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Abstract—The paper presents a link layer stack for wireless
sensor networks, which consists of the Burst-aware Energy-
efficient Adaptive Medium access control (BEAM) and the Hop-
to-Hop Reliability (H2HR) protocol. BEAM can operate with
short beacons to announce data transmissions or include data
within the beacons. Duty cycles can be adapted by a traffic
prediction mechanism indicating pending packets destined for a
node and by estimating its wake-up times. H2HR takes advantage
of information provided by BEAM such as neighbour information
and transmission information to perform per-hop congestion
control. We justify the design decisions by measurements in
a real-world wireless sensor network testbed and compare the
performance with other link layer protocols.

I. INTRODUCTION

In this paper, we investigate three major problems of
current real world Wireless Sensor Networks (WSNs), namely
energy efficiency, reliable data transmission, and interoperabil-
ity. As sensor nodes are powered by batteries, their lifetime is
limited. Reliability mechanisms are required to ensure suc-
cessful data forwarding in challenging environments. Standard
protocol stacks are needed to ensure compatibility among
heterogenous nodes. While the IETF mainly addresses routing
and application layer protocols [2], [3], this paper focuses on
link layer protocols for an IP protocol in WSNs.

The main contribution of this paper is an energy efficient
and reliable link layer in a WSN stack. A per-hop congestion
detection mechanism is able to identify and correctly handle
intra-flow and inter-flow interferences as well as congestion.
The link layer protocols work with energy efficient and robust
packet oriented radio modules such as CC2420, which is
widely used on many sensor nodes such as telosB and MicaZ.
While previous work [4], [5] focused on intial design and sim-
ulations of the proposed protocols, this paper discusses design
choices and evaluations based on implementations running on
real sensor nodes. The proposed link layer is divided into
two sublayers. According to the naming of the Contiki [1]
operating system the lower layer is called radio duty cycle
(RDC) sublayer. On the RDC sublayer we implemented the
Burst-aware Energy-efficient Adaptive MAC protocol (BEAM).
It uses a traffic prediction mechanism to adapt duty cycles
according to current network load. BEAM supports reliability
functions of the upper sublayer, which is called MAC layer
by Contiki. In the following, we call this sublayer hop-to-
hop reliability (H2H) layer to avoid misunderstandings. On the
H2H layer, we implemented the hop-to-hop reliability protocol
(H2HR) [5], which ensures reliable hop-to-hop forwarding by
local retransmissions and provides per-hop congestion control.

After discussing related work in Section II and introducing
BEAM/H2HR in Sections III - IV, our testbed evaluations mo-
tivate several design decisions and compare the performance
with other WSN link layers in Section V. Section VI concludes
the paper.

II. RELATED WORK

WSN link layer protocols preserve energy by duty cycling
the radio module. Synchronous radio duty cycle protocols syn-
chronize wake-up periods among neighboring nodes. Among
them are contention based protocols such as Sensor-MAC [11]
and time division multiple access (TDMA) based protocols
such as the Lightweight Medium Access Protocol [12].

Asynchronous radio duty cycle protocols do not synchro-
nize the wake-up periods among neighboring nodes. Every sen-
sor node can perform its wake-up period independently from
the schedule of the neighbor nodes. Low Power Probing (LPP)
employs receiver nodes to announce the wake-up periods to a
sender by a short probe message at the beginning of a wake-
up period. After receiving the probe, the sender immediately
forwards the data packet to the receiver, e.g., Koala [13]. Low
Power Listening (LPL) employs sender nodes to announce the
forwarding of a packet to the receiver node A sender transmits
a long physical preamble. If a neighbor node detects such a
preamble during the wake-up period, then it waits to receive
the data. Wireless Sensor MAC (WiseMAC) [14] uses LPL
with a long preamble including the receiver address of the
data part. XMAC [8] uses beacon strobes instead of a long
preamble. Therefore, XMAC can support packet-oriented radio
modules such as the CC2420 radio module. XMAC adapts
the duty cycle period according to current traffic load. XMAC
has been implemented on real sensor nodes using the Contiki
operating system [17], but the implementation does not support
adaptive duty cycles. ContikiMac [15] uses beacon strobes and
applies static duty cycle periods. ContikiMac is able to make
use of the energy efficient link layer functions provided by
the CC2420 radio module, such as handling acknowledgments
or calculating checksums directly by the radio module. If
ContikiMAC detects packet loss, then the Contiki CSMA
protocol on top of ConitikiMAC may retransmit the packet
later. MaxMAC [16] determines the current traffic load, like
XMAC, by counting the wake-up periods in which a packet has
been received and adapts duty cycles accordingly. MaxMAC
does not work with packet oriented radio modules. The long
preambles require a bit/byte-oriented radio module. Receiver-
initiated MAC protocol approaches and short-preamble bursts
in multi-channel WSNs are analysed analytically in [19].
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Fig. 1: BEAM using short beacon strobes.

