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Abstract. Users can access the Internet via 3G/4G cellular data networks us-

ing various types of user devices (e.g., smartphones, tablets, datacards). We con-

duct a detailed measurement study on the impact of different device types on the

data/control-plane performance of a commercial, city-wide 3G cellular data net-

work in China. We present a methodology that correlates different data/control-

plane datasets collected at different points in the network core, and identify more

than 60K devices of different types per day on average. For the devices we iden-

tify, we investigate how their commonly used Internet applications and internal

heartbeat mechanisms lead to distinct data/control-plane behaviors. For exam-

ple, we observe that datacard devices contribute a large volume of IP traffic in

the data plane, while smartphones introduce significant resource overhead in the

signaling control plane. Our measurement study provides insights for network

operators to strategize pricing and resource allocation for the data/control planes

of their cellular data networks with regard to the market penetrations of various

device types.
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1 Introduction

With the wide deployment of 3G/4G wide-area cellular data networks, we have wit-

nessed the tremendous growth of mobile Internet access worldwide. There are many

types of devices that enable mobile Internet access, such as smartphones, tablet com-

puters, or datacards attached to laptops/PCs. There have been studies (e.g., [1]) in fore-

casting the explosive growth of mobile data traffic from these devices. Compared to tra-

ditional wireline networks, cellular networks not only have relatively limited data-plane

link capacity, but also have higher control-plane overhead that increases the loading of

the network core [16] and power consumption of mobile devices [19]. From the per-

spectives of network operators, it is necessary to understand how the traffic patterns of

different device types influence the performance of cellular data networks in both data

and control planes. Understanding this influence can shed light on how to provision

network resources, and if necessary, how to provide differentiated pricing or priority

services across different device types or applications.

In this paper, we conduct an in-depth measurement study on the impact of different

device types on the data/control-plane performance of a commercial 3G UMTS network
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deployed in a metropolitan city in China. We analyze several large-scale datasets, in-

cluding IP packets with complete payload, UMTS-compliant signaling messages, and

radio resource control (RRC) logs. We identify more than 60K devices of different

types per day on average, as well as different IP applications. The extensive scales of

our datasets allow us to conduct comprehensive analysis. In summary, the contributions

of this paper are two-fold:

– We first present a methodology that correlates all these datasets, so that we can

study the interactions of data and control traffic of each device type. We also char-

acterize the IP applications commonly used by different device types. Note that the

formats of our datasets follow the standard 3G specifications. Thus, our method-

ology is also applicable for general 3G networks, and will be useful for network

operators of interest to carry out network planning by collecting the same datasets

within their own managed networks.

– We conduct an extensive measurement study mainly based on a 24-hour span of

data/control-plane traces. We make the following observations. Even when there

are only 7.5% of datacard devices, they contribute disproportionately about 46% of

IP data traffic; for smartphone or tablet devices, they contribute less data traffic than

datacard devices, but consume significantly high radio resource usage due to the

frequent RRC connection setups/releases. Furthermore, we identify that iPhone/iPad

devices have some internal heartbeat mechanisms that trigger a substantial number

of RRC connection setups/releases, even though they generate minimal data traffic.

Our study shows the importance of how mobile devices interact with the control

plane and what kind of behavior can be expected.

The remainder of the paper proceeds as follows. Section 2 reviews related work

on 3G traffic measurement. Section 3 describes how we correlate different datasets

collected at different points of a 3G network. Section 4 presents our findings from the

datasets. Finally, Section 5 summarizes the lessons learned from our study.

2 Related Work

There have been measurement studies focusing on in-network data traffic collected in-

side 3G networks. Kilpi and Lassila [14] analyze the round-trip times of TCP flow data

collected at a GPRS/UMTS network. Ridoux et al. [22] collect data from a CDMA2000

network, and compare the similarities and differences with wireline data traffic. The

DARWIN+ group [3] collects IP packets at a GPRS/UMTS network, and analyzes var-

ious issues such as TCP performance [21] and traffic anomalies [2]. The above studies

mainly analyze the data-plane performance of 3G networks.

