
Decoding Algorithms for Random Linear
Network Codes

Janus Heide, Morten V. Pedersen, and Frank H.P. Fitzek

Falculty of Engineering and Science
Aalborg University, Aalborg, Denmark

jah@es.aau.dk

Abstract. We consider the problem of efficient decoding of a random
linear code over a finite field. In particular we are interested in the case
where the code is random, relatively sparse, and use the binary finite field
as an example. The goal is to decode the data using fewer operations to
potentially achieve a high coding throughput, and reduce energy con-
sumption. We use an on-the-fly version of the Gauss-Jordan algorithm
as a baseline, and provide several simple improvements to reduce the
number of operations needed to perform decoding. Our tests show that
the improvements can reduce the number of operations used during de-
coding with 10-20% on average depending on the code parameters.

Keywords: Network Coding; Algorithms; Implementation

1 Introduction

When implementing and deploying Network Coding (NC) at least two perfor-
mance criteria are important; the magnitude of overhead added by the code,
and the speed at which encoding, recoding and decoding can be performed. We
consider the last issue and note that it is trivial to implement encoding such that
the minimal number of operations are used. As recoding is similar to encoding
we turn our attention to the problem of fast decoding.

A popular approach to network coding is Random Linear Network Coding
(RLNC), introduced in [2]. It is based on finite fields, and it has been shown that
high coding throughput can be obtained with this code when the binary finite
field is used [1]. Additionally, as a randomly drawn element from the binary field
is zero with high probability (50%), the resulting code will be sparse.

As data is encoded and recoded in a random way, there is no special struc-
ture or shortcut to exploit when performing decoding. Instead we are left with
the tedious task of determining the inverse of operations performed during en-
coding/recoding. Additionally we prefer to perform decoding as packets arrive
in order to avoid a large decoding delay when the final packet arrives. We know
the resulting code is sparse, and therefore propose some simple mechanisms to
utilize this fact. We have implemented these and their impact on the number of
operations used during decoding.

In the remainder of this paper we introduce the used encoding approach,
several decoding optimizations, and their measured impact on the decoding.



2 Coding Algorihtms

We consider encoding packets from some data to be sent from a source to a sink,
we denote this data the generation. The generation consists of g pieces, called
symbols each with a size of m bits, where g is called the generation size, and
thus the generation contains g ·m bits of data. The g symbols are arranged in
the matrix M = [m1;m2; . . . ;mg], where mi is a column vector. In practise
some original file or data stream may be split into several generations, but here
we only consider a single generation.

To generate a new encoded symbol x, M is multiplied with a randomly
generated coding vector g of length g, x = M ×g. In this way we can construct
g + r coded symbols and coding vectors, where r is any number of redundant
symbols as the code is rateless. When a coded symbol is transmitted on the
network it is accompanied by its coding vector, and together they form a coded
packet. A practical interpretation is that each coded symbol, is a combination
or mix of the original symbols from the generation. The benefit is that nearly
infinite coded symbols can be created.

Coded packet︷ ︸︸ ︷
Existing protocol header Coding vector g Coded symbol x

2.1 Decoding

A sink must receive g linearly independent symbols and coding vectors from the
generation to decode the data successfully. All received symbols are placed in
the matrix X̂ = [x̂1, x̂2, . . . , x̂g] and all coding vectors are placed in the matrix

Ĝ = [ĝ1, ĝ2, . . . , ĝg], we denote Ĝ the decoding matrix. Thus the vectors and

symbols are row vectors in Ĝ and X̂ respectively as this is more convenient
during recoding. Hence we may perform any row operation on Ĝ if we perform
the same row operation on X̂.

The original data M can then be decoded as M̂ = X̂×Ĝ
−1

by the decoder.
The problem is how to achieve this in an efficient way. We note that row opera-
tions on X̂ are more computationally expensive compared to operations on Ĝ,
as generally m >> g.

Elements in the matrices are indexed row-column, thus Ĝ[i, j] is the element

in Ĝ on the intersection between the i’th row and the j’th column. The i’th row
in the matrix is indexed as Ĝ[i]. Initially no packets have been received, thus

Ĝ and X̂ are zero matrices. As we operate in the binary finite field we denote
bitwise XOR of two bit strings of the same length as ⊕.
Algorithm 1: Decoder initial state

Input: g,m
Data: Ĝ← 0g×g . The decoding matrix

Data: X̂ ← 0g×m . The (partially) decoded data

Data: rank ← 0 . the rank of Ĝ



2.2 Basic

As a reference we use the basic decoder algorithm, see Algorithm 5, described
in [1]. This algorithm is a modified version of the Gauss-Jordan algorithm. On
each run the algorithm attempts to get the decoding matrix into reduced echelon
form. First the received vector and symbol ĝ and x̂ is forward substituted into the
previous received vectors and symbols Ĝ and X̂ respectively, and subsequently
backward substitution is performed. If the packet was a linear combination of
previous received packets it is reduced to the zero-vector 0g and discarded.