Another issue addressed by this paper is to avoid inter-
ferences caused by too many simultaneously ongoing wire-
less transmissions. The interference aware fair rate control
[18] detects congestion at a node by monitoring the average
queue length and communicates congestion state to the set
of potential interferers. In this paper we rather focus on local
coordination and cross-layer information exchange between the
MAC and the hop-to-hop reliability layer.

III. BURST AWARE ENERGY EFFICIENT ADAPTIVE MAC
PROTOCOL

The main goal of BEAM is to minimize energy consump-
tion by duty cycling the radio module. The term duty cycle is
used as the ratio between the time for which the radio module
is active and the total time. Duty cycling periodically turns on
the radio module to send or receive packets (active period).
Between these active periods, the radio module is turned off
(sleep period). The time between two activations (wake-ups)
is called wake-up interval.

A. Impact of CC2420 Characteristics on BEAM Design

While packet-oriented radio modules reduce flexibility for
link layer protocol design, they can efficiently execute common
link layer tasks such as channel checking or acknowledgment
handling. Shifting those tasks from the microcontroller to the
radio module can significantly reduce execution time, preserve
energy, and reduce code size. BEAM has been developed
to work best with the energy efficient packet-oriented and
IEEE 802.15.4 compliant radio module CC2420 [7]. The IEEE
802.15.4 compliant BEAM frame format enables the CC2420
radio module to execute link layer tasks such as sending
acknowledgments or CRC calculcations without interaction
with the microcontroller.

B. Basic Functionality of BEAM

The design of BEAM is based on LPL. We developed two
BEAM modes. One mode is based on XMAC [8] and uses
short beacon strobes to announce subsequent data transmis-
sions. The other mode uses beacon strobes including payload.
Payload is piggybacked to the beacon strobe.

1) BEAM using Short Beacon Strobes: Figure 1 depicts the
BEAM mode based on XMAC using short beacon strobes to
announce a pending frame. The numbering of the following
list refers to the numbers depicted in Figure 1.
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CCA check
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 data packet  data packet  data packet

5 6

3

Fig. 2: BEAM with beacon strobes including the payload.

1) A sender with a pending packet repeatedly transmits
short beacon strobes, which are IEEE 802.15.4 com-
pliant frames with empty MAC frame payload.

2) A neighbour node wakes up to check the channel and
receives a short beacon strobe. Since the packet has
not been addressed to the node, the radio module is
turned off for the remaining wake-up interval.

3) The addressed receiver node wakes up to perform
two Clear Channel Assessment (CCA) checks shortly
after each other to reliably detect a short beacon
strobe. The receiver node detects a transmission at
the second CCA check, but the frame start has been
missed. The receiver node now waits for the next
short beacon strobe.

4) The receiver node receives the next short beacon
strobe.

5) After receiving the entire frame, the receiver in-
stantly returns an early acknowledgment. This can
be implemented by an automatic acknowledgment
(AUTOACK) generated by the CC2420 radio module.

6) The sender receives the early acknowledgment, which
announces that the receiver is ready. Now, the sender
starts the data transmission.