Some recent studies analyze the control-plane performance of 3G networks. Lee

et al. [16] study the signaling overhead from the security perspective. They show that

if an attacker generates data traffic following specific patterns, then a small amount of

data traffic can sufficiently trigger heavy signaling overhead in the network core. On

the other hand, they only analyze synthetic traces. Qian et al. [19] infer and analyze

the RRC state transitions of user sessions using data-plane traces, and mainly focus

on power consumptions of mobiles. Paul et al. [18] collect data packet headers and

various signaling messages in a national 3G network, and analyze their temporal and

spatial variations. Our work differs from [18] in two aspects. First, our work focuses
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on distinguishing different device types and analyzing each of their data/control-plane

performance. Also, our datasets contain full IP payload information that enables us to

accurately identify more user applications and infer their impact to the network.

Several studies analyze the data traffic behavior of different types of handheld de-

vices. Maier et al. [17] analyze the mobile data traffic of handheld devices inside a

residential DSL network, and Gember et al. [8] compare handheld and non-handheld

devices in a campus WiFi network. In the context of 3G cellular data networks, Falaki et

al. [6, 7] study the smartphone traffic and identify the differences of user behavior based

on the traces collected from a number of individual devices. Huang et al. [10] propose

a tool called 3GTest, which runs on thousands of smartphones over a wide geographic

coverage. Each 3GTest-enabled device generates probe traffic to measure the network

performance. Instead of collecting data from smartphone devices, Xu et al. [23] analyze

the IP data traffic collected inside a tier-1 network core, and study the usage behavior

of a variety of smartphone applications from the operator’s perspective. Note that the

above studies mainly focus on the data-plane performance. Our work complements the

prior studies by also analyzing the control-plane performance. Specifically, we play the

role of a network operator and look into the interactions of both data-plane and control-

plane traffic traces collected within a 3G network.

3 Datasets and Preprocessing

We first describe several datasets that are used for our measurement study of a 3G

UMTS network. We then explain how we correlate these datasets to obtain the infor-

mation needed for our analysis. Finally, we address the limitations of our datasets.

3.1 Datasets

Data/control traffic. We capture traffic in both data and control planes from a commer-

cial, city-wide 3G UMTS network in China. Fig. 1 shows the simplified topology of the

3G network we consider. The data path between a user equipment (UE) and the Inter-

net traverses a base station (NodeB), a Radio Network Controller (RNC), and the core

network (CN), all of which are defined in the 3GPP UMTS standard. Here, we focus on

packet-switched domain of the CN, which comprises the Serving GPRS Support Node

(SGSN) and the Gateway GPRS Support Node (GGSN). In a high level, the CN can be

viewed as the central point that relays all UE-Internet data traffic as well as UE-UE data

traffic. A 3G data network typically has a hierarchical architecture, i.e., multiple UEs

communicate with a NodeB, multiple NodeBs communicate with an RNC, and multiple

RNCs communicate with the CN.

We capture traffic in the integrated interface (a.k.a. Iu-PS) that connects 16 RNCs

and the CN. We collect a 7-day span of traces from November 25, 2010 to December 1,

2010. The traces have a total size of around 13TB with about 27.6 billion packets and

383 million 5-tuple flows, including IP data packets with headers and full payloads and

the Radio Access Network Application Part (RANAP) signaling messages. RANAP is

the UMTS signaling protocol for the radio connection between a UE and the CN.

As shown in Section 4.1, we note that the data traffic patterns are very similar across

each day over the 7-day span. Thus, in this paper, we focus on the 24-hour span of traces

collected on November 28, 2010. The 24-hour traces have a total size of around 1.9TB

with about 4.10 billion packets and 56.5 million 5-tuple flows.
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Fig. 1. A simplified architectural view of a 3G UMTS network.

Category Description

Web browsing HTTP-based web browsing activities

IM instant messaging applications such as Yahoo Messenger, MSN, Tencent QQ, etc.

File access audio/video files, software download/updates, FTP, etc.

Streaming online video services such as YouTube, PPLive, QQLive, Tudou, etc.

Email email services such as IMAP, POP3, SMTP, etc.