Algorithm 2: ForwardSubstitute

Input: x̂,ĝ
pivotPosition ← 0 . 0 Indicates that no pivot was found1

for i← 1 : g do2

if ĝ[i] = 1 then3

if Ĝ[i, i] = 1 then4

ĝ ← ĝ ⊕ Ĝ[i] . substitute into new vector5

x̂← x̂⊕ X̂[i] . substitute into new symbol6

else7

pivotPosition ← i . pivot element found8

break9

return pivotPosition10

Algorithm 3: BackwardsSubstitute

Input: x̂,ĝ, pivotPosition
for i← (pivotPosition− 1) : 1 do1

if Ĝ[i,pivotPosition] = 1 then2

Ĝ[i]← Ĝ[i]⊕ ĝ . substitute into old vector3

X̂[i]← X̂[i]⊕ x̂ . substitute into old symbol4

Algorithm 4: InsertPacket

Input: x̂,ĝ, pivotPosition
Ĝ[pivotposition] = ĝ1

X̂[pivotposition] = x̂2

Algorithm 5: DecoderBasic

Input: x̂,ĝ
pivotPosition = ForwardSubstitute(x̂,ĝ)1

if pivotPosition > 0 then2

BackwardsSubstitute(x̂,ĝ, pivotPosition)3

InsertPacket(x̂,ĝ, pivotPosition)4

rank++5

return rank6



2.3 Suppress Null (SN)

To avoid wasting operations on symbols that does not carry novel information,
we record the operations performed on the vector. If the vector is reduced to
the zero vector, the packet was linearly dependent and the recorded operations
are discarded. Otherwise the packet was novel and the recorded operations are
executed on the symbol. This reduces the computational cost when a linear
dependent packet is received. This is most likely to occur in the end phase of
the decoding, thus it is most beneficial for small generation sizes. In real world
scenarios the probability of receiving a linearly dependent packet can be high,
in which cases this approach would be beneficial. To implement this, line 1 in
Algorithm 5 is replaced with Algorithm 7.

Algorithm 6: ExecuteRecipe

Input: x̂,recipe
for i← 1 : g do1

if recipe[i] = 1 then2

x̂← x̂⊕ X̂[i] . substitute into symbol3

Algorithm 7: ForwardSubstituteSuppressNull

Input: x̂,ĝ
pivotPosition ← 0 . 0 Indicates that no pivot was found1

recipe ← 0g2

for i← 1 : g do3

if ĝ[i] = 1 then4

if Ĝ[i, i] = 1 then5

ĝ ← ĝ ⊕ Ĝ[i] . substitute into new vector6

recipe[i]← 17

else8

pivotPosition ← i . pivot element found9

break10

if pivotPosition > 0 then11

ExecuteRecipe(x̂,recipe)12

return pivotPosition13

2.4 Density Check (DC)

When forward substitution is performed there is a risk that a high density packets
is substituted into a low density packet. The density is defined as Density(h) =∑g

k=1(hk 6=0)

g , which is the number of non-zeros in the vector, and where h is
the coding vector. Generally a sparse packet requires little work to decode and
a dense packet requires much work to decode. When a vector is substituted
into a sparse vector, the resulting vector will with high probability have higher
density and thus fill-in occur. To reduce this problem incoming packets can



be sorted based on density during forward substitution. When it is detected
that two vectors have the same pivot element their densities are compared. The
vector with the lowest density is inserted into the decoding matrix. The low
density packet is then substituted into the high density packet, and the forward
substitution is continued with the resulting packet. To implement this, line 1 in
Algorithm 5 is replaced with Algorithm 8.

Algorithm 8: ForwardSubstituteDensityCheck

Input: x̂,ĝ
pivotPosition ← 0 . 0 Indicates that no pivot was found1

for i← 1 : g do2

if ĝ[i] = 1 then3

if Ĝ[i, i] = 1 then4

if Density(ĝ) < Density(Ĝ[i]) then5

ĝ ↔ Ĝ[i] . swap new vector with old vector6

x̂↔ X̂[i] . swap new symbol with old symbol7

ĝ ← ĝ ⊕ Ĝ[i]8

x̂← x̂⊕ X̂[i]9

else10

pivotPosition ← i . pivot element found11

break12

return pivotPosition13

2.5 Delayed Backwards Substitution (DBS)

To reduce the fill-in effect the backwards substitution is postponed until the
decoding matrix has full rank. Additionally it is not necessary to perform any
backwards substitution on the vectors because backwards substitution is per-
formed starting from the last row. Hence when backwards substitution of a
packet is complete, that packet has a pivot element for which all other encoding
vectors are zero. This approach is only semi on-the-fly, as only some decoding
is performed when packets arrive. Therefore the decoding delay when the final
packet arrive will increase. This is implemented with Algorithm 9