7) After receiving the entire data packet, it is processed
and acknowledged by the receiver node.

2) BEAM with Beacon Strobes Including Payload: In this
mode, BEAM piggy-backs data and beacon strobe. A sender
with a pending packet consistently transmits beacon strobes
including payload until an acknowledgment has been received.
If a receiver gets corrupted data payload, it can wait for the
next beacon frame, which includes the same data, cf. Figure
2.

1) A sender with a pending packet transmits IEEE
802.15.4 compliant beacon strobes including payload.

2) A neighbour node wakes up and detects an ongoing
transmission.

3) Since the target address of the next beacon strobe
belongs to another node, no acknowledgment has to
be sent. After receiving the data, the radio module is
turned off for the rest of the wake-up interval.

4) The CCA check of a receiver node detects an ongoing
transmission. The radio module stays in listening
mode to receive the next beacon strobe.

5) The radio module detects and receives the next bea-
con strobe.

6) The beacon strobe has been transmitted completely
and is acknowledged by the receiver node, possibly
by automatic acknowledgement from the radio mod-
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ule. After processing the beacon frame, the receiver
node turns off the radio module. The transmitter goes
back to sleep after the data acknowledgment has been
received.

C. Adaptive Duty Cycles

BEAM supports asynchronous adaptive duty cycles to
change the frequency of active periods according to current
traffic load. Like XMAC and ContikiMAC [9] BEAM is using
default wake-up intervals of 125 ms. In addition, BEAM uses
three shorter pre-defined wake-up intervals (cf. Table I) to sup-
port adaptive duty cycles. Adaptive duty cycle protocols such
as XMAC [8] and MaxMAC [16] count the recently forwarded
packets to determine the current traffic. Such traffic monitoring
mechanisms work quite well in simple network topologies with
few internal interferences. Internal interferences are caused by
multiple simultaneous packet transmissions, e.g., for multiple
connections, inside the WSN. Resulting internal interferences
may trigger congestion, which results in less traffic. This
causes a smaller number of counted packets and, therefore,
traffic monitoring will decrease the duty cycle. Lower duty
cycles in case of congestion and high traffic load will further
increase packet loss due to buffer overflow.

Per-hop congestion rather requires high duty cycles to
increase network bandwidth for high traffic load. Therefore,
BEAM uses a forward-looking traffic prediction mechanism
to determine appropriate duty cycles. This mechanism is based
on a two-bit buffer index representing the number of pending
packets per neighbor node. The buffer index value 0 indicates
an empty buffer, 1 represents a single packet in the buffer, and
2 indicates that there is more than one packet in the buffer,
but still less than 50% of the buffer capacity is used. A buffer
index value of 3 indicates a used buffer capacity of over 50%.
The buffer index is added to every beacon strobe to inform a
receiving node about its pending packets. It is written into two
of the five reserved bits of the IEEE 802.15.4 Frame Control
Field. The buffer index is also copied to acknowledgments
to inform a sender about total pending packets. This is not
possible, if automatic acknowledgements by the radio module
are used.

A node stores the received buffer index with the current
timestamp and corresponding sender address in its neighbour
table. This table holds all relevant neighbour node information
received by beacon strobes, data frames or acknowledgments.
The use of the buffer index depends on the addressing of the
received beacon strobes. If the beacon strobe was addressed
to this node, the buffer index is stored as pending buffer
index into the neighbour table. Every time the radio module
is turned off, the pending buffer indices are accumulated to
calculate the overall expected incoming traffic and resulting
duty cycle. In case of an acknowledgment or if the packet has
been received by overhearing, the buffer index is stored in the
neighbour table as fuzzy buffer index. The fuzzy buffer index
value is not used by BEAM but offered to the H2H sublayer
to estimate the overall local traffic load and expected internal
interferences. The use of the pending buffer index enables
a sender to announce multiple pending packets by a single
beacon strobe to a receiver. Abrupt changes of the number of
pending packets can be signaled quickly. Table I shows two

TABLE I: Two mappings of the pending buffer indices to the
selected duty cycle.