P2P file sharing via P2P software such as BitTorrent, Thunder, etc.

Network Admin network protocols such as DHCP, DNS, MDNS, NetBios, NTP, etc.

Tunneling tunneling protocols such as Socks4, Socks5, SSL

Others other successfully identified applications

Table 1. Summary of categories of applications.

Given that our captured data packets contain full payloads, we apply a deep packet

inspection (DPI) module to identify the application protocols. The DPI module has been

available as part of a commercial product [11]. It maintains a database of signatures of

hundreds of applications, and maps each 5-tuple flow to an IP application based on the

pre-defined payload signatures. Table 1 summarizes the top application categories that

we focus on in our analysis.

RRC connection record logs. A UE sends (receives) data to (from) the Internet via a

Radio Resource Control (RRC) connection. An RNC keeps the information for every

RRC connection that we refer to as an RRC record. We collect the log files of the RRC

records from all the 16 RNCs in the network (see Fig. 1). The log files span the same pe-

riod as our data/control traffic trace, and account for a total of 168 million records with

total size around 28GB from November 25, 2010 to December 1, 2010. From the RRC

records, we then extract the useful fields including: (i) International Mobile Subscriber

Identity (IMSI), the unique identification associated with each GSM- or UMTS-based

UE, (ii) type allocation code (TAC), the code that uniquely identifies the UE device

type and is composed of the initial 8-digit portion of the 15-digit International Mobile

Equipment Identity (IMEI) code, (iii) RNC-ID, which uniquely identifies an RNC, and

(iv) setup/release times of the RRC connection, which enable us to keep track of the

connection duration.

Device type mappings. For each TAC, we identify the corresponding device type, in-

cluding the hardware model and operating system of a UE. We then establish the device

type mappings. Such mappings can be obtained from different public sources such as

[13, 20]. Table 2 shows the device types considered in our analysis.

3.2 Correlating Datasets

We now describe how we correlate the datasets that cover both data-plane and control-

plane information. Our correlation seeks to identify the control-plane behaviors of the
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Device type Description

iPhone smartphones developed by Apple

Symbian smartphones using Symbian as the operating system

Windows mobile smartphones using Windows mobile as the operating system

Blackberry e-mail and smartphone devices developed by RIM

Android smartphones using Android as the operating system

Bada smartphones developed by Samsung

Linux smartphones using Linux as the operating system

Feature phone modern low-end mobile phones

iPad tablet computers developed by Apple

Datacard laptops or PCs using datacards to access 3G services

Table 2. Summary of device types.

UE

RANAP: Initial UE message

RNC CN

SCCP: CC (Success/Failure)

RANAP: Common ID

RAB Assignment Request

RAB Assignment Response

RRC connection setup

RAB setup

Fig. 2. Signaling message flow of the RRC con-

nection setup.

SCCP CC

Common ID

RAB assignment

request

RAB assignment

response

Timestamp RNC-LR SGSN-LR

Timestamp RNC-LR IMSI

Timestamp RNC-LR SGSN IP SGSN TEID

Timestamp SGSN-LR RNC IP RNC TEID

Fig. 3. Signaling message format (LR denotes

local reference).

corresponding data-plane packets generated by different device types and different IP

applications.

Extracting signaling messages. We first extract the RANAP signaling messages that

are later used for correlation with RRC records. Fig. 2 depicts the signaling message

flow of the RRC connection setup. When the UE wants to send or receive data, the

RNC first makes a Signaling Connection Control Part (SCCP) connection request with

the CN, which replies a SCCP Connection Confirm (SCCP CC) message. SCCP can

be viewed as the transport protocol for RANAP. The CN also replies a Common ID

message, which contains the IMSI of the UE. The RNC associates the IMSI with the

RRC connection for the UE and keeps this association throughout the RRC connection.

Note that a single RRC connection may consist of one or multiple Radio Access Bearers

(RABs) assigned for data communications. Each RAB assignment defines the actual

radio resources for transmitting data traffic between the UE and the CN. The CN sends

a RAB Assignment Request message to the RNC, which then executes the RAB setup

protocol with the UE. Finally, the RNC replies a RAB Assignment Response message

to the CN. From this onwards, the UE can send or receive data.