Algorithm 9: DecoderDelayedBackwardsSubstitution

Input: x̂,ĝ
pivotPosition = ForwardSubstitute(x̂,ĝ)1

if pivotPosition > 0 then2

InsertPacket(x̂,ĝ, pivotPosition)3

rank++4

if rank = g then5

BackwardsSubstituteFinal()6

return rank7



Algorithm 10: BackwardsSubstituteFinal

for i← g : 2 do1

for j ← (i− 1) : 1 do . All rows above2

if Ĝ[j, i] = 1 then3

X̂[j]← X̂[j]⊕ X̂[i] . substitute into the symbol4

2.6 Density Check, and Delayed Backwards Substitution (DC-DBS)

When DC and DBS are combined vectors are sorted so sparse vectors are kept
at the top of the decoding matrix while dense vectors are pushed downwards.
Because backwards substitution is performed only when the rank is full, no
fill-in occurs during backwards substitution, as only fully decoded packets are
substituted back. To implement this, line 1 in Algorithm 9 is replaced with
Algorithm 8.

2.7 Suppress Null, Density Check, and Delayed Backwards
Substitution (SN-DC-DBS)

To reduce the cost of receiving linear dependent packets we include SN, by
replacing line 1 in Algorithm 9 with Algorithm 11.

Algorithm 11: ForwardSubstitute-SN-DC

Input: x̂,ĝ
pivotPosition ← 0 . 0 Indicates that no pivot was found1

recipe ← 0g2

for i← 1 : g do3

if ĝ[i] = 1 then4

if Ĝ[i, i] = 1 then5

if Density(ĝ) < Density(Ĝ[i]) then6

ExecuteRecipe(x̂,recipe)7

recipe ← 0g . reset recipe8

ĝ ↔ Ĝ[i] . swap new vector with old vector9

x̂↔ X̂[i] . swap new symbol with old symbol10

ĝ ← ĝ ⊕ Ĝ[i] . substitute into new vector11

recipe[i]← 112

else13

pivotPosition ← i . pivot element found14

break15

if pivotPosition > 0 then16

ExecuteRecipe(x̂,recipe)17

return pivotPosition18



3 Results

We have decoded a large number of generations with each of the optimizations,
and measured the used vector and symbol operations which is ⊕ of two vectors,
and two symbols respectively. We have considered two densities while encoding,

d = 1
2 and d = log2(g)

g which we denote dense and sparse respectively. d = 1
2 gives

the lowest probability of linear dependence, and d = log2(g)
g is a good trade-off

between linear dependence and density. As a reference the mean number of both
vector and symbol operations during encoding of one packet can be calculated
as g

2 and log2(g) for the dense and sparse case respectively.

16 32 64 128 256 512
Generation size [-]

0

50

100

150

200

250

300

Op
er

at
io

ns
 p

er
 d

ec
od

ed
 p

ac
ke

t [
-]

7.
80 15

.8
0 31
.7

9

63
.7

9

12
7.

79

25
5.

80

7.
80 15

.8
1 31
.8

0

63
.8

1

12
7.

82

25
5.

83

7.
80 15

.8
1 31
.8

0

63
.8

2

12
7.

78

25
5.

89

4.
05 8.
04 16

.0
5 32
.0

6

64
.0

2

12
8.

08

4.
06 8.
05 16

.0
6 32
.0

6

64
.0

4

12
8.

06

4.
05 8.
06 16

.0
5 32
.0

2

64
.0

4

12
8.

05
Basic
SN
DC
DBS
DC-DBS
SN-DC-DBS

(a) vector operations, dense encoding

16 32 64 128 256 512
Generation size [-]

0

50

100

150

200

250

300

Op
er

at
io

ns
 p

er
 d

ec
od

ed
 p

ac
ke

t [
-]

7.
80 15

.8
0 31
.7

9

63
.7

9

12
7.

79

25
5.

80

7.
09 15

.0
4 31
.0

2

63
.0

2

12
6.

99

25
5.

02

7.
80 15

.8
1 31
.8

0

63
.8

2

12
7.

78

25
5.

89

7.
80 15

.8
0 31
.8

0

63
.8

1

12
7.

77

25
5.

81

6.
36 13

.1
0

27
.1

2 56
.0

5

11
5.

33

23
6.

29

5.
91 12

.7
5

26
.8

4 55
.8

4

11
5.