Traffic
load

Accumulated buffer
indices

Wake-ups per sec.
(implemented)

Wake-ups per sec.
(low energy profile)

Low 0 8 1
Moderate 1 16 8
High 2 - 4 64 64
Maximum >4 256 256

TABLE II: BEAM neighbour table

Value Description/Purpose
Timestamp Time of the last successful reception
Address Address of the neighbour node
Duty cycle index Currently used duty cycle length
Pending buffer index Expected packets from this neighbour
Fuzzy buffer index Pending packets of this neighbour

possible mappings between the accumulated pending buffer
indices and the number of wake-ups per second.

D. Optimizing Beacon Strobe Transmissions

With a LPL protocol, the exact timing of the next wake-
up of a receiver is usually unknown to a sender. Therefore,
BEAM starts transmitting beacon strobes as soon as a new
packet has been received from the upper layer. The longer the
wake-up interval of the receiver is, the more beacon strobe
transmissions are required on average. Optimization of beacon
strobe transmission estimates the next wake-up time of a
receiver. This enables BEAM to delay the start of the beacon
strobe transmissions until the receiver wakes up. A two-bit
duty cycle index added to the IEEE 802.15.4 Frame Control
field informs the neighbour node, which of the four pre-defined
duty cycles is currently used by the node. It is added to every
beacon strobe as well as software acknowledgment and stored
in the neighbour table. The duty cycle index and the timestamp
for the last detected wake-up are sufficient to estimate the next
wake-up time for a neighbour node. The strobe transmission is
scheduled 8 ms (= 2 full frame lengths) prior to the estimated
wake-up time.

E. Reliability Support

BEAM uses CRC calculations at the sender and the re-
ceiver, which can be performed efficiently by the radio module.
In this case, automatic acknowledgment by the radio module
can also be used. After transmitting a packet, BEAM provides
transmission information to the upper link sublayer protocol,
which can use it for per-hop congestion control, see Section
IV-A. BEAM defines four different types of transmission
information to be used by the upper link sublayer protocol:
Successful Transmission, Missing Acknowledgment, Detected
Interference, Busy Channel. BEAM also provides access to its
neighbour table, cf. Table II.

IV. HOP-TO-HOP RELIABILITY PROTOCOL

We introduced the hop-to-hop reliability protocol (H2HR)
on the H2H sublayer to ensure reliable hop-to-hop forwarding.
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H2HR insistently tries to retransmit every unsuccessfully trans-
mitted packet to avoid energy-costly end-to-end retransmis-
sions. H2HR is able to detect critical network conditions such
as congestion and to control the time of each transmission.

A. Per-Hop Congestion Control

The goal of the H2HR per-hop congestion control mech-
anism is to adapt the traffic flow before it is affected by
congestion. H2HR slows down traffic by delaying transmis-
sions if the bandwidth provided by BEAM is not sufficient.
In case of too many generated packets, packets should be
dropped as soon as possible to not overload the WSN. The
most energy-efficient procedure is to drop them already at the
generating node. When detecting upcoming congestion, H2HR
slows down traffic by determining an appropriate transmission
delay using three different information sources:

1) The BEAM transmission information enables
H2HR to estimate the current channel load and to
detect interferences. Considering the frequency and
type of the transmission information, we define a
counter called channel load factor with a value range
between 1 and 20. Every Successful Transmission
reduces this counter by a value of 2. For every
Missing Acknowledgment, we add a value of 2, for
every Detected Interference and Busy Channel we
add 1. Besides the channel load, the receiver load
and already executed retransmissions have to be taken
into account to determine an appropriate transmission
delay.

2) The BEAM neighbour table provides information
about the current receiver load of one-hop neighbour
nodes. H2HR uses this information to calculate an
appropriate transmission delay for a receiver. If the
buffer indices are not available or zero, then no addi-
tional delay is used. Otherwise, H2HR delays the next
transmission for an appropriate time period as shown
in Table III. The delay values have been determined
using simulations and real-world experiments.