Based on the above signaling message flow, we can identify four signaling mes-

sages that are important for our correlation: SCCP CC, Common ID, RAB Assignment

Request, and RAB Assignment Response. Fig. 3 summarizes the fields of the signaling

messages that we use for our correlation.
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Correlating data/control traffic and RRC record logs. The goal of our correlation is

to identify the data/control traffic for each RRC connection. One major challenge is that

the data/control traffic and the record logs are obtained at different capture points that

have loosely synchronized system clocks with around 60-150 second difference. Thus,

we need to allow tolerance of such capture time differences in our correlation.

The basic idea of our correlation process is similar to the relational join operation by

correlating the common fields in different datasets. We elaborate the details as follows:

1. We join the four signaling messages that have identical RNC-LR and SGSN-LR

values and are seen within 15 seconds. RNC-LR and SGSN-LR are the local refer-

ences of the RNC and SGSN associated with the RRC connection, respectively.

2. We join the output record in Step 1 with the RRC record that has the same IMSI

field and is logged within 150 second difference. The time difference accommo-

dates the imperfect synchronization among different captured points.

3. We then join the output record in Step 2 with the data packets. The correlation

is based on the Tunnel Endpoint Identifier (TEID) field, which identifies the data

communication tunnel. Each correlated data packet must have the same RNC IP,

SGSN IP, and TEID fields as in the RRC record. Also, its timestamp must either be

within the duration of the RRC connection, or differ from the setup/release times

by no more than 150 seconds. If a data packet matches more than one RRC record,

then we correlate it with the RRC record that has the closest setup/release time with

the packet timestamp.

4. Finally, we obtain the device information of each packet with the device type map-

pings based on the TAC field.

The final output is that each data packet is associated with its corresponding RRC record

and the device type. We then parse the data packets and perform the analysis.

Implementation. Our correlation is implemented as a MapReduce [4] program and

run on a Hadoop [9] platform. This allows us to parallelize the correlation analysis. We

utilize the repartitioned sort-merge join provided by Hadoop to realize the correlation.

Our Hadoop platform consists of one namenode and seven datanodes that are connected

by Gigabit switches. The platform has 112 CPU cores and 112GB memory in total, and

it takes around 10 hours to complete the correlation process for one day of traces.

3.3 Limitations

One limitation of our work is that our datasets were collected in November 2010 (about

a year ago from the time of this writing). Given the dramatic expansion of the smart-

phone market worldwide [12], we expect that there is a dramatic growth of the vol-

ume of data/control-plane traffic in 3G networks as of today. Also, there have been

continuing version upgrades for smartphone operating systems (e.g., in Android and

iPhone/iPad), and such upgrades may change the underlying data transmission behav-

iors. Nevertheless, since our correlation methodology is based on the standard 3G spec-

ifications, it remains applicable for today’s 3G networks in general, provided that the

same datasets are available. One important future work is to validate the findings of our

measurement study with the latest datasets.

Another limitation is that we cannot validate the accuracy of the DPI tool used in

our flow-based application identification, given that the tool is part of a commercial



A Panoramic View of 3G Data/Control-Plane Traffic: Mobile Device Perspective 7

product and is closed-source. Nevertheless, we expect that the identification process is

sufficiently accurate for our analysis due to the commercial nature of the tool. Some

of our findings (see Section 4) also conform to our intuition. Note that our flow-based

application identification can also be substituted by other approaches, such as port-

based analysis [6] or dynamic protocol detection [5].

4 Measurement Results

4.1 Overview

We first give a general overview of our captured data traffic. After pre-processing, we

identify more than 80% of traffic (out of ∼13TB) that can be successfully associated

with the corresponding signaling traffic. Fig. 4 plots the IP traffic volume (per minute)

over time in our 7-day traces, and Fig. 5 shows the number of devices identified on each

day. We observe that the distributions of each day are fairly stable. In particular, the

distributions do not indicate significant differences across weekdays and weekends.

In the following analysis, we only focus on the 1-day traces on November 28, 2010.

