimized networks.

networks are more robust to random node perturbations than

optimized networks, they can be more fragile to perturbations

that affect those higher-degree nodes. This is similar to a well-

known finding about scale-free networks generated using the

preferential attachment model [1]: those networks are robust

to the failure of randomly selected nodes but are fragile to the

failure of high-degree nodes, referred to as hubs. We cannot

examine whether the evolved network topologies are also

scale-free because of the computational complexity involved in

designing such networks with thousands or millions of nodes.

We can ask, however, whether evolved networks tend to have

hubs or not.

Specifically, we can identify hubs using the theory of

random graphs. In that network model, the node degree follows

the binomial distribution B(n, p) where n is the number of

nodes and p is the probability that an edge exists between two

nodes (i.e., n p is the average node degree). For each value

of n, we measure the average node degree for the generated

evolved and optimized networks. Then, we identify as hubs

those nodes that are unlikely (less than 5% probability) to

appear with the same or higher degree in a random graph of the

same network size and average degree. In evolved networks,

the probability that a network includes at least one hub is

about 20%. On the contrary, optimized networks do not appear

to have hubs; the corresponding probability is less than 2%.

To further understand the topological differences between

evolved and optimized networks, we also compare the degree

distribution of evolved and optimized networks (see Figure 5).

In evolved networks, about 4% of the nodes have a degree

of eight or more; the corresponding percentage is 2% in

optimized networks and there are no nodes with degree higher

than eight. Additionally, the percentage of nodes with only

two links (the minimum degree that is necessary to satisfy the

reliability constraint) is 38% in evolved and 23% in optimized

networks. In other words, the evolved networks also have a

more skewed degree distribution; the skewness of the degree

distribution is 1.2 in optimized and 1.5 in evolved networks.

Why is it that the incremental design process creates topolo-

gies that have hubs? Recall that the evolved network at

environment k is generated from the corresponding network at

environment k−1, also re-using “for free” any surplus links of

each node. The incremental design process avoids the purchase

of new links, so that it can minimize the modification cost.

This means that if a node X is already a hub at environment

k, or if it is not a hub but it has accumulated a large link

surplus by environment k, it can be a hub at environment

k + 1 without introducing any modification cost. Because of

the surplus option, however, a hub at environment k may not

remain a hub at the next environment if some of its links are no

longer needed at time k+1. Indeed, the conditional probability

that a hub at time k remains a hub at the next environment is

about 50%. In other words, the hubs in evolved networks are

not persistent. This is not the case in preferential-attachment

networks, where the hubs tend to be the nodes that have been

added early in the network.

VIII. RELATED WORK

The topology design literature is extensive both in computer

networking and in theoretical computer science, and it is

well covered in a recent book by Pioro and Medhi [11].
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The majority of that literature, however, focuses on optimized

network design. Those (few) studies that focus on incremental

network design (also referred to as “multi-period design”),

do not compare with optimized design [8], [5], [4], [10],

[14], [15]. Instead, these works mostly propose algorithms for

incremental network design under a wide range of different

constraints and objectives. None of them is significantly rel-

evant to our study because they do not compare incremental

designs with the corresponding optimized designs, and they do

not consider different expansion models (e.g., random versus

gradual or single-node versus multi-node).

In the context of data-center networks, some authors have

recently recognized that it is important to be able to design

such networks incrementally. Curtis et al. [3] examined an

incremental approach that adds one switch at a time to

tree-based topologies. Another incremental data-center design

approach is Jellyfish [12], where the authors mention in brief

that the path length and capacity of Jellyfish topologies are

close to those of optimized topologies with the same number

of nodes.

A quite different, but still relevant, study by Tero et al.

[13] compared the Tokyo rail system (as an example of an

optimally designed transportation network) with a natural net-

work formed by the slime mold Physarum polycephalum. The

natural network grew in an incremental manner, without any

centralized control or “intelligence.” The authors compared the

two networks in terms of efficiency, fault tolerance, and cost

and found that they are actually quite similar.

IX. CONCLUSIONS

We now return to the questions that were asked in the

introduction and summarize our main findings. The following

conclusions are supported by asymptotic scaling expressions

for rings and by computational results in the case of mesh

networks.

1. We formulated the incremental network design process

as an optimization problem that aims to minimize the

modification cost relative to the previous network. We also

identified and compared certain expansion models (random

versus gradual, and single-node versus multi-node).

2. Even though an evolved network has higher cost than the

corresponding optimized network, the cost overhead of the

former does not increase as the network grows, at least under

single-node expansion.

3. The incremental design process leads to networks with

higher performance in terms of the average propagation delay.

4. We found out that under random expansion, there is much

higher possibility of seeing a hub. The existence of hubs

contributes to improving the performance of evolved network,

by decreasing the number of hops on primary path.

5. The incremental design is more robust in terms of a

node betweenness centrality metric, compared to optimized

networks. This effect is more pronounced under random

expansion.

6. Under single-node (random or gradual) expansion, it is

less costly to follow the incremental design approach than to

re-design the network from scratch. The evolvability under

basic expansion approaches one as the network grows.

7. Under multi-node and random expansion, there is a critical

value ρ̂ of the expansion factor beyond which it is less costly

to abandon the existing network and re-design the network

from scratch. It is not clear whether this is ever the case

under gradual expansion; our computational experiments have

never produced negative evolvability in that case.

8. The incremental and optimized design processes lead

to significantly different network topologies. The evolved

network has a more skewed degree distribution compared to

the optimized network, and it includes few nodes (hubs) with

much higher degree and betweenness centrality than most

other nodes.

9. The surplus overhead of the incremental design process

does not increase with time, and so the cumulative cost of the

surplus does not diverge relative to the cost of the evolved

network.

10. Under gradual expansion, the evolvability is higher and

the cost overhead is lower than under random expansion. The

model of gradual expansion represents a more “evolution-

friendly” dynamic environment than random expansion.
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