3) For every retransmission attempt of an individual
packet, an additional delay is added. Table IV shows
the used relation between retransmission counts
and delay. The values were again determined by
simulation and real world WSN testbed experiments.

Table V shows the different information sources used by
the per-hop congestion control mechanism. All information
sources are taken into account to determine an appropriate
next transmission delay (TXdelay). The applied transmission
delay (with a maximum value of 1 s) is calculated by:

TXdelay = NodeDL · (fCL · (dpRL + dpRC)) (1)

If too many sensor nodes continuously generate and forward
packets towards the sink, then the resulting traffic load can
be too high to be forwarded in the WSN. The resulting
interferences cause congestion and packet loss. The H2HR
retransmission delay mechanism works as a hop-by-hop based
backpressure mechanism. An increasing value of TXdelay

reduces the forwarding rate of incoming packets. If the for-
warding rate is too low, the number of packets cached in the
local packet buffer increases. The per-hop congestion control

TABLE III: Delay by buffer index.

Buffer index for target
node

Transmission delay [wake-
up intervals]

0 0
1 1 - 3
2 2 - 6
3 4 - 12

TABLE IV: Delay by retransmission count.

Retransmission
counts

Transmission delay [wake-up
intervals]

1 1 - 3
2, 3 2 - 6
4, 5 4 - 12
6-10 8 - 24

mechanism of the predecessor node detects this and increases
its own TXdelay value. In the best case, the retransmission
delay mechanism is able to delay the transmission attempts on
the entire path up to the nodes generating the packets. This
reduces the number of packets injected to the WSN.

B. Packet Aggregation

A way to reduce internal interferences is to reduce the num-
ber of simultaneously forwarded packets within the network.
H2HR adds to every aggregated data frame the corresponding
IEEE 802.15.4 compliant length and sequence number values.
Aggregated packets are announced to the receiver by the
multiple frames bit, which is one of the five reserved bits of
the IEEE 802.15.4 frame.

V. EVALUATION

A. Evaluation Scenarios and Metrics

Figure 3 depicts four different small-scale network topolo-
gies for testbed evaluations, in particular used for protocol
optimizations. Figure 4 shows the different traffic patterns and
network topologies used in the medium-scale scenarios. We
used a real world WSN testbed based on a Wisebed installation
[10]. The sensor nodes have been distributed over four floors of
an office building with solid walls. In the streaming scenario,
four leaf nodes are sending continuously small packets to the
sink. It represents a WSN scenario collecting sensor data from
the environment. In the event scenario, four nodes detect an
event at the same time. These four nodes try to send a message
to the sink simultaneously. In the burst scenario the root node
sends 800 bytes to all four leave nodes. This may represent
a code update. Energy consumption has been measured by a
RIGOL DM3052 digital multimeter, which measures electrical
current with a resolution of 50’000 samples per second, and a
software based energy profiler recording radio state switches.

TABLE V: Information sources.

Information source Information Unit Symbol
Transmission infor-
mation

Channel load Factor fCL

Neighbour table Receiver load Duty cycles dpRL

Retransmission
count

Retransmission
count

Duty cycles dpRC

Neighbour table Duty cycle index Time NodeDL
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Fig. 3: Small-scale network topologies for basic evaluations.
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Fig. 4: Medium-scale network topologies with corresponding
traffic pattern.

B. Implemented Protocol Stack

BEAM and H2HR have been integrated into the Contiki
network stack, cf. Figure 5. The implemented network stack
can be executed on different sensor node platforms. On top of
the link layer, we use Contiki’s RIME layer to interconnect
link and network layer. On the network layer, µIP is used.
UDP is used on the transport layer. On the application layer we
developed the UDP end-to-end reliability (UDP-E2E) protocol
to add an end-to-end reliability mechanism. UDP-E2E is based
on the sequence number mechanism of RMST [6] and uses
negative acknowledgments to request retransmissions.