Given the regularity of the traffic, we expect that our observations are consistent for

other days of traffic.
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Fig. 4. Total traffic volume (per minute) over one week.
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Fig. 5. Number of devices per day

over one week.

Fig. 6 illustrates the number of devices for different types listed in Table 2. There

are 64,398 devices in total, in which iPhone leads all devices with a proportion of 32%.

Mobile hand-held phones (including smartphones or low-end feature phones) dominate

the majority of devices, while iPad and Datacard only account for 7.9% and 7.5% of de-

vices, respectively. We point that over 99% of the devices can be successfully identified

with the corresponding device types.

Fig. 7 shows the total traffic volume for each traffic type. Datacard devices con-

tribute 46% of the total traffic, although they only account for 7.5% of devices. We will

explore possible reasons for this phenomenon later in Section 4.2.

We now evaluate the control-plane performance of different device types, based on

our RRC record logs. Fig. 8 shows the average number of RRC connections per device

for each device type. As shown, iPhone triggers the most RRC connections per device

(237 times), followed by iPad (174 times). Even datacard devices dominate the largest

portion of IP traffic, each datacard device triggers a relatively small number of RRC

connections (68 times) compared to smartphones (e.g., Android, Windows Mobile).

Note that each RRC connection setup/release triggers a number of signaling messages
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Fig. 6. Number of devices for each device type.
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Fig. 7. Total traffic volume of each device type.

between a UE and an RNC, and such signaling messages consume radio resources of

the cellular network [16]. With the frequent RRC connection setups/releases, we can see

that iPhone/iPad devices can bring large signaling overhead of an RNC and consume

substantial radio resources of the whole cellular network.

Fig. 9 shows the average RRC connection duration per device for each device type.

Note that iPhone has the smallest duration among all (30 seconds). Since iPhone trig-

gers more RRC connections and each RRC connection has a short duration, it implies

that iPhone devices inject a high intensity of signaling workload into the network. In

contrast, Datacard has the longest RRC connection duration, so we expect that Datacard

devices tend to run long-lived data transfer applications that keep an RRC connection

active for a long time.

We thus far observe that different device types have distinct data/control-plane per-

formance. In the following subsections, we explore the possible reasons behind.
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Fig. 9. Average RRC duration per device.

4.2 Application Characteristics

Let us examine the application usage patterns of different device types, and explore

how the traffic compositions of the device types lead to the distinct data/control-plane

behaviors that we observe. We first analyze the overall traffic distributions of different

IP applications listed in Table 1. Fig. 10 shows the traffic volume distribution of dif-

ferent IP applications, where web browsing (38%), streaming (21%), P2P (10%) and

file access (10%) are ranked the top four. IM and Email applications contribute 2% and

1% of the total traffic, respectively. The traffic that cannot be identified, i.e., labeled as

“Unknown” in Fig. 10, only contributes 9% of the traffic. In other words, over 90% of

total traffic can be successfully identified by our DPI tool.
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plications.

Fig. 11 shows the total number of RRC connections triggered by each application.

In this work, we define that an application triggers an RRC connection if the first data

packet transmitted in the RRC connection belongs to the application. We see that Tun-

neling triggers the most RRC connections among all applications. The reason is that a

tunneling session is first established for providing a secure path for any other applica-

tion protocols, or supporting the roaming service. IM triggers 21% of RRC connections,

while generating only 2% of the total traffic (Fig. 10). On the other hand, P2P triggers

only 0.1% of the total number of RRC connections, while contributing 11% of the total

traffic. This is an important observation because it clearly shows that different applica-

tions have inherently different data/control-plane behaviors.

Let us investigate the application usage patterns of different device types. Fig. 12

illustrates the total traffic volume of applications for each device type, in which we

only look at the top device types that contribute the most traffic. We make two key

observations. First, datacard devices contribute 85% and 48% of all P2P and streaming

traffic, respectively. Since most datacards are attached to static terminals such as PCs or

laptops, these static terminals tend to run long-lived applications. Thus, they contribute

a large volume of data-plane traffic even the population of datacard devices is small.