22

23
6.

20

Basic
SN
DC
DBS
DC-DBS
SN-DC-DBS

(b) symbol operations, dense encoding

16 32 64 128 256 512
Generation size [-]

0

20

40

60

80

100

120

140

Op
er

at
io

ns
 p

er
 d

ec
od

ed
 p

ac
ke

t [
-]

4.
73 7.
95 14

.6
6 28

.4
2

56
.1

6

11
3.

68

4.
69 8.
00 14

.6
4 28

.0
9

55
.9

4

11
2.

67

4.
69 8.
00 14

.6
4 28

.0
9

55
.9

4

11
2.

67

2.
85 4.
99 9.

21 17
.5

9

34
.5

6

70
.6

5

2.
68 4.
59 8.

30 15
.5

8 30
.0

4

60
.2

0

2.
68 4.
59 8.

30 15
.5

8 30
.0

4

60
.2

0

Basic
SN
DC
DBS
DC-DBS
SN-DC-DBS

(c) vector operations, sparse encoding

16 32 64 128 256 512
Generation size [-]

0

20

40

60

80

100

120

140

Op
er

at
io

ns
 p

er
 d

ec
od

ed
 p

ac
ke

t [
-]

4.
73 7.
95 14

.6
6 28

.4
2

56
.1

6

11
3.

68

4.
24 7.

65 14
.3

9 27
.9

1

55
.8

4

11
2.

59

4.
69 8.
00 14

.6
4 28

.0
9

55
.9

4

11
2.

67

5.
38 9.

50 17
.4

6

33
.2

3

65
.8

5

13
4.

60

4.
10 7.
01 12

.5
2 23

.3
5

45
.6

6

93
.3

6

3.
67 6.
57 12

.0
9 22

.9
3

45
.3

1

93
.0

1

Basic
SN
DC
DBS
DC-DBS
SN-DC-DBS

(d) symbol operations, sparse encoding

Fig. 1. Vector and symbol operations during decoding, when d = 1
2
and d = log2(g)

g
.

With the Basic algorithm the number of operations during encoding and
decoding is identical for the dense case, see Fig 1(a) and 1(b) and calculate g

2 .
For the sparse case the number of operations is significantly higher for decoding
than for encoding, see Fig 1(c) and 1(d), and calculate log2(g).

When Suppress Null is used the number of reduced symbol operations can
be observed by subtracting the number of symbol operations from the number of



vector operations. The reduction is highest for small g, which is where the ratio
of linearly dependent packet is largest. For g = 16 and g = 32 the reduction in
symbol operations is 9.5% and 4.4% respectively, for high g′s the reduction is
approximately 0%.

Density Check reduces the number of operations for the sparse case marginally,
but has no effect for the dense case.

The Delayed Backwards Substitution decreases the number of vector opera-
tions with approximately 40% when the encoding is sparse, and 50% when the
encoding is dense as no operations needs to be performed on the vectors during
backwards substitution. Interestingly the number of symbol operations increase
significantly for the sparse encoding.

In DC-DBS, density check and delayed backwards substitution are combined,
and the number of both data and vector operations are significantly reduced.
For the sparse case the reduction is approximately 50% of the vector operations,
and almost 20% of the symbol operations. For the dense case the reduction
is approximately 50% of the vector operations, and almost 10% of the symbol
operations. Interestingly the number of vector and symbol operations is lower
for decoding compared to encoding, in the dense case. Hence the combination of
DC and DBS is significantly better than the two alone, as the expensive symbol
operations are reduced.

With SN-DC-DBS we additionally include Suppress Null, the number of
symbol operations is reduced slightly for high g and significantly for low g.

4 Conclusion

The considered decoding optimizations have been shown to reduce the number
of necessary operations during decoding. The reduction in symbol decoding op-
erations is approximately 10%, and 20%, when the density during encoding is
dense and sparse respectively. In both cases the number of vector operations
is approximately halved. Surprisingly decoding can in some cases be performed
with fewer operations than encoding.

Acknowledgment

This work was partially financed by the CONE project (Grant No. 09-066549/FTP)
granted by the Danish Ministry of Science, Technology and Innovation, and the
ENOC project in collaboration with Nokia, Oulu.

References

1. Heide, J., Pedersen, M.V., Fitzek, F.H., Larsen, T.: Network coding for mobile
devices - systematic binary random rateless codes. In: The IEEE International Con-
ference on Communications (ICC). Dresden, Germany (14-18 June 2009)

2. Ho, T., Koetter, R., Médard, M., Karger, D., ros, M.: The benefits of coding over
routing in a randomized setting. In: Proceedings of the IEEE International Sympo-
sium on Information Theory, ISIT ’03 (June 29 - July 4 2003)