C. Evaluation of BEAM/H2HR Protocol Optimization Tech-
niques

This subsection evaluates different protocol versions and
optimization techniques applied to BEAM/H2HR. Table VI
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Fig. 5: Reliable Contiki compliant network stacks with UDP.

TABLE VI: Measurement setup for transmission delay opti-
mization evaluations

Strobe mode Including payload
BEAM-payload 40 bytes
Duty cycle length 125 ms
Transport protocol UDP
End-to-end reliability no

TABLE VII: Required energy for different kind of channel
checks.

Acknowledgments type periodic CCA
checking

Energy [µJ] Standard de-
viation [µJ]

software acknowledgment no 322.5 0.44
software acknowledgment yes 116.1 0.0040
hardware acknowledgment no 82.79 0.012
hardware acknowledgment yes 38.92 0.0038

shows the protocol properties used for performance evaluation
if not stated otherwise.

1) Acknowledgment Mechanism: We compare energy con-
sumption of hardware and software acknowledgments with
or without periodic CCA checks. Periodic CCA checks are
used to save energy between data transmissions and receiving
acknowledgments. Otherwise, the sender will be active after a
data transmission until an acknowledgment has been received.
The results in Table VII show the required energy for the
different CCA check and acknowledgement options. Hardware
acknowledgments, e.g., using the AUTOACK function of the
CC2420, are clearly more energy efficient than software ac-
knowledgments. Periodic CCA checks are also more efficient
than remaining active until receiving the acknowledgment.
Based on these results, we use hardware acknowledgments and
periodic CCA checking for the final BEAM version.

2) Beacon Strobe Transmission Delay Optimizations: Orig-
inally, BEAM immediately starts sending beacon strobes after
having received a single frame from the upper layer H2HR.
The beacon strobe transmission delay optimization estimates
the next wake-up of the receiver. The measured energy costs
at two different traffic load values using the small-scale sce-
narios in the real world WSN testbed are shown in Figure
6. The transmission delay optimization (denoted by SYNC in
Figure 6) works perfectly at higher traffic load. Because the
transmission delay optimization significantly reduces energy
consumption and interferences, the final BEAM version uses
the transmission delay optimization.
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Fig. 7: Energy consumption with 40 bytes payload for involved
nodes.

3) Beacon Strobe Modes: Both BEAM modes use hard-
ware acknowledgments and transmission delay optimization.
We evaluate the two versions in the real world WSN testbed
with small-scale network topologies. We add six more nodes to
each scenario to evaluate the impact of the beacon strobe mode
onto non-involved neighbour nodes. Non-involved neighbour
nodes do not forward any traffic, because they are never
addressed. In each scenario we sent 10’000 packets. Figure
7 shows the corresponding measured energy for both beacon
strobe modes and forwarding 40 bytes. In all scenarios, the
variant using beacon strobes with payload requires less energy,
especially at high traffic rates with more challenging interfer-
ences. The reasons for this observation are:

1) With short beacon strobes, the receiver node has to
receive at least two beacon strobes. This requires
more energy than receiving a single beacon strobe
including payload.

2) With short beacon strobes, additional energy may be
required to send the data part after receiving the early
acknowledgment.

3) The short beacon strobe mode performed more fre-
quently a retransmission as the receiver only has one
chance to receive the data after the early acknowl-
edgment.

According to Figure 8, all non-involved nodes require more
energy when using the mode with beacon strobes including
payload. Nevertheless, the overall energy required by beacon
strobes including payload is lower. Therefore, for the final
version of BEAM we use beacon strobes including payload
mode. Moreover, beacon strobes including payload are more
robust against interferences. They require only two instead of
four successful transmissions. In case of bit errors in the data
frame, the receiver can just wait for the next beacon strobe.