Also, P2P and streaming applications trigger very few but long-lived RRC connections,

and this validates our previous observations in Figs. 8 and 9. Second, web browsing,

streaming, and file access are the top three applications that account for the most traffic

volume on smartphones (i.e., iPhone, Android, Symbian, Windows Mobile), and they

altogether contribute over 80% of the smartphone traffic.

4.3 Active Devices

We now explore the behaviors of active devices and see their impact on the data/control-

plane performance. We say that a device is active within time [t1, t2] if it starts and

releases an RRC connection at times t1 and t2, respectively. Figs. 13 and 14 plot the

distributions of the traffic volume and the number of active devices (per minute) for

different device types over a 24-hour period (on Nov. 28), respectively. As expected,

Fig. 13 shows that the traffic volume peak appears in day time, and the traffic trough

appears at late night. While the number of active devices in Fig. 14 shows a similar

pattern, the peak-trough difference is significantly different. We find that the traffic

volume at the trough is 93% less than the peak traffic volume in Fig. 13, while the

number of active devices at the trough is only 52% less than the peak value in Fig. 14.

After further investigation, we find that iPhone and iPad have a very similar pattern

that is distinct from other device types, i.e., the numbers of active devices of iPhone
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Fig. 12. Traffic volume distribution of applications for each device type (note that the y-axis scale

is different for each device type for clear presentation).

and iPad remain quite stable during the 24-hour period. On the other hand, other de-

vice types exhibit obvious troughs and peaks in the number of active devices, with the

troughs also appearing at late night.

We find that the internal heartbeat mechanism of iPhone/iPad keeps the devices

active, even there is no data traffic initiated by user applications. To demonstrate, Fig. 15

shows the probability density of the inter-arrival times of RRC connection setups of

iPhone. The inter-arrival times of RRC connections of iPhone occur more often at two

values: 64 seconds (18.1%) and 589 seconds (4.9%). Similar observations are also made

for iPad. We investigate and find that iPhone/iPad devices are “always-on” and generate

heartbeat packets around every 60 seconds, and such packets are sent to Apple servers.

Each heartbeat packet triggers an RRC connection, which will be released if there is no

data traffic for an idle period that is less than 60 seconds. On the other hand, we do not

observe any explicit heartbeat patterns in Android (not shown in the figure), possibly

because there are many variants of Android devices and their heartbeat designs are

different. In short, the heartbeat packets that we observe in the iPhone/iPad devices

introduce many RRC connection setups/releases, which could lead to high signaling

overhead in the network core.

Note that there are a few upgrades of iOS (Apple’s mobile operating system) in

2011. In iOS 4.2 (which was launched in late November 2010), a technology that en-

ables mobile devices and the network core to collaboratively minimize network con-

gestion and mobile battery consumption [15]. This may change the heartbeat behavior

that we observe in our datasets. One future work is to validate such a heartbeat behav-

ior with the latest datasets, based on the same correlation methodology as described in

Section 3.2.
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minute) distribution.
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5 Summary, Implications, and Conclusions

We now summarize the key observations and potential challenges through the analysis

of our massive data traces.

– In the data plane, datacard devices contribute almost 50% of the total traffic, while

accounting for only 7% of the device population. Network operators may devise

special resource allocation schemes for datacard users. Also, iPhone/iPad devices

altogether account for around 40% of devices, and contribute nearly 40% of the

total traffic due to their large market shares.

– Our application-based analysis clearly shows that different user groups (distin-

guished by device types) have distinct user behaviors with specific preferences of

choosing applications. For example, in all Apple devices (iPhone and iPad), the

dominant applications are web browsing, streaming, and file access, and they al-

together contribute more than 90% of iPhone/iPad traffic. From the network oper-

ators’ perspectives, there are challenging issues of providing QoS guarantees and

QoE improvement for different user groups.

– In the signaling control plane, among all device types, iPhone has the highest aver-

age number of RRC connections per device. Meanwhile, iPhone/iPad devices have

a very similar heartbeat behavior that triggers significantly more RRC connections

than any other device types. Recall that each RRC connection setup/release involve

a number of signaling messages exchanged between a UE and an RNC [16]. These

results reveal that specific device types can increase the signaling overhead to the

network.