4) Duty Cycles: We evaluate the highest useful duty cy-
cle or shortest wake-up interval respectively to maximize
throughput at high traffic load. The lowest duty cycle is used
by all idle nodes and in case of low traffic load. We use
the line and parallel scenarios in the small-scale testbed for
these evaluations. The application on the sender node sends
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Fig. 8: Energy consumption with 40 bytes payload for non-
involved nodes.
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64 packets per second towards the network stack. A lot of
them are dropped due to insufficient bandwidth. Figure 9
shows the successfully transmitted packets for different duty
cycles. In both scenarios, throughput continuously increases
up to 256 wake-ups per second. Thus, in the final BEAM
version we use a maximum of 256 wake-ups per second. To
define a meaningful default wake-up interval, we used the line
scenario in the real world WSN testbed. We performed energy
measurements for different duty cycles for one hour during
day time and for one hour after midnight. Figure 10 shows
the measured energy consumption for different default duty
cycles. For our further evaluations, we used a default of 8
wake-ups per second for BEAM, because the required energy
is reasonably low and ContikiMAC as well as XMAC are also
using this value per default.

5) Traffic Prediction: BEAM’s traffic prediction adapts the
duty cycle according to the expected traffic load. We used
the real world WSN testbed small-scale network topologies
to compare BEAM with traffic prediction (Figure 12) and
traffic monitoring (Figure 11). In contrast to traffic monitoring,
traffic prediction allows the receiver to know that packets are
pending. Figure 13 shows the associated total packet loss. The
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Fig. 10: Energy consumption of different duty cycles.
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Fig. 11: Throughput with traffic monitoring.

two lowest traffic rates (2 and 4 packets/s) show a packet loss
ratio below 4% and are skipped in Figure 13 to gain a better
overview. The shaded area on the bottom of Figure 13 depicts
the highest end-to-end packet loss that can be recovered by
our end-to-end retransmissions. Higher packet loss can not be
recovered for the given rate of the packet stream. Additional
traffic caused by end-to-end reliability mechanisms would only
increase packet loss instead of reducing it. The results clearly
show that using traffic prediction performs significantly better
than traffic monitoring. The final version of BEAM, therefore,
uses traffic prediction for duty cycle adaptation.

6) Packet Aggregation: Packet aggregation requires the
cooperation of BEAM and H2HR. Up to three UDP/µIP
packets with very short application payload can be aggregated
into one BEAM frame. For the evaluation we used 37 bytes
payload to enable aggregation of several packets. We used
the real world testbed small-scale network topologies. Each
network topology is tested with two different traffic load
values. 10’000 packets are generated per UDP flow. Figure
14 shows the measured energy consumption. For lower traffic
load, packet aggregation shows neither an impact on energy
consumption nor on reliability. As soon as BEAM must adapt
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Fig. 13: Packet loss for traffic monitoring and prediction.

the duty cycle, traffic load is high enough to aggregate packets.
For high traffic load, e.g., 4/8 packets/s, packet aggregation can
prevent or at least decrease congestion by reducing the number
of concurrently forwarded packets. The reduction of forwarded
packets decreases the total number of required beacon strobe
transmissions, which reduces interferences. Therefore, packet
aggregation increases throughput. The final versions of BEAM
and H2HR support packet aggregation to optimize performance
during high traffic load.

D. Comparing BEAM/H2HR to Real World WSN Protocols

This section compares our final protocol versions of
BEAM/H2HR with already existing link layers protocols,
namely XMAC/CSMA and ContikiMAC/CSMA, for packet
oriented radio modules. The presented measurements are all
made in the real world WSN testbed using the three medium-
scale scenarios. In this subsection BEAM represents the
BEAM/H2HR protocol stack, ContikiMAC represents Contiki-
MAC/CSMA and XMAC represents XMAC/CSMA.
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Fig. 14: Energy consumption for packet aggregation.