This paper analyzes the data/control-plane performance of different device types

using massive traces collected from the core of a 3G UMTS city-wide network. We de-

scribe a correlation methodology that studies the interactions of different data/control-

plane datasets, and make several key observations from our analysis that could be of

interest to network operators and researchers. Our measurement study motivates the

importance of characterizing the data/control-plane workloads of a 3G network and de-

signing adequate strategies for network planning, resource allocation, and pricing. Since

our measurement study is based on the datasets that are compliant with the 3G standard,

our analysis methodology can be generalized for other 3G operational networks.



12 He et al.

Acknowledgment

The work of Patrick P. C. Lee is supported in part by grant GRF CUHK413711 from

the Research Grant Council of Hong Kong

References

1. Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update,

20102015, Feb 2011.

2. A. D’Alconzo, A. Coluccia, F. Ricciato, and P. Romirer-Maierhofer. A Distribution-Based

Approach to Anomaly Detection for 3G Mobile Networks. In IEEE Globecom, 2009.

3. DARWIN. http://userver.ftw.at/~ricciato/darwin/.

4. J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Com-

mun. ACM, 51:107–113, January 2008.

5. H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer. Dynamic Application-Layer

Protocol Analysis for Network Intrusion Detection. In Proc. of USENIX Security Symp.,

2006.

6. H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin. A First Look at Traffic

on Smartphones. In Proc. of ACM IMC, Nov 2010.

7. H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin. Diversity

in Smartphone Usage. In Proc. of ACM MobiSys, Jun 2010.

8. A. Gember, A. Anand, and A. Akella. A Comparative Study of Handheld and Non-Handheld

Traffic in Campus WiFi Networks. In Proc. of PAM, 2011.

9. Hadoop. http://hadoop.apache.org/.

10. J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl. Anatomizing Application

Performance Differences on Smartphones. In Proc. of ACM MobiSys, 2010.

11. Huawei. MSCG hierarchical DPI solution. http://www.huawei.com/products/

datacomm/catalog.do?id=1219, 2011.

12. IDC. Worldwide Smartphone Market Expected to Grow 55% in 2011 and Approach Ship-

ments of One Billion in 2015, According to IDC. http://www.idc.com/getdoc.jsp?

containerId=prUS22871611, Jun 2011.

13. IMEI lookup. http://imei-number.com/imei-lookup/.

14. J. Kilpi and P. Lassila. Micro- and macroscopic analysis of RTT variability in GPRS and

UMTS networks. In Proc. of NETWORKING, 2006.

15. A. Kingsley-Hughes. iOS 4.2 Supports Network Controlled

Fast Dormancy. http://www.zdnet.com/blog/hardware/

ios-42-supports-network-controlled-fast-dormancy/10586, Dec 2010.

16. P. P. C. Lee, T. Bu, and T. Woo. On the detection of signaling DoS attacks on 3G/WiMax

wireless networks. Computer Networks, 53(15):2601–2616, Oct 2009.

17. G. Maier, F. Schneider, and A. Feldmann. A First Look at Mobile Hand-held Device Traffic.

In Proc. of PAM, 2010.

18. U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das. Understanding Traffic Dy-

namics in Cellular Data Networks. In Proc. of IEEE INFOCOM, 2011.

19. F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. Characterizing Radio

Resource Allocation for 3G Networks. In Proc. of ACM IMC, 2010.

20. radiorraiders. http://www.radioraiders.com/gsm-IMEI-TAC.php/.

21. F. Ricciato, F. Vacirca, and M. Karner. Bottleneck detection in UMTS via TCP passive

monitoring: a real case. In Proc. of ACM CoNEXT, Oct 2005.

22. J. Ridoux, A. Nucci, and D. Veitch. Seeing the difference in IP traffic: wireless versus

wireline. In Proc. of IEEE INFOCOM, 2006.

23. Q. Xu, J. Erman, A. Gerber, Z. M. Mao, J. Pang, and S. Venkataraman. Identifying Diverse

Usage Behaviors of Smartphone Apps. In Proc. of ACM IMC, Nov 2011.