1) Energy Consumption: First, we compare the energy
required to forward traffic in the stream scenario. We analyze
different generated traffic rates from 0.125 to 2 packets per
second on each of the four end-to-end flows. We use UDP
packets with a link layer payload of 40 bytes. For each
configuration, we sent 50’000 packets. Figure 15 shows the
measured energy required to forward one byte. Below 0.25
packets per second, only one single packet is usually forwarded
in the entire network at the same time. This results in quite
predictable energy consumption for low traffic load. The total
energy consumed by the radio module increases with addi-
tional traffic load, while the required energy per byte decreases
with additional traffic load. Above 0.25 packets per second,
there is an increasing probability of multiple packets at the
same time in the WSN. This causes inter-flow interferences,
which have to be handled by the reliability mechanisms, i.e.,
by longer beacon strobe transmissions and additional hop-by-
hop retransmissions. Energy costs of ContikiMAC and BEAM
clearly increase for above 0.25 packets per second. Energy
costs of XMAC only increase slightly. The reason is that the
packet error rate of XMAC is too high to be handled by the
H2H protocol (CSMA). This means that the number of packets
to be forwarded decreases, if they are lost early. Most packets
are dropped by CSMA on the first hops.

XMAC requires clearly more energy than ContikiMAC and
BEAM, because it requires significantly longer listen intervals
to execute periodic channel checks. Moreover, XMAC uses
the radio channel capacity less efficiently than ContikiMAC
or BEAM, mainly because of the lack of optimized beacon
transmission delays. Thus, XMAC requires clearly more bea-
con strobes to forward a packet. The beacon strobe mechanism
of XMAC is more vulnerable to interferences than the beacon
strobe mechanisms of ContikiMAC and BEAM. This results
in additional retransmissions by CSMA. ContikiMAC and
BEAM require nearly the same energy for periodic channel
checks at low traffic load. BEAM requires less beacon strobe
transmissions at low traffic than Contiki, due to the more
precise transmission delay mechanism and less congestion.
BEAM achieves a clearly more efficient channel usage than
ContikiMAC. Non-involved neighbour nodes periodically per-
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Fig. 15: Energy consumption of the UDP streaming scenario
for involved nodes.
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Fig. 16: Energy consumption of the UDP streaming scenario
for non-involved nodes.

form CCA checks but never have to forward any packet.
Figure 16 shows that XMAC requires clearly more energy
than the other protocols due to the longer listen intervals to
execute periodic channel checks. The non-involved nodes of
ContikiMAC and BEAM show similar energy consumption.

2) Reliability and Maximum Throughput: Reliability
strongly depends on traffic load, which has strong impact on
internal interferences. Figure 17 shows that XMAC/CSMA
experiences the highest packet loss. UDP-E2E is not able to
repair all lost packets in this case. ContikiMAC with UDP-E2E
is able to forward over 99.8% of the packets up to a traffic load
of 0.25 packets per second along each of the four paths of the
medium-scale stream scenario. BEAM is able to forward up
to 2 packets per second without errors. End-to-end reliability
mechanisms are only able to retransmit packets successfully,
if the hop-to-hop reliable mechanism does not drop too many
packets. Every packet dropped on link layer generates many
additional interferences by end-to-end retransmissions. The
more reliable hop-by-hop reliability mechanisms are, the better
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Fig. 18: Maximum throughput.

is the overall reliability performance of the network stack.

Throughput is closely related to packet loss. We generated traf-
fic load, which is much higher than the maximum throughput
the underlying protocols can handle. In Figure 18 XMAC and
ContikiMAC show significantly lower maximum throughput.
The data rate of XMAC and ContikiMAC decreases, if the
maximum throughput has been reached, while BEAM is able
to keep the data rate, if the maximum throughput has been
reached.

VI. CONCLUSIONS

In this paper we compared the performance of our con-
tributed link layer stack to existing real world WSN link
layer stacks for energy efficient packet oriented radio modules.
For evaluations we used a real world WSN testbed deployed
over three floors of an office building. Our link layer stack,
containing BEAM and H2HR, was the most energy efficient
and reliable of the evaluated link layer stacks. Moreover,
our contributed link layer protocols show significantly higher
throughput than other evaluated protocols. This is due to the
fact that our contributed link layer protocols are able to handle
intra-flow and inter-flow interferences.
